5. The IoC container

5.1 Introduction to the Spring IoC container and beans

This chapter covers the Spring Framework implementation of the Inversion of Control (IoC) [1] principle. IoC is also known as dependency injection (DI). It is a process whereby objects define their dependencies, that is, the other objects they work with, only through constructor arguments, arguments to a factory method, or properties that are set on the object instance after it is constructed or returned from a factory method. The container then injects those dependencies when it creates the bean. This process is fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself controlling the instantiation or location of its dependencies by using direct construction of classes, or a mechanism such as the Service Locator pattern.

The org.springframework.beans and org.springframework.context packages are the basis for Spring Framework’s IoC container. The BeanFactory interface provides an advanced configuration mechanism capable of managing any type of object. ApplicationContext is a sub-interface of BeanFactory. It adds easier integration with Spring’s AOP features; message resource handling (for use in internationalization), event publication; and application-layer specific contexts such as the WebApplicationContext for use in web applications.

In short, the BeanFactory provides the configuration framework and basic functionality, and the ApplicationContext adds more enterprise-specific functionality. The ApplicationContext is a complete superset of the BeanFactory, and is used exclusively in this chapter in descriptions of Spring’s IoC container. For more information on using the BeanFactory instead of the ApplicationContext, refer to Section 5.16, “The BeanFactory”.

In Spring, the objects that form the backbone of your application and that are managed by the Spring IoC container are called beans. A bean is an object that is instantiated, assembled, and otherwise managed by a Spring IoC container. Otherwise, a bean is simply one of many objects in your application. Beans, and the dependencies among them, are reflected in the configuration metadata used by a container.

5.2 Container overview

The interface org.springframework.context.ApplicationContext represents the Spring IoC container and is responsible for instantiating, configuring, and assembling the aforementioned beans. The container gets its instructions on what objects to instantiate, configure, and assemble by reading configuration metadata. The configuration metadata is represented in XML, Java annotations, or Java code. It allows you to express the objects that compose your application and the rich interdependencies between such objects.

Several implementations of the ApplicationContext interface are supplied out-of-the-box with Spring. In standalone applications it is common to create an instance of ClassPathXmlApplicationContext or FileSystemXmlApplicationContext. While XML has been the traditional format for defining configuration metadata you can instruct the container to use Java annotations or code as the metadata format by providing a small amount of XML configuration to declaratively enable support for these additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or more instances of a Spring IoC container. For example, in a web application scenario, a simple eight (or so) lines of boilerplate web descriptor XML in the web.xml file of the application will typically suffice (see Section 5.15.4, “Convenient ApplicationContext instantiation for web applications”). If you are using the Spring Tool Suite Eclipse-powered development environment this boilerplate configuration can be easily created with few mouse clicks or keystrokes.

The following diagram is a high-level view of how Spring works. Your application classes are combined with configuration metadata so that after the ApplicationContext is created and initialized, you have a fully configured and executable system or application.

Figure 5.1. The Spring IoC container

container magic

5.2.1 Configuration metadata

As the preceding diagram shows, the Spring IoC container consumes a form of configuration metadata; this configuration metadata represents how you as an application developer tell the Spring container to instantiate, configure, and assemble the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is what most of this chapter uses to convey key concepts and features of the Spring IoC container.

[Note]Note

XML-based metadata is not the only allowed form of configuration metadata. The Spring IoC container itself is totally decoupled from the format in which this configuration metadata is actually written. These days many developers choose Java-based configuration for their Spring applications.

For information about using other forms of metadata with the Spring container, see:

  • Annotation-based configuration: Spring 2.5 introduced support for annotation-based configuration metadata.
  • Java-based configuration: Starting with Spring 3.0, many features provided by the Spring JavaConfig project became part of the core Spring Framework. Thus you can define beans external to your application classes by using Java rather than XML files. To use these new features, see the @Configuration, @Bean, @Import and @DependsOn annotations.

Spring configuration consists of at least one and typically more than one bean definition that the container must manage. XML-based configuration metadata shows these beans configured as <bean/> elements inside a top-level <beans/> element. Java configuration typically uses @Bean annotated methods within a @Configuration class.

These bean definitions correspond to the actual objects that make up your application. Typically you define service layer objects, data access objects (DAOs), presentation objects such as Struts Action instances, infrastructure objects such as Hibernate SessionFactories, JMS Queues, and so forth. Typically one does not configure fine-grained domain objects in the container, because it is usually the responsibility of DAOs and business logic to create and load domain objects. However, you can use Spring’s integration with AspectJ to configure objects that have been created outside the control of an IoC container. See Using AspectJ to dependency-inject domain objects with Spring.

The following example shows the basic structure of XML-based configuration metadata:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd">

    <bean id="..." class="...">
        <!-- collaborators and configuration for this bean go here -->
    </bean>

    <bean id="..." class="...">
        <!-- collaborators and configuration for this bean go here -->
    </bean>

    <!-- more bean definitions go here -->

</beans>

The id attribute is a string that you use to identify the individual bean definition. The class attribute defines the type of the bean and uses the fully qualified classname. The value of the id attribute refers to collaborating objects. The XML for referring to collaborating objects is not shown in this example; see Dependencies for more information.

