![]() |
Jetson Inference
DNN Vision Library
|
Image segmentation with FCN-Alexnet or custom models, using TensorRT. More...
#include <segNet.h>
Public Types | |
enum | FilterMode { FILTER_POINT = 0, FILTER_LINEAR } |
Enumeration of mask/overlay filtering modes. More... | |
enum | VisualizationFlags { VISUALIZE_OVERLAY = (1 << 0), VISUALIZE_MASK = (1 << 1) } |
Visualization flags. More... | |
Public Member Functions | |
virtual | ~segNet () |
Destroy. More... | |
template<typename T > | |
bool | Process (T *input, uint32_t width, uint32_t height, const char *ignore_class="void") |
Perform the initial inferencing processing portion of the segmentation. More... | |
bool | Process (void *input, uint32_t width, uint32_t height, imageFormat format, const char *ignore_class="void") |
Perform the initial inferencing processing portion of the segmentation. More... | |
bool | Process (float *input, uint32_t width, uint32_t height, const char *ignore_class="void") |
Perform the initial inferencing processing portion of the segmentation. More... | |
template<typename T > | |
bool | Mask (T *output, uint32_t width, uint32_t height, FilterMode filter=FILTER_LINEAR) |
Produce a colorized segmentation mask. More... | |
bool | Mask (void *output, uint32_t width, uint32_t height, imageFormat format, FilterMode filter=FILTER_LINEAR) |
Produce a colorized segmentation mask. More... | |
bool | Mask (float *output, uint32_t width, uint32_t height, FilterMode filter=FILTER_LINEAR) |
Produce a colorized RGBA segmentation mask. More... | |
bool | Mask (uint8_t *output, uint32_t width, uint32_t height) |
Produce a grayscale binary segmentation mask, where the pixel values correspond to the class ID of the corresponding class type. More... | |
template<typename T > | |
bool | Overlay (T *output, uint32_t width, uint32_t height, FilterMode filter=FILTER_LINEAR) |
Produce the segmentation overlay alpha blended on top of the original image. More... | |
bool | Overlay (void *output, uint32_t width, uint32_t height, imageFormat format, FilterMode filter=FILTER_LINEAR) |
Produce the segmentation overlay alpha blended on top of the original image. More... | |
bool | Overlay (float *output, uint32_t width, uint32_t height, FilterMode filter=FILTER_LINEAR) |
Produce the segmentation overlay alpha blended on top of the original image. More... | |
int | FindClassID (const char *label_name) |
Find the ID of a particular class (by label name). More... | |
uint32_t | GetNumClasses () const |
Retrieve the number of object classes supported in the detector. More... | |
const char * | GetClassLabel (uint32_t id) const |
Retrieve the description of a particular class. More... | |
const char * | GetClassDesc (uint32_t id) const |
Retrieve the description of a particular class. More... | |
float4 | GetClassColor (uint32_t id) const |
Retrieve the RGBA visualization color a particular class. More... | |
void | SetClassColor (uint32_t classIndex, const float4 &color) |
Set the visualization color of a particular class of object. More... | |
void | SetClassColor (uint32_t classIndex, float r, float g, float b, float a=255.0f) |
Set the visualization color of a particular class of object. More... | |
float | GetOverlayAlpha () const |
Retrieve the overlay alpha blending value for classes that don't have it explicitly set. More... | |
void | SetOverlayAlpha (float alpha, bool explicit_exempt=true) |
Set overlay alpha blending value for all classes (between 0-255), (optionally except for those that have been explicitly set). More... | |
const char * | GetClassPath () const |
Retrieve the path to the file containing the class label descriptions. More... | |
uint32_t | GetGridWidth () const |
Retrieve the number of columns in the classification grid. More... | |
uint32_t | GetGridHeight () const |
Retrieve the number of rows in the classification grid. More... | |
![]() | |
virtual | ~tensorNet () |
Destory. More... | |
bool | LoadNetwork (const char *prototxt, const char *model, const char *mean=NULL, const char *input_blob="data", const char *output_blob="prob", uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) |
Load a new network instance. More... | |
bool | LoadNetwork (const char *prototxt, const char *model, const char *mean, const char *input_blob, const std::vector< std::string > &output_blobs, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) |
Load a new network instance with multiple output layers. More... | |
bool | LoadNetwork (const char *prototxt, const char *model, const char *mean, const std::vector< std::string > &input_blobs, const std::vector< std::string > &output_blobs, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) |
Load a new network instance with multiple input layers. More... | |
bool | LoadNetwork (const char *prototxt, const char *model, const char *mean, const char *input_blob, const Dims3 &input_dims, const std::vector< std::string > &output_blobs, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) |
Load a new network instance (this variant is used for UFF models) More... | |
bool | LoadNetwork (const char *prototxt, const char *model, const char *mean, const std::vector< std::string > &input_blobs, const std::vector< Dims3 > &input_dims, const std::vector< std::string > &output_blobs, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) |
Load a new network instance with multiple input layers (used for UFF models) More... | |
bool | LoadEngine (const char *engine_filename, const std::vector< std::string > &input_blobs, const std::vector< std::string > &output_blobs, nvinfer1::IPluginFactory *pluginFactory=NULL, deviceType device=DEVICE_GPU, cudaStream_t stream=NULL) |
Load a network instance from a serialized engine plan file. More... | |
bool | LoadEngine (char *engine_stream, size_t engine_size, const std::vector< std::string > &input_blobs, const std::vector< std::string > &output_blobs, nvinfer1::IPluginFactory *pluginFactory=NULL, deviceType device=DEVICE_GPU, cudaStream_t stream=NULL) |
Load a network instance from a serialized engine plan file. More... | |
bool | LoadEngine (nvinfer1::ICudaEngine *engine, const std::vector< std::string > &input_blobs, const std::vector< std::string > &output_blobs, deviceType device=DEVICE_GPU, cudaStream_t stream=NULL) |
Load network resources from an existing TensorRT engine instance. More... | |
bool | LoadEngine (const char *filename, char **stream, size_t *size) |
Load a serialized engine plan file into memory. More... | |
void | EnableLayerProfiler () |
Manually enable layer profiling times. More... | |
void | EnableDebug () |
Manually enable debug messages and synchronization. More... | |
bool | AllowGPUFallback () const |
Return true if GPU fallback is enabled. More... | |
deviceType | GetDevice () const |
Retrieve the device being used for execution. More... | |
precisionType | GetPrecision () const |
Retrieve the type of precision being used. More... | |
bool | IsPrecision (precisionType type) const |
Check if a particular precision is being used. More... | |
cudaStream_t | GetStream () const |
Retrieve the stream that the device is operating on. More... | |
cudaStream_t | CreateStream (bool nonBlocking=true) |
Create and use a new stream for execution. More... | |
void | SetStream (cudaStream_t stream) |
Set the stream that the device is operating on. More... | |
const char * | GetPrototxtPath () const |
Retrieve the path to the network prototxt file. More... | |
const char * | GetModelPath () const |
Retrieve the full path to model file, including the filename. More... | |
const char * | GetModelFilename () const |
Retrieve the filename of the file, excluding the directory. More... | |
modelType | GetModelType () const |
Retrieve the format of the network model. More... | |
bool | IsModelType (modelType type) const |
Return true if the model is of the specified format. More... | |
uint32_t | GetInputLayers () const |
Retrieve the number of input layers to the network. More... | |
uint32_t | GetOutputLayers () const |
Retrieve the number of output layers to the network. More... | |
Dims3 | GetInputDims (uint32_t layer=0) const |
Retrieve the dimensions of network input layer. More... | |
uint32_t | GetInputWidth (uint32_t layer=0) const |
Retrieve the width of network input layer. More... | |
uint32_t | GetInputHeight (uint32_t layer=0) const |
Retrieve the height of network input layer. More... | |
uint32_t | GetInputSize (uint32_t layer=0) const |
Retrieve the size (in bytes) of network input layer. More... | |
float * | GetInputPtr (uint32_t layer=0) const |
Get the CUDA pointer to the input layer's memory. More... | |
Dims3 | GetOutputDims (uint32_t layer=0) const |
Retrieve the dimensions of network output layer. More... | |
uint32_t | GetOutputWidth (uint32_t layer=0) const |
Retrieve the width of network output layer. More... | |
uint32_t | GetOutputHeight (uint32_t layer=0) const |
Retrieve the height of network output layer. More... | |
uint32_t | GetOutputSize (uint32_t layer=0) const |
Retrieve the size (in bytes) of network output layer. More... | |
float * | GetOutputPtr (uint32_t layer=0) const |
Get the CUDA pointer to the output memory. More... | |
float | GetNetworkFPS () |
Retrieve the network frames per second (FPS). More... | |
float | GetNetworkTime () |
Retrieve the network runtime (in milliseconds). More... | |
const char * | GetNetworkName () const |
Retrieve the network name (it's filename). More... | |
float2 | GetProfilerTime (profilerQuery query) |
Retrieve the profiler runtime (in milliseconds). More... | |
float | GetProfilerTime (profilerQuery query, profilerDevice device) |
Retrieve the profiler runtime (in milliseconds). More... | |
void | PrintProfilerTimes () |
Print the profiler times (in millseconds). More... | |
Static Public Member Functions | |
static uint32_t | VisualizationFlagsFromStr (const char *str, uint32_t default_value=VISUALIZE_OVERLAY) |
Parse a string of one of more VisualizationMode values. More... | |
static FilterMode | FilterModeFromStr (const char *str, FilterMode default_value=FILTER_LINEAR) |
Parse a string from one of the FilterMode values. More... | |
static segNet * | Create (const char *network="fcn-resnet18-voc", uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true) |
Load a pre-trained model. More... | |
static segNet * | Create (const char *prototxt_path, const char *model_path, const char *class_labels, const char *class_colors=NULL, const char *input=SEGNET_DEFAULT_INPUT, const char *output=SEGNET_DEFAULT_OUTPUT, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true) |
Load a new network instance. More... | |
static segNet * | Create (int argc, char **argv) |
Load a new network instance by parsing the command line. More... | |
static segNet * | Create (const commandLine &cmdLine) |
Load a new network instance by parsing the command line. More... | |
static const char * | Usage () |
Usage string for command line arguments to Create() More... | |
![]() | |
static bool | LoadClassLabels (const char *filename, std::vector< std::string > &descriptions, int expectedClasses=-1) |
Load class descriptions from a label file. More... | |
static bool | LoadClassLabels (const char *filename, std::vector< std::string > &descriptions, std::vector< std::string > &synsets, int expectedClasses=-1) |
Load class descriptions and synset strings from a label file. More... | |
static bool | LoadClassColors (const char *filename, float4 *colors, int expectedClasses, float defaultAlpha=255.0f) |
Load class colors from a text file. More... | |
static bool | LoadClassColors (const char *filename, float4 **colors, int expectedClasses, float defaultAlpha=255.0f) |
Load class colors from a text file. More... | |
static float4 | GenerateColor (uint32_t classID, float alpha=255.0f) |
Procedurally generate a color for a given class index with the specified alpha value. More... | |
static precisionType | SelectPrecision (precisionType precision, deviceType device=DEVICE_GPU, bool allowInt8=true) |
Resolve a desired precision to a specific one that's available. More... | |
static precisionType | FindFastestPrecision (deviceType device=DEVICE_GPU, bool allowInt8=true) |
Determine the fastest native precision on a device. More... | |
static std::vector< precisionType > | DetectNativePrecisions (deviceType device=DEVICE_GPU) |
Detect the precisions supported natively on a device. More... | |
static bool | DetectNativePrecision (const std::vector< precisionType > &nativeTypes, precisionType type) |
Detect if a particular precision is supported natively. More... | |
static bool | DetectNativePrecision (precisionType precision, deviceType device=DEVICE_GPU) |
Detect if a particular precision is supported natively. More... | |
Protected Member Functions | |
segNet () | |
bool | classify (const char *ignore_class) |
bool | overlayPoint (void *input, uint32_t in_width, uint32_t in_height, imageFormat in_format, void *output, uint32_t out_width, uint32_t out_height, imageFormat out_format, bool mask_only) |
bool | overlayLinear (void *input, uint32_t in_width, uint32_t in_height, imageFormat in_format, void *output, uint32_t out_width, uint32_t out_height, imageFormat out_format, bool mask_only) |
bool | loadClassColors (const char *filename) |
bool | loadClassLabels (const char *filename) |
bool | saveClassLegend (const char *filename) |
![]() | |
tensorNet () | |
Constructor. More... | |
bool | ProcessNetwork (bool sync=true) |
Execute processing of the network. More... | |
bool | ProfileModel (const std::string &deployFile, const std::string &modelFile, const std::vector< std::string > &inputs, const std::vector< Dims3 > &inputDims, const std::vector< std::string > &outputs, uint32_t maxBatchSize, precisionType precision, deviceType device, bool allowGPUFallback, nvinfer1::IInt8Calibrator *calibrator, char **engineStream, size_t *engineSize) |
Create and output an optimized network model. More... | |
bool | ConfigureBuilder (nvinfer1::IBuilder *builder, uint32_t maxBatchSize, uint32_t workspaceSize, precisionType precision, deviceType device, bool allowGPUFallback, nvinfer1::IInt8Calibrator *calibrator) |
Configure builder options. More... | |
bool | ValidateEngine (const char *model_path, const char *cache_path, const char *checksum_path) |
Validate that the model already has a built TensorRT engine that exists and doesn't need updating. More... | |
void | PROFILER_BEGIN (profilerQuery query) |
Begin a profiling query, before network is run. More... | |
void | PROFILER_END (profilerQuery query) |
End a profiling query, after the network is run. More... | |
bool | PROFILER_QUERY (profilerQuery query) |
Query the CUDA part of a profiler query. More... | |
Protected Attributes | |
std::vector< std::string > | mClassLabels |
std::string | mClassPath |
bool * | mColorsAlphaSet |
true if class color had been explicitly set from file or user More... | |
float4 * | mClassColors |
array of overlay colors in shared CPU/GPU memory More... | |
uint8_t * | mClassMap |
runtime buffer for the argmax-classified class index of each tile More... | |
void * | mLastInputImg |
last input image to be processed, stored for overlay More... | |
uint32_t | mLastInputWidth |
width in pixels of last input image to be processed More... | |
uint32_t | mLastInputHeight |
height in pixels of last input image to be processed More... | |
imageFormat | mLastInputFormat |
pixel format of last input image More... | |
![]() | |
tensorNet::Logger | gLogger |
tensorNet::Profiler | gProfiler |
std::string | mPrototxtPath |
std::string | mModelPath |
std::string | mModelFile |
std::string | mMeanPath |
std::string | mCacheEnginePath |
std::string | mCacheCalibrationPath |
std::string | mChecksumPath |
deviceType | mDevice |
precisionType | mPrecision |
modelType | mModelType |
cudaStream_t | mStream |
cudaEvent_t | mEventsGPU [PROFILER_TOTAL *2] |
timespec | mEventsCPU [PROFILER_TOTAL *2] |
nvinfer1::IRuntime * | mInfer |
nvinfer1::ICudaEngine * | mEngine |
nvinfer1::IExecutionContext * | mContext |
float2 | mProfilerTimes [PROFILER_TOTAL+1] |
uint32_t | mProfilerQueriesUsed |
uint32_t | mProfilerQueriesDone |
uint32_t | mWorkspaceSize |
uint32_t | mMaxBatchSize |
bool | mEnableProfiler |
bool | mEnableDebug |
bool | mAllowGPUFallback |
void ** | mBindings |
std::vector< layerInfo > | mInputs |
std::vector< layerInfo > | mOutputs |
Image segmentation with FCN-Alexnet or custom models, using TensorRT.
enum segNet::FilterMode |
|
virtual |
Destroy.
|
protected |
|
protected |
|
static |
Load a pre-trained model.
|
static |
Load a new network instance.
prototxt_path | File path to the deployable network prototxt |
model_path | File path to the caffemodel |
class_labels | File path to list of class name labels |
class_colors | File path to list of class colors |
input | Name of the input layer blob. |
output | Name of the output layer blob. |
maxBatchSize | The maximum batch size that the network will support and be optimized for. |
|
static |
Load a new network instance by parsing the command line.
|
static |
Load a new network instance by parsing the command line.
|
static |
Parse a string from one of the FilterMode values.
Valid strings are "point", and "linear"
int segNet::FindClassID | ( | const char * | label_name | ) |
Find the ID of a particular class (by label name).
|
inline |
Retrieve the RGBA visualization color a particular class.
|
inline |
Retrieve the description of a particular class.
|
inline |
Retrieve the description of a particular class.
|
inline |
Retrieve the path to the file containing the class label descriptions.
|
inline |
Retrieve the number of rows in the classification grid.
This indicates the resolution of the raw segmentation output.
|
inline |
Retrieve the number of columns in the classification grid.
This indicates the resolution of the raw segmentation output.
|
inline |
Retrieve the number of object classes supported in the detector.
float segNet::GetOverlayAlpha | ( | ) | const |
Retrieve the overlay alpha blending value for classes that don't have it explicitly set.
|
protected |
|
protected |
bool segNet::Mask | ( | float * | output, |
uint32_t | width, | ||
uint32_t | height, | ||
FilterMode | filter = FILTER_LINEAR |
||
) |
Produce a colorized RGBA segmentation mask.
|
inline |
Produce a colorized segmentation mask.
bool segNet::Mask | ( | uint8_t * | output, |
uint32_t | width, | ||
uint32_t | height | ||
) |
Produce a grayscale binary segmentation mask, where the pixel values correspond to the class ID of the corresponding class type.
bool segNet::Mask | ( | void * | output, |
uint32_t | width, | ||
uint32_t | height, | ||
imageFormat | format, | ||
FilterMode | filter = FILTER_LINEAR |
||
) |
Produce a colorized segmentation mask.
bool segNet::Overlay | ( | float * | output, |
uint32_t | width, | ||
uint32_t | height, | ||
FilterMode | filter = FILTER_LINEAR |
||
) |
Produce the segmentation overlay alpha blended on top of the original image.
input | float4 input image in CUDA device memory, RGBA colorspace with values 0-255. |
output | float4 output image in CUDA device memory, RGBA colorspace with values 0-255. |
width | width of the input image in pixels. |
height | height of the input image in pixels. |
ignore_class | label name of class to ignore in the classification (or NULL to process all). |
type | overlay visualization options |
|
inline |
Produce the segmentation overlay alpha blended on top of the original image.
output | output image in CUDA device memory, RGB/RGBA colorspace with values 0-255. |
width | width of the input image in pixels. |
height | height of the input image in pixels. |
ignore_class | label name of class to ignore in the classification (or NULL to process all). |
type | overlay visualization options |
bool segNet::Overlay | ( | void * | output, |
uint32_t | width, | ||
uint32_t | height, | ||
imageFormat | format, | ||
FilterMode | filter = FILTER_LINEAR |
||
) |
Produce the segmentation overlay alpha blended on top of the original image.
output | output image in CUDA device memory, RGB/RGBA colorspace with values 0-255. |
width | width of the input image in pixels. |
height | height of the input image in pixels. |
ignore_class | label name of class to ignore in the classification (or NULL to process all). |
type | overlay visualization options |
|
protected |
|
protected |
bool segNet::Process | ( | float * | input, |
uint32_t | width, | ||
uint32_t | height, | ||
const char * | ignore_class = "void" |
||
) |
Perform the initial inferencing processing portion of the segmentation.
The results can then be visualized using the Overlay() and Mask() functions.
input | float4 input image in CUDA device memory, RGBA colorspace with values 0-255. |
width | width of the input image in pixels. |
height | height of the input image in pixels. |
ignore_class | label name of class to ignore in the classification (or NULL to process all). |
|
inline |
Perform the initial inferencing processing portion of the segmentation.
The results can then be visualized using the Overlay() and Mask() functions.
input | the input image in CUDA device memory, with pixel values 0-255. |
width | width of the input image in pixels. |
height | height of the input image in pixels. |
ignore_class | label name of class to ignore in the classification (or NULL to process all). |
bool segNet::Process | ( | void * | input, |
uint32_t | width, | ||
uint32_t | height, | ||
imageFormat | format, | ||
const char * | ignore_class = "void" |
||
) |
Perform the initial inferencing processing portion of the segmentation.
The results can then be visualized using the Overlay() and Mask() functions.
input | the input image in CUDA device memory, with pixel values 0-255. |
width | width of the input image in pixels. |
height | height of the input image in pixels. |
ignore_class | label name of class to ignore in the classification (or NULL to process all). |
|
protected |
void segNet::SetClassColor | ( | uint32_t | classIndex, |
const float4 & | color | ||
) |
Set the visualization color of a particular class of object.
void segNet::SetClassColor | ( | uint32_t | classIndex, |
float | r, | ||
float | g, | ||
float | b, | ||
float | a = 255.0f |
||
) |
Set the visualization color of a particular class of object.
void segNet::SetOverlayAlpha | ( | float | alpha, |
bool | explicit_exempt = true |
||
) |
Set overlay alpha blending value for all classes (between 0-255), (optionally except for those that have been explicitly set).
|
inlinestatic |
Usage string for command line arguments to Create()
|
static |
Parse a string of one of more VisualizationMode values.
Valid strings are "overlay" "mask" "overlay|mask" "overlay,mask" ect.
|
protected |
array of overlay colors in shared CPU/GPU memory
|
protected |
|
protected |
runtime buffer for the argmax-classified class index of each tile
|
protected |
|
protected |
true if class color had been explicitly set from file or user
|
protected |
pixel format of last input image
|
protected |
height in pixels of last input image to be processed
|
protected |
last input image to be processed, stored for overlay
|
protected |
width in pixels of last input image to be processed