|
virtual | ~segNet () |
| Destroy. More...
|
|
bool | Process (float *input, uint32_t width, uint32_t height, const char *ignore_class="void") |
| Perform the initial inferencing processing portion of the segmentation. More...
|
|
bool | Mask (uint8_t *output, uint32_t width, uint32_t height) |
| Produce a grayscale binary segmentation mask, where the pixel values correspond to the class ID of the corresponding class type. More...
|
|
bool | Mask (float *output, uint32_t width, uint32_t height, FilterMode filter=FILTER_LINEAR) |
| Produce a colorized RGBA segmentation mask. More...
|
|
bool | Overlay (float *output, uint32_t width, uint32_t height, FilterMode filter=FILTER_LINEAR) |
| Produce the segmentation overlay alpha blended on top of the original image. More...
|
|
int | FindClassID (const char *label_name) |
| Find the ID of a particular class (by label name). More...
|
|
uint32_t | GetNumClasses () const |
| Retrieve the number of object classes supported in the detector. More...
|
|
const char * | GetClassLabel (uint32_t id) const |
| Retrieve the description of a particular class. More...
|
|
float * | GetClassColor (uint32_t id) const |
| Retrieve the class synset category of a particular class. More...
|
|
void | SetClassColor (uint32_t classIndex, float r, float g, float b, float a=255.0f) |
| Set the visualization color of a particular class of object. More...
|
|
void | SetGlobalAlpha (float alpha, bool explicit_exempt=true) |
| Set a global alpha value for all classes (between 0-255), (optionally except for those that have been explicitly set). More...
|
|
const char * | GetClassPath () const |
| Retrieve the path to the file containing the class label descriptions. More...
|
|
uint32_t | GetGridWidth () const |
| Retrieve the number of columns in the classification grid. More...
|
|
uint32_t | GetGridHeight () const |
| Retrieve the number of rows in the classification grid. More...
|
|
NetworkType | GetNetworkType () const |
| Retrieve the network type (alexnet or googlenet) More...
|
|
const char * | GetNetworkName () const |
| Retrieve a string describing the network name. More...
|
|
virtual | ~tensorNet () |
| Destory. More...
|
|
bool | LoadNetwork (const char *prototxt, const char *model, const char *mean=NULL, const char *input_blob="data", const char *output_blob="prob", uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) |
| Load a new network instance. More...
|
|
bool | LoadNetwork (const char *prototxt, const char *model, const char *mean, const char *input_blob, const std::vector< std::string > &output_blobs, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) |
| Load a new network instance with multiple output layers. More...
|
|
bool | LoadNetwork (const char *prototxt, const char *model, const char *mean, const char *input_blob, const Dims3 &input_dims, const std::vector< std::string > &output_blobs, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) |
| Load a new network instance (this variant is used for UFF models) More...
|
|
void | EnableLayerProfiler () |
| Manually enable layer profiling times. More...
|
|
void | EnableDebug () |
| Manually enable debug messages and synchronization. More...
|
|
bool | AllowGPUFallback () const |
| Return true if GPU fallback is enabled. More...
|
|
deviceType | GetDevice () const |
| Retrieve the device being used for execution. More...
|
|
precisionType | GetPrecision () const |
| Retrieve the type of precision being used. More...
|
|
bool | IsPrecision (precisionType type) const |
| Check if a particular precision is being used. More...
|
|
cudaStream_t | GetStream () const |
| Retrieve the stream that the device is operating on. More...
|
|
cudaStream_t | CreateStream (bool nonBlocking=true) |
| Create and use a new stream for execution. More...
|
|
void | SetStream (cudaStream_t stream) |
| Set the stream that the device is operating on. More...
|
|
const char * | GetPrototxtPath () const |
| Retrieve the path to the network prototxt file. More...
|
|
const char * | GetModelPath () const |
| Retrieve the path to the network model file. More...
|
|
modelType | GetModelType () const |
| Retrieve the format of the network model. More...
|
|
bool | IsModelType (modelType type) const |
| Return true if the model is of the specified format. More...
|
|
float | GetNetworkTime () |
| Retrieve the network runtime (in milliseconds). More...
|
|
float2 | GetProfilerTime (profilerQuery query) |
| Retrieve the profiler runtime (in milliseconds). More...
|
|
float | GetProfilerTime (profilerQuery query, profilerDevice device) |
| Retrieve the profiler runtime (in milliseconds). More...
|
|
void | PrintProfilerTimes () |
| Print the profiler times (in millseconds). More...
|
|
|
static NetworkType | NetworkTypeFromStr (const char *model_name) |
| Parse a string from one of the built-in pretrained models. More...
|
|
static FilterMode | FilterModeFromStr (const char *str, FilterMode default_value=FILTER_LINEAR) |
| Parse a string from one of the FilterMode values. More...
|
|
static segNet * | Create (NetworkType networkType=FCN_ALEXNET_CITYSCAPES_SD, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true) |
| Load a new network instance. More...
|
|
static segNet * | Create (const char *prototxt_path, const char *model_path, const char *class_labels, const char *class_colors=NULL, const char *input=SEGNET_DEFAULT_INPUT, const char *output=SEGNET_DEFAULT_OUTPUT, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true) |
| Load a new network instance. More...
|
|
static segNet * | Create (int argc, char **argv) |
| Load a new network instance by parsing the command line. More...
|
|
static precisionType | FindFastestPrecision (deviceType device=DEVICE_GPU, bool allowInt8=true) |
| Determine the fastest native precision on a device. More...
|
|
static std::vector< precisionType > | DetectNativePrecisions (deviceType device=DEVICE_GPU) |
| Detect the precisions supported natively on a device. More...
|
|
static bool | DetectNativePrecision (const std::vector< precisionType > &nativeTypes, precisionType type) |
| Detect if a particular precision is supported natively. More...
|
|
static bool | DetectNativePrecision (precisionType precision, deviceType device=DEVICE_GPU) |
| Detect if a particular precision is supported natively. More...
|
|
|
| segNet () |
|
bool | classify (const char *ignore_class) |
|
bool | overlayPoint (float *input, uint32_t in_width, uint32_t in_height, float *output, uint32_t out_width, uint32_t out_height, bool mask_only) |
|
bool | overlayLinear (float *input, uint32_t in_width, uint32_t in_height, float *output, uint32_t out_width, uint32_t out_height, bool mask_only) |
|
bool | loadClassColors (const char *filename) |
|
bool | loadClassLabels (const char *filename) |
|
| tensorNet () |
| Constructor. More...
|
|
bool | ProfileModel (const std::string &deployFile, const std::string &modelFile, const char *input, const Dims3 &inputDims, const std::vector< std::string > &outputs, uint32_t maxBatchSize, precisionType precision, deviceType device, bool allowGPUFallback, nvinfer1::IInt8Calibrator *calibrator, std::ostream &modelStream) |
| Create and output an optimized network model. More...
|
|
void | PROFILER_BEGIN (profilerQuery query) |
| Begin a profiling query, before network is run. More...
|
|
void | PROFILER_END (profilerQuery query) |
| End a profiling query, after the network is run. More...
|
|
bool | PROFILER_QUERY (profilerQuery query) |
| Query the CUDA part of a profiler query. More...
|
|
Image segmentation with FCN-Alexnet or custom models, using TensorRT.