5.2.2 Instantiating a container

Instantiating a Spring IoC container is straightforward. The location path or paths supplied to an ApplicationContext constructor are actually resource strings that allow the container to load configuration metadata from a variety of external resources such as the local file system, from the Java CLASSPATH, and so on.

ApplicationContext context =
    new ClassPathXmlApplicationContext(new String[] {"services.xml", "daos.xml"});
[Note]Note

After you learn about Spring’s IoC container, you may want to know more about Spring’s Resource abstraction, as described in Chapter 6, Resources, which provides a convenient mechanism for reading an InputStream from locations defined in a URI syntax. In particular, Resource paths are used to construct applications contexts as described in Section 6.7, “Application contexts and Resource paths”.

The following example shows the service layer objects (services.xml) configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd">

    <!-- services -->

    <bean id="petStore" class="org.springframework.samples.jpetstore.services.PetStoreServiceImpl">
        <property name="accountDao" ref="accountDao"/>
        <property name="itemDao" ref="itemDao"/>
        <!-- additional collaborators and configuration for this bean go here -->
    </bean>

    <!-- more bean definitions for services go here -->

</beans>

The following example shows the data access objects daos.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd">

    <bean id="accountDao"
        class="org.springframework.samples.jpetstore.dao.jpa.JpaAccountDao">
        <!-- additional collaborators and configuration for this bean go here -->
    </bean>

    <bean id="itemDao" class="org.springframework.samples.jpetstore.dao.jpa.JpaItemDao">
        <!-- additional collaborators and configuration for this bean go here -->
    </bean>

    <!-- more bean definitions for data access objects go here -->

</beans>

In the preceding example, the service layer consists of the class PetStoreServiceImpl, and two data access objects of the type JpaAccountDao and JpaItemDao (based on the JPA Object/Relational mapping standard). The property name element refers to the name of the JavaBean property, and the ref element refers to the name of another bean definition. This linkage between id and ref elements expresses the dependency between collaborating objects. For details of configuring an object’s dependencies, see Dependencies.

Composing XML-based configuration metadata

It can be useful to have bean definitions span multiple XML files. Often each individual XML configuration file represents a logical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these XML fragments. This constructor takes multiple Resource locations, as was shown in the previous section. Alternatively, use one or more occurrences of the <import/> element to load bean definitions from another file or files. For example:

<beans>
    <import resource="services.xml"/>
    <import resource="resources/messageSource.xml"/>
    <import resource="/resources/themeSource.xml"/>

    <bean id="bean1" class="..."/>
    <bean id="bean2" class="..."/>
</beans>

In the preceding example, external bean definitions are loaded from three files: services.xml, messageSource.xml, and themeSource.xml. All location paths are relative to the definition file doing the importing, so services.xml must be in the same directory or classpath location as the file doing the importing, while messageSource.xml and themeSource.xml must be in a resources location below the location of the importing file. As you can see, a leading slash is ignored, but given that these paths are relative, it is better form not to use the slash at all. The contents of the files being imported, including the top level <beans/> element, must be valid XML bean definitions according to the Spring Schema.

[Note]Note

It is possible, but not recommended, to reference files in parent directories using a relative "../" path. Doing so creates a dependency on a file that is outside the current application. In particular, this reference is not recommended for "classpath:" URLs (for example, "classpath:../services.xml"), where the runtime resolution process chooses the "nearest" classpath root and then looks into its parent directory. Classpath configuration changes may lead to the choice of a different, incorrect directory.

You can always use fully qualified resource locations instead of relative paths: for example, "file:C:/config/services.xml" or "classpath:/config/services.xml". However, be aware that you are coupling your application’s configuration to specific absolute locations. It is generally preferable to keep an indirection for such absolute locations, for example, through "${…}" placeholders that are resolved against JVM system properties at runtime.

5.2.3 Using the container

The ApplicationContext is the interface for an advanced factory capable of maintaining a registry of different beans and their dependencies. Using the method T getBean(String name, Class<T> requiredType) you can retrieve instances of your beans.

The ApplicationContext enables you to read bean definitions and access them as follows:

// create and configure beans
ApplicationContext context =
    new ClassPathXmlApplicationContext(new String[] {"services.xml", "daos.xml"});

// retrieve configured instance
PetStoreService service = context.getBean("petStore", PetStoreService.class);

// use configured instance
List<String> userList = service.getUsernameList();

You use getBean() to retrieve instances of your beans. The ApplicationContext interface has a few other methods for retrieving beans, but ideally your application code should never use them. Indeed, your application code should have no calls to the getBean() method at all, and thus no dependency on Spring APIs at all. For example, Spring’s integration with web frameworks provides for dependency injection for various web framework classes such as controllers and JSF-managed beans.

5.3 Bean overview

A Spring IoC container manages one or more beans. These beans are created with the configuration metadata that you supply to the container, for example, in the form of XML <bean/> definitions.

Within the container itself, these bean definitions are represented as BeanDefinition objects, which contain (among other information) the following metadata:

  • A package-qualified class name: typically the actual implementation class of the bean being defined.
  • Bean behavioral configuration elements, which state how the bean should behave in the container (scope, lifecycle callbacks, and so forth).
  • References to other beans that are needed for the bean to do its work; these references are also called collaborators or dependencies.
  • Other configuration settings to set in the newly created object, for example, the number of connections to use in a bean that manages a connection pool, or the size limit of the pool.

This metadata translates to a set of properties that make up each bean definition.


In addition to bean definitions that contain information on how to create a specific bean, the ApplicationContext implementations also permit the registration of existing objects that are created outside the container, by users. This is done by accessing the ApplicationContext’s BeanFactory via the method getBeanFactory() which returns the BeanFactory implementation DefaultListableBeanFactory. DefaultListableBeanFactory supports this registration through the methods registerSingleton(..) and registerBeanDefinition(..). However, typical applications work solely with beans defined through metadata bean definitions.

5.3.1 Naming beans

Every bean has one or more identifiers. These identifiers must be unique within the container that hosts the bean. A bean usually has only one identifier, but if it requires more than one, the extra ones can be considered aliases.

In XML-based configuration metadata, you use the id and/or name attributes to specify the bean identifier(s). The id attribute allows you to specify exactly one id. Conventionally these names are alphanumeric (myBean, fooService, etc.), but may contain special characters as well. If you want to introduce other aliases to the bean, you can also specify them in the name attribute, separated by a comma (,), semicolon (;), or white space. As a historical note, in versions prior to Spring 3.1, the id attribute was defined as an xsd:ID type, which constrained possible characters. As of 3.1, it is defined as an xsd:string type. Note that bean id uniqueness is still enforced by the container, though no longer by XML parsers.

You are not required to supply a name or id for a bean. If no name or id is supplied explicitly, the container generates a unique name for that bean. However, if you want to refer to that bean by name, through the use of the ref element or Service Locator style lookup, you must provide a name. Motivations for not supplying a name are related to using inner beans and autowiring collaborators.

Aliasing a bean outside the bean definition

In a bean definition itself, you can supply more than one name for the bean, by using a combination of up to one name specified by the id attribute, and any number of other names in the name attribute. These names can be equivalent aliases to the same bean, and are useful for some situations, such as allowing each component in an application to refer to a common dependency by using a bean name that is specific to that component itself.

Specifying all aliases where the bean is actually defined is not always adequate, however. It is sometimes desirable to introduce an alias for a bean that is defined elsewhere. This is commonly the case in large systems where configuration is split amongst each subsystem, each subsystem having its own set of object definitions. In XML-based configuration metadata, you can use the <alias/> element to accomplish this.

<alias name="fromName" alias="toName"/>

In this case, a bean in the same container which is named fromName, may also, after the use of this alias definition, be referred to as toName.

For example, the configuration metadata for subsystem A may refer to a DataSource via the name subsystemA-dataSource. The configuration metadata for subsystem B may refer to a DataSource via the name subsystemB-dataSource. When composing the main application that uses both these subsystems the main application refers to the DataSource via the name myApp-dataSource. To have all three names refer to the same object you add to the MyApp configuration metadata the following aliases definitions:

<alias name="subsystemA-dataSource" alias="subsystemB-dataSource"/>
<alias name="subsystemA-dataSource" alias="myApp-dataSource" />

Now each component and the main application can refer to the dataSource through a name that is unique and guaranteed not to clash with any other definition (effectively creating a namespace), yet they refer to the same bean.

5.3.2 Instantiating beans

A bean definition essentially is a recipe for creating one or more objects. The container looks at the recipe for a named bean when asked, and uses the configuration metadata encapsulated by that bean definition to create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object that is to be instantiated in the class attribute of the <bean/> element. This class attribute, which internally is a Class property on a BeanDefinition instance, is usually mandatory. (For exceptions, see the section called “Instantiation using an instance factory method” and Section 5.7, “Bean definition inheritance”.) You use the Class property in one of two ways:

  • Typically, to specify the bean class to be constructed in the case where the container itself directly creates the bean by calling its constructor reflectively, somewhat equivalent to Java code using the new operator.
  • To specify the actual class containing the static factory method that will be invoked to create the object, in the less common case where the container invokes a static factory method on a class to create the bean. The object type returned from the invocation of the static factory method may be the same class or another class entirely.

Instantiation with a constructor

When you create a bean by the constructor approach, all normal classes are usable by and compatible with Spring. That is, the class being developed does not need to implement any specific interfaces or to be coded in a specific fashion. Simply specifying the bean class should suffice. However, depending on what type of IoC you use for that specific bean, you may need a default (empty) constructor.

The Spring IoC container can manage virtually any class you want it to manage; it is not limited to managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-argument) constructor and appropriate setters and getters modeled after the properties in the container. You can also have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it as well.

With XML-based configuration metadata you can specify your bean class as follows:

<bean id="exampleBean" class="examples.ExampleBean"/>

<bean name="anotherExample" class="examples.ExampleBeanTwo"/>

For details about the mechanism for supplying arguments to the constructor (if required) and setting object instance properties after the object is constructed, see Injecting Dependencies.

Instantiation with a static factory method

When defining a bean that you create with a static factory method, you use the class attribute to specify the class containing the static factory method and an attribute named factory-method to specify the name of the factory method itself. You should be able to call this method (with optional arguments as described later) and return a live object, which subsequently is treated as if it had been created through a constructor. One use for such a bean definition is to call static factories in legacy code.

The following bean definition specifies that the bean will be created by calling a factory-method. The definition does not specify the type (class) of the returned object, only the class containing the factory method. In this example, the createInstance() method must be a static method.

<bean id="clientService"
    class="examples.ClientService"
    factory-method="createInstance"/>
public class ClientService {
    private static ClientService clientService = new ClientService();
    private ClientService() {}

    public static ClientService createInstance() {
        return clientService;
    }
}

For details about the mechanism for supplying (optional) arguments to the factory method and setting object instance properties after the object is returned from the factory, see Dependencies and configuration in detail.

Instantiation using an instance factory method

Similar to instantiation through a static factory method, instantiation with an instance factory method invokes a non-static method of an existing bean from the container to create a new bean. To use this mechanism, leave the class attribute empty, and in the factory-bean attribute, specify the name of a bean in the current (or parent/ancestor) container that contains the instance method that is to be invoked to create the object. Set the name of the factory method itself with the factory-method attribute.

<!-- the factory bean, which contains a method called createInstance() -->
<bean id="serviceLocator" class="examples.DefaultServiceLocator">
    <!-- inject any dependencies required by this locator bean -->
</bean>

<!-- the bean to be created via the factory bean -->
<bean id="clientService"
    factory-bean="serviceLocator"
    factory-method="createClientServiceInstance"/>
public class DefaultServiceLocator {

    private static ClientService clientService = new ClientServiceImpl();
    private DefaultServiceLocator() {}

    public ClientService createClientServiceInstance() {
        return clientService;
    }
}

One factory class can also hold more than one factory method as shown here:

<bean id="serviceLocator" class="examples.DefaultServiceLocator">
    <!-- inject any dependencies required by this locator bean -->
</bean>

<bean id="clientService"
    factory-bean="serviceLocator"
    factory-method="createClientServiceInstance"/>

<bean id="accountService"
    factory-bean="serviceLocator"
    factory-method="createAccountServiceInstance"/>
public class DefaultServiceLocator {

    private static ClientService clientService = new ClientServiceImpl();
    private static AccountService accountService = new AccountServiceImpl();

    private DefaultServiceLocator() {}

    public ClientService createClientServiceInstance() {
        return clientService;
    }

    public AccountService createAccountServiceInstance() {
        return accountService;
    }

}

This approach shows that the factory bean itself can be managed and configured through dependency injection (DI). See Dependencies and configuration in detail.

[Note]Note

In Spring documentation, factory bean refers to a bean that is configured in the Spring container that will create objects through an instance or static factory method. By contrast, FactoryBean (notice the capitalization) refers to a Spring-specific FactoryBean.

5.4 Dependencies

A typical enterprise application does not consist of a single object (or bean in the Spring parlance). Even the simplest application has a few objects that work together to present what the end-user sees as a coherent application. This next section explains how you go from defining a number of bean definitions that stand alone to a fully realized application where objects collaborate to achieve a goal.

5.4.1 Dependency injection

Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other objects they work with, only through constructor arguments, arguments to a factory method, or properties that are set on the object instance after it is constructed or returned from a factory method. The container then injects those dependencies when it creates the bean. This process is fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself controlling the instantiation or location of its dependencies on its own by using direct construction of classes, or the Service Locator pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are provided with their dependencies. The object does not look up its dependencies, and does not know the location or class of the dependencies. As such, your classes become easier to test, in particular when the dependencies are on interfaces or abstract base classes, which allow for stub or mock implementations to be used in unit tests.

DI exists in two major variants, Constructor-based dependency injection and Setter-based dependency injection.

Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of arguments, each representing a dependency. Calling a static factory method with specific arguments to construct the bean is nearly equivalent, and this discussion treats arguments to a constructor and to a static factory method similarly. The following example shows a class that can only be dependency-injected with constructor injection. Notice that there is nothing special about this class, it is a POJO that has no dependencies on container specific interfaces, base classes or annotations.

public class SimpleMovieLister {

    // the SimpleMovieLister has a dependency on a MovieFinder
    private MovieFinder movieFinder;

    // a constructor so that the Spring container can inject a MovieFinder
    public SimpleMovieLister(MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

    // business logic that actually uses the injected MovieFinder is omitted...

}
Constructor argument resolution

Constructor argument resolution matching occurs using the argument’s type. If no potential ambiguity exists in the constructor arguments of a bean definition, then the order in which the constructor arguments are defined in a bean definition is the order in which those arguments are supplied to the appropriate constructor when the bean is being instantiated. Consider the following class:

package x.y;

public class Foo {

    public Foo(Bar bar, Baz baz) {
        // ...
    }

}

No potential ambiguity exists, assuming that Bar and Baz classes are not related by inheritance. Thus the following configuration works fine, and you do not need to specify the constructor argument indexes and/or types explicitly in the <constructor-arg/> element.

<beans>
    <bean id="foo" class="x.y.Foo">
        <constructor-arg ref="bar"/>
        <constructor-arg ref="baz"/>
    </bean>

    <bean id="bar" class="x.y.Bar"/>

    <bean id="baz" class="x.y.Baz"/>
</beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with the preceding example). When a simple type is used, such as <value>true</value>, Spring cannot determine the type of the value, and so cannot match by type without help. Consider the following class:

package examples;

public class ExampleBean {

    // Number of years to calculate the Ultimate Answer
    private int years;

    // The Answer to Life, the Universe, and Everything
    private String ultimateAnswer;

    public ExampleBean(int years, String ultimateAnswer) {
        this.years = years;
        this.ultimateAnswer = ultimateAnswer;
    }

}

In the preceding scenario, the container can use type matching with simple types if you explicitly specify the type of the constructor argument using the type attribute. For example:

<bean id="exampleBean" class="examples.ExampleBean">
    <constructor-arg type="int" value="7500000"/>
    <constructor-arg type="java.lang.String" value="42"/>
</bean>

Use the index attribute to specify explicitly the index of constructor arguments. For example:

<bean id="exampleBean" class="examples.ExampleBean">
    <constructor-arg index="0" value="7500000"/>
    <constructor-arg index="1" value="42"/>
</bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index resolves ambiguity where a constructor has two arguments of the same type. Note that the index is 0 based.

You can also use the constructor parameter name for value disambiguation:

<bean id="exampleBean" class="examples.ExampleBean">
    <constructor-arg name="years" value="7500000"/>
    <constructor-arg name="ultimateAnswer" value="42"/>
</bean>

Keep in mind that to make this work out of the box your code must be compiled with the debug flag enabled so that Spring can look up the parameter name from the constructor. If you can’t compile your code with debug flag (or don’t want to) you can use @ConstructorProperties JDK annotation to explicitly name your constructor arguments. The sample class would then have to look as follows:

package examples;

public class ExampleBean {

    // Fields omitted

    @ConstructorProperties({"years", "ultimateAnswer"})
    public ExampleBean(int years, String ultimateAnswer) {
        this.years = years;
        this.ultimateAnswer = ultimateAnswer;
    }

}

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans after invoking a no-argument constructor or no-argument static factory method to instantiate your bean.

The following example shows a class that can only be dependency-injected using pure setter injection. This class is conventional Java. It is a POJO that has no dependencies on container specific interfaces, base classes or annotations.

public class SimpleMovieLister {

    // the SimpleMovieLister has a dependency on the MovieFinder
    private MovieFinder movieFinder;

    // a setter method so that the Spring container can inject a MovieFinder
    public void setMovieFinder(MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

    // business logic that actually uses the injected MovieFinder is omitted...

}

The ApplicationContext supports constructor-based and setter-based DI for the beans it manages. It also supports setter-based DI after some dependencies have already been injected through the constructor approach. You configure the dependencies in the form of a BeanDefinition, which you use in conjunction with PropertyEditor instances to convert properties from one format to another. However, most Spring users do not work with these classes directly (i.e., programmatically) but rather with XML bean definitions, annotated components (i.e., classes annotated with @Component, @Controller, etc.), or @Bean methods in Java-based @Configuration classes. These sources are then converted internally into instances of BeanDefinition and used to load an entire Spring IoC container instance.

Dependency resolution process

The container performs bean dependency resolution as follows:

  • The ApplicationContext is created and initialized with configuration metadata that describes all the beans. Configuration metadata can be specified via XML, Java code, or annotations.
  • For each bean, its dependencies are expressed in the form of properties, constructor arguments, or arguments to the static-factory method if you are using that instead of a normal constructor. These dependencies are provided to the bean, when the bean is actually created.
  • Each property or constructor argument is an actual definition of the value to set, or a reference to another bean in the container.
  • Each property or constructor argument which is a value is converted from its specified format to the actual type of that property or constructor argument. By default Spring can convert a value supplied in string format to all built-in types, such as int, long, String, boolean, etc.

The Spring container validates the configuration of each bean as the container is created. However, the bean properties themselves are not set until the bean is actually created. Beans that are singleton-scoped and set to be pre-instantiated (the default) are created when the container is created. Scopes are defined in Section 5.5, “Bean scopes”. Otherwise, the bean is created only when it is requested. Creation of a bean potentially causes a graph of beans to be created, as the bean’s dependencies and its dependencies' dependencies (and so on) are created and assigned. Note that resolution mismatches among those dependencies may show up late, i.e. on first creation of the affected bean.

You can generally trust Spring to do the right thing. It detects configuration problems, such as references to non-existent beans and circular dependencies, at container load-time. Spring sets properties and resolves dependencies as late as possible, when the bean is actually created. This means that a Spring container which has loaded correctly can later generate an exception when you request an object if there is a problem creating that object or one of its dependencies. For example, the bean throws an exception as a result of a missing or invalid property. This potentially delayed visibility of some configuration issues is why ApplicationContext implementations by default pre-instantiate singleton beans. At the cost of some upfront time and memory to create these beans before they are actually needed, you discover configuration issues when the ApplicationContext is created, not later. You can still override this default behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being injected into a dependent bean, each collaborating bean is totally configured prior to being injected into the dependent bean. This means that if bean A has a dependency on bean B, the Spring IoC container completely configures bean B prior to invoking the setter method on bean A. In other words, the bean is instantiated (if not a pre-instantiated singleton), its dependencies are set, and the relevant lifecycle methods (such as a configured init method or the InitializingBean callback method) are invoked.

Examples of dependency injection

The following example uses XML-based configuration metadata for setter-based DI. A small part of a Spring XML configuration file specifies some bean definitions:

<bean id="exampleBean" class="examples.ExampleBean">
    <!-- setter injection using the nested ref element -->
    <property name="beanOne">
        <ref bean="anotherExampleBean"/>
    </property>

    <!-- setter injection using the neater ref attribute -->
    <property name="beanTwo" ref="yetAnotherBean"/>
    <property name="integerProperty" value="1"/>
</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>
public class ExampleBean {

    private AnotherBean beanOne;
    private YetAnotherBean beanTwo;
    private int i;

    public void setBeanOne(AnotherBean beanOne) {
        this.beanOne = beanOne;
    }

    public void setBeanTwo(YetAnotherBean beanTwo) {
        this.beanTwo = beanTwo;
    }

    public void setIntegerProperty(int i) {
        this.i = i;
    }

}

In the preceding example, setters are declared to match against the properties specified in the XML file. The following example uses constructor-based DI:

<bean id="exampleBean" class="examples.ExampleBean">
    <!-- constructor injection using the nested ref element -->
    <constructor-arg>
        <ref bean="anotherExampleBean"/>
    </constructor-arg>

    <!-- constructor injection using the neater ref attribute -->
    <constructor-arg ref="yetAnotherBean"/>

    <constructor-arg type="int" value="1"/>
</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>
public class ExampleBean {

    private AnotherBean beanOne;
    private YetAnotherBean beanTwo;
    private int i;

    public ExampleBean(
        AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {
        this.beanOne = anotherBean;
        this.beanTwo = yetAnotherBean;
        this.i = i;
    }

}

The constructor arguments specified in the bean definition will be used as arguments to the constructor of the ExampleBean.

Now consider a variant of this example, where instead of using a constructor, Spring is told to call a static factory method to return an instance of the object:

<bean id="exampleBean" class="examples.ExampleBean" factory-method="createInstance">
    <constructor-arg ref="anotherExampleBean"/>
    <constructor-arg ref="yetAnotherBean"/>
    <constructor-arg value="1"/>
</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>
public class ExampleBean {

    // a private constructor
    private ExampleBean(...) {
        ...
    }

    // a static factory method; the arguments to this method can be
    // considered the dependencies of the bean that is returned,
    // regardless of how those arguments are actually used.
    public static ExampleBean createInstance (
        AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {

        ExampleBean eb = new ExampleBean (...);
        // some other operations...
        return eb;
    }

}

Arguments to the static factory method are supplied via <constructor-arg/> elements, exactly the same as if a constructor had actually been used. The type of the class being returned by the factory method does not have to be of the same type as the class that contains the static factory method, although in this example it is. An instance (non-static) factory method would be used in an essentially identical fashion (aside from the use of the factory-bean attribute instead of the class attribute), so details will not be discussed here.

5.4.2 Dependencies and configuration in detail

As mentioned in the previous section, you can define bean properties and constructor arguments as references to other managed beans (collaborators), or as values defined inline. Spring’s XML-based configuration metadata supports sub-element types within its <property/> and <constructor-arg/> elements for this purpose.

Straight values (primitives, Strings, and so on)

The value attribute of the <property/> element specifies a property or constructor argument as a human-readable string representation. Spring’s conversion service is used to convert these values from a String to the actual type of the property or argument.

<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
    <!-- results in a setDriverClassName(String) call -->
    <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
    <property name="url" value="jdbc:mysql://localhost:3306/mydb"/>
    <property name="username" value="root"/>
    <property name="password" value="masterkaoli"/>
</bean>

The following example uses the p-namespace for even more succinct XML configuration.

<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:p="http://www.springframework.org/schema/p"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans.xsd">

    <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource"
        destroy-method="close"
        p:driverClassName="com.mysql.jdbc.Driver"
        p:url="jdbc:mysql://localhost:3306/mydb"
        p:username="root"
        p:password="masterkaoli"/>

</beans>

The preceding XML is more succinct; however, typos are discovered at runtime rather than design time, unless you use an IDE such as IntelliJ IDEA or the Spring Tool Suite (STS) that support automatic property completion when you create bean definitions. Such IDE assistance is highly recommended.

You can also configure a java.util.Properties instance as:

<bean id="mappings"
    class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

    <!-- typed as a java.util.Properties -->
    <property name="properties">
        <value>
            jdbc.driver.className=com.mysql.jdbc.Driver
            jdbc.url=jdbc:mysql://localhost:3306/mydb
        </value>
    </property>
</bean>

The Spring container converts the text inside the <value/> element into a java.util.Properties instance by using the JavaBeans PropertyEditor mechanism. This is a nice shortcut, and is one of a few places where the Spring team do favor the use of the nested <value/> element over the value attribute style.

The idref element

The idref element is simply an error-proof way to pass the id (string value - not a reference) of another bean in the container to a <constructor-arg/> or <property/> element.

<bean id="theTargetBean" class="..."/>

<bean id="theClientBean" class="...">
    <property name="targetName">
        <idref bean="theTargetBean" />
    </property>
</bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean id="theTargetBean" class="..." />

<bean id="client" class="...">
    <property name="targetName" value="theTargetBean" />
</bean>

The first form is preferable to the second, because using the idref tag allows the container to validate at deployment time that the referenced, named bean actually exists. In the second variation, no validation is performed on the value that is passed to the targetName property of the client bean. Typos are only discovered (with most likely fatal results) when the client bean is actually instantiated. If the client bean is a prototype bean, this typo and the resulting exception may only be discovered long after the container is deployed.

[Note]Note

The local attribute on the idref element is no longer supported in the 4.0 beans xsd since it does not provide value over a regular bean reference anymore. Simply change your existing idref local references to idref bean when upgrading to the 4.0 schema.

A common place (at least in versions earlier than Spring 2.0) where the <idref/> element brings value is in the configuration of AOP interceptors in a ProxyFactoryBean bean definition. Using <idref/> elements when you specify the interceptor names prevents you from misspelling an interceptor id.

References to other beans (collaborators)

The ref element is the final element inside a <constructor-arg/> or <property/> definition element. Here you set the value of the specified property of a bean to be a reference to another bean (a collaborator) managed by the container. The referenced bean is a dependency of the bean whose property will be set, and it is initialized on demand as needed before the property is set. (If the collaborator is a singleton bean, it may be initialized already by the container.) All references are ultimately a reference to another object. Scoping and validation depend on whether you specify the id/name of the other object through the bean, local, or parent attributes.

Specifying the target bean through the bean attribute of the <ref/> tag is the most general form, and allows creation of a reference to any bean in the same container or parent container, regardless of whether it is in the same XML file. The value of the bean attribute may be the same as the id attribute of the target bean, or as one of the values in the name attribute of the target bean.

<ref bean="someBean"/>

Specifying the target bean through the parent attribute creates a reference to a bean that is in a parent container of the current container. The value of the parent attribute may be the same as either the id attribute of the target bean, or one of the values in the name attribute of the target bean, and the target bean must be in a parent container of the current one. You use this bean reference variant mainly when you have a hierarchy of containers and you want to wrap an existing bean in a parent container with a proxy that will have the same name as the parent bean.

<!-- in the parent context -->
<bean id="accountService" class="com.foo.SimpleAccountService">
    <!-- insert dependencies as required as here -->
</bean>
<!-- in the child (descendant) context -->
<bean id="accountService" <!-- bean name is the same as the parent bean -->
    class="org.springframework.aop.framework.ProxyFactoryBean">
    <property name="target">
        <ref parent="accountService"/> <!-- notice how we refer to the parent bean -->
    </property>
    <!-- insert other configuration and dependencies as required here -->
</bean>
[Note]Note

The local attribute on the ref element is no longer supported in the 4.0 beans xsd since it does not provide value over a regular bean reference anymore. Simply change your existing ref local references to ref bean when upgrading to the 4.0 schema.

Inner beans

A <bean/> element inside the <property/> or <constructor-arg/> elements defines a so-called inner bean.

<bean id="outer" class="...">
    <!-- instead of using a reference to a target bean, simply define the target bean inline -->
    <property name="target">
        <bean class="com.example.Person"> <!-- this is the inner bean -->
            <property name="name" value="Fiona Apple"/>
            <property name="age" value="25"/>
        </bean>
    </property>
</bean>

An inner bean definition does not require a defined id or name; the container ignores these values. It also ignores the scope flag. Inner beans are always anonymous and they are always created with the outer bean. It is not possible to inject inner beans into collaborating beans other than into the enclosing bean.

Collections

In the <list/>, <set/>, <map/>, and <props/> elements, you set the properties and arguments of the Java Collection types List, Set, Map, and Properties, respectively.

<bean id="moreComplexObject" class="example.ComplexObject">
    <!-- results in a setAdminEmails(java.util.Properties) call -->
    <property name="adminEmails">
        <props>
            <prop key="administrator">[email protected]</prop>
            <prop key="support">[email protected]</prop>
            <prop key="development">[email protected]</prop>
        </props>
    </property>
    <!-- results in a setSomeList(java.util.List) call -->
    <property name="someList">
        <list>
            <value>a list element followed by a reference</value>
            <ref bean="myDataSource" />
        </list>
    </property>
    <!-- results in a setSomeMap(java.util.Map) call -->
    <property name="someMap">
        <map>
            <entry key="an entry" value="just some string"/>
            <entry key ="a ref" value-ref="myDataSource"/>
        </map>
    </property>
    <!-- results in a setSomeSet(java.util.Set) call -->
    <property name="someSet">
        <set>
            <value>just some string</value>
            <ref bean="myDataSource" />
        </set>
    </property>
</bean>

The value of a map key or value, or a set value, can also again be any of the following elements:

bean | ref | idref | list | set | map | props | value | null
Collection merging

The Spring container also supports the merging of collections. An application developer can define a parent-style <list/>, <map/>, <set/> or <props/> element, and have child-style <list/>, <map/>, <set/> or <props/> elements inherit and override values from the parent collection. That is, the child collection’s values are the result of merging the elements of the parent and child collections, with the child’s collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with parent and child bean definitions may wish to read the relevant section before continuing.

The following example demonstrates collection merging:

<beans>
    <bean id="parent" abstract="true" class="example.ComplexObject">
        <property name="adminEmails">
            <props>
                <prop key="administrator">[email protected]</prop>
                <prop key="support">[email protected]</prop>
            </props>
        </property>
    </bean>
    <bean id="child" parent="parent">
        <property name="adminEmails">
            <!-- the merge is specified on the child collection definition -->
            <props merge="true">
                <prop key="sales">[email protected]</prop>
                <prop key="support">[email protected]</prop>
            </props>
        </property>
    </bean>
<beans>

Notice the use of the merge=true attribute on the <props/> element of the adminEmails property of the child bean definition. When the child bean is resolved and instantiated by the container, the resulting instance has an adminEmails Properties collection that contains the result of the merging of the child’s adminEmails collection with the parent’s adminEmails collection.

administrator=[email protected]
sales=[email protected]
support=[email protected]

The child Properties collection’s value set inherits all property elements from the parent <props/>, and the child’s value for the support value overrides the value in the parent collection.

This merging behavior applies similarly to the <list/>, <map/>, and <set/> collection types. In the specific case of the <list/> element, the semantics associated with the List collection type, that is, the notion of an ordered collection of values, is maintained; the parent’s values precede all of the child list’s values. In the case of the Map, Set, and Properties collection types, no ordering exists. Hence no ordering semantics are in effect for the collection types that underlie the associated Map, Set, and Properties implementation types that the container uses internally.

Limitations of collection merging

You cannot merge different collection types (such as a Map and a List), and if you do attempt to do so an appropriate Exception is thrown. The merge attribute must be specified on the lower, inherited, child definition; specifying the merge attribute on a parent collection definition is redundant and will not result in the desired merging.

Strongly-typed collection

With the introduction of generic types in Java 5, you can use strongly typed collections. That is, it is possible to declare a Collection type such that it can only contain String elements (for example). If you are using Spring to dependency-inject a strongly-typed Collection into a bean, you can take advantage of Spring’s type-conversion support such that the elements of your strongly-typed Collection instances are converted to the appropriate type prior to being added to the Collection.

public class Foo {

    private Map<String, Float> accounts;

    public void setAccounts(Map<String, Float> accounts) {
        this.accounts = accounts;
    }
}
<beans>
    <bean id="foo" class="x.y.Foo">
        <property name="accounts">
            <map>
                <entry key="one" value="9.99"/>
                <entry key="two" value="2.75"/>
                <entry key="six" value="3.99"/>
            </map>
        </property>
    </bean>
</beans>

When the accounts property of the foo bean is prepared for injection, the generics information about the element type of the strongly-typed Map<String, Float> is available by reflection. Thus Spring’s type conversion infrastructure recognizes the various value elements as being of type Float, and the string values 9.99, 2.75, and 3.99 are converted into an actual Float type.

Null and empty string values

Spring treats empty arguments for properties and the like as empty Strings. The following XML-based configuration metadata snippet sets the email property to the empty String value ("").

<bean class="ExampleBean">
    <property name="email" value=""/>
</bean>

The preceding example is equivalent to the following Java code:

exampleBean.setEmail("")

The <null/> element handles null values. For example:

<bean class="ExampleBