Jetson Inference
DNN Vision Library
|
This is the complete list of members for imageNet, including all inherited members.
AllowGPUFallback() const | tensorNet | inline |
applySmoothing() | imageNet | protected |
Classifications typedef | imageNet | |
Classify(T *image, uint32_t width, uint32_t height, float *confidence=NULL) | imageNet | inline |
Classify(void *image, uint32_t width, uint32_t height, imageFormat format, float *confidence=NULL) | imageNet | |
Classify(float *rgba, uint32_t width, uint32_t height, float *confidence=NULL, imageFormat format=IMAGE_RGBA32F) | imageNet | |
Classify(T *image, uint32_t width, uint32_t height, Classifications &classifications, int topK=1) | imageNet | inline |
Classify(void *image, uint32_t width, uint32_t height, imageFormat format, Classifications &classifications, int topK=1) | imageNet | |
ConfigureBuilder(nvinfer1::IBuilder *builder, uint32_t maxBatchSize, uint32_t workspaceSize, precisionType precision, deviceType device, bool allowGPUFallback, nvinfer1::IInt8Calibrator *calibrator) | tensorNet | protected |
Create(const char *network="googlenet", uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true) | imageNet | static |
Create(const char *prototxt_path, const char *model_path, const char *mean_binary, const char *class_labels, const char *input=IMAGENET_DEFAULT_INPUT, const char *output=IMAGENET_DEFAULT_OUTPUT, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true) | imageNet | static |
Create(int argc, char **argv) | imageNet | static |
Create(const commandLine &cmdLine) | imageNet | static |
CreateStream(bool nonBlocking=true) | tensorNet | |
DetectNativePrecision(const std::vector< precisionType > &nativeTypes, precisionType type) | tensorNet | static |
DetectNativePrecision(precisionType precision, deviceType device=DEVICE_GPU) | tensorNet | static |
DetectNativePrecisions(deviceType device=DEVICE_GPU) | tensorNet | static |
EnableDebug() | tensorNet | |
EnableLayerProfiler() | tensorNet | |
FindFastestPrecision(deviceType device=DEVICE_GPU, bool allowInt8=true) | tensorNet | static |
GenerateColor(uint32_t classID, float alpha=255.0f) | tensorNet | static |
GetClassDesc(int index) const | imageNet | inline |
GetClassLabel(int index) const | imageNet | inline |
GetClassPath() const | imageNet | inline |
GetClassSynset(int index) const | imageNet | inline |
GetDevice() const | tensorNet | inline |
GetInputDims(uint32_t layer=0) const | tensorNet | inline |
GetInputHeight(uint32_t layer=0) const | tensorNet | inline |
GetInputLayers() const | tensorNet | inline |
GetInputPtr(uint32_t layer=0) const | tensorNet | inline |
GetInputSize(uint32_t layer=0) const | tensorNet | inline |
GetInputWidth(uint32_t layer=0) const | tensorNet | inline |
GetModelFilename() const | tensorNet | inline |
GetModelPath() const | tensorNet | inline |
GetModelType() const | tensorNet | inline |
GetNetworkFPS() | tensorNet | inline |
GetNetworkName() const | tensorNet | inline |
GetNetworkTime() | tensorNet | inline |
GetNumClasses() const | imageNet | inline |
GetOutputDims(uint32_t layer=0) const | tensorNet | inline |
GetOutputHeight(uint32_t layer=0) const | tensorNet | inline |
GetOutputLayers() const | tensorNet | inline |
GetOutputPtr(uint32_t layer=0) const | tensorNet | inline |
GetOutputSize(uint32_t layer=0) const | tensorNet | inline |
GetOutputWidth(uint32_t layer=0) const | tensorNet | inline |
GetPrecision() const | tensorNet | inline |
GetProfilerTime(profilerQuery query) | tensorNet | inline |
GetProfilerTime(profilerQuery query, profilerDevice device) | tensorNet | inline |
GetPrototxtPath() const | tensorNet | inline |
GetSmoothing() const | imageNet | inline |
GetStream() const | tensorNet | inline |
GetThreshold() const | imageNet | inline |
gLogger | tensorNet | protected |
gProfiler | tensorNet | protected |
imageNet() | imageNet | protected |
init(const char *prototxt_path, const char *model_path, const char *mean_binary, const char *class_path, const char *input, const char *output, uint32_t maxBatchSize, precisionType precision, deviceType device, bool allowGPUFallback) | imageNet | protected |
IsModelType(modelType type) const | tensorNet | inline |
IsPrecision(precisionType type) const | tensorNet | inline |
LoadClassColors(const char *filename, float4 *colors, int expectedClasses, float defaultAlpha=255.0f) | tensorNet | static |
LoadClassColors(const char *filename, float4 **colors, int expectedClasses, float defaultAlpha=255.0f) | tensorNet | static |
loadClassInfo(const char *filename, int expectedClasses=-1) | imageNet | protected |
LoadClassLabels(const char *filename, std::vector< std::string > &descriptions, int expectedClasses=-1) | tensorNet | static |
LoadClassLabels(const char *filename, std::vector< std::string > &descriptions, std::vector< std::string > &synsets, int expectedClasses=-1) | tensorNet | static |
LoadEngine(const char *engine_filename, const std::vector< std::string > &input_blobs, const std::vector< std::string > &output_blobs, nvinfer1::IPluginFactory *pluginFactory=NULL, deviceType device=DEVICE_GPU, cudaStream_t stream=NULL) | tensorNet | |
LoadEngine(char *engine_stream, size_t engine_size, const std::vector< std::string > &input_blobs, const std::vector< std::string > &output_blobs, nvinfer1::IPluginFactory *pluginFactory=NULL, deviceType device=DEVICE_GPU, cudaStream_t stream=NULL) | tensorNet | |
LoadEngine(nvinfer1::ICudaEngine *engine, const std::vector< std::string > &input_blobs, const std::vector< std::string > &output_blobs, deviceType device=DEVICE_GPU, cudaStream_t stream=NULL) | tensorNet | |
LoadEngine(const char *filename, char **stream, size_t *size) | tensorNet | |
LoadNetwork(const char *prototxt, const char *model, const char *mean=NULL, const char *input_blob="data", const char *output_blob="prob", uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) | tensorNet | |
LoadNetwork(const char *prototxt, const char *model, const char *mean, const char *input_blob, const std::vector< std::string > &output_blobs, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) | tensorNet | |
LoadNetwork(const char *prototxt, const char *model, const char *mean, const std::vector< std::string > &input_blobs, const std::vector< std::string > &output_blobs, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) | tensorNet | |
LoadNetwork(const char *prototxt, const char *model, const char *mean, const char *input_blob, const Dims3 &input_dims, const std::vector< std::string > &output_blobs, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) | tensorNet | |
LoadNetwork(const char *prototxt, const char *model, const char *mean, const std::vector< std::string > &input_blobs, const std::vector< Dims3 > &input_dims, const std::vector< std::string > &output_blobs, uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true, nvinfer1::IInt8Calibrator *calibrator=NULL, cudaStream_t stream=NULL) | tensorNet | |
mAllowGPUFallback | tensorNet | protected |
mBindings | tensorNet | protected |
mCacheCalibrationPath | tensorNet | protected |
mCacheEnginePath | tensorNet | protected |
mChecksumPath | tensorNet | protected |
mClassDesc | imageNet | protected |
mClassPath | imageNet | protected |
mClassSynset | imageNet | protected |
mContext | tensorNet | protected |
mDevice | tensorNet | protected |
mEnableDebug | tensorNet | protected |
mEnableProfiler | tensorNet | protected |
mEngine | tensorNet | protected |
mEventsCPU | tensorNet | protected |
mEventsGPU | tensorNet | protected |
mInfer | tensorNet | protected |
mInputs | tensorNet | protected |
mMaxBatchSize | tensorNet | protected |
mMeanPath | tensorNet | protected |
mModelFile | tensorNet | protected |
mModelPath | tensorNet | protected |
mModelType | tensorNet | protected |
mNumClasses | imageNet | protected |
mOutputs | tensorNet | protected |
mPrecision | tensorNet | protected |
mProfilerQueriesDone | tensorNet | protected |
mProfilerQueriesUsed | tensorNet | protected |
mProfilerTimes | tensorNet | protected |
mPrototxtPath | tensorNet | protected |
mSmoothingBuffer | imageNet | protected |
mSmoothingFactor | imageNet | protected |
mStream | tensorNet | protected |
mThreshold | imageNet | protected |
mWorkspaceSize | tensorNet | protected |
preProcess(void *image, uint32_t width, uint32_t height, imageFormat format) | imageNet | protected |
PrintProfilerTimes() | tensorNet | inline |
ProcessNetwork(bool sync=true) | tensorNet | protected |
ProfileModel(const std::string &deployFile, const std::string &modelFile, const std::vector< std::string > &inputs, const std::vector< Dims3 > &inputDims, const std::vector< std::string > &outputs, uint32_t maxBatchSize, precisionType precision, deviceType device, bool allowGPUFallback, nvinfer1::IInt8Calibrator *calibrator, char **engineStream, size_t *engineSize) | tensorNet | protected |
PROFILER_BEGIN(profilerQuery query) | tensorNet | inlineprotected |
PROFILER_END(profilerQuery query) | tensorNet | inlineprotected |
PROFILER_QUERY(profilerQuery query) | tensorNet | inlineprotected |
SelectPrecision(precisionType precision, deviceType device=DEVICE_GPU, bool allowInt8=true) | tensorNet | static |
SetSmoothing(float factor) | imageNet | inline |
SetStream(cudaStream_t stream) | tensorNet | |
SetThreshold(float threshold) | imageNet | inline |
tensorNet() | tensorNet | protected |
Usage() | imageNet | inlinestatic |
ValidateEngine(const char *model_path, const char *cache_path, const char *checksum_path) | tensorNet | protected |
~imageNet() | imageNet | virtual |
~tensorNet() | tensorNet | virtual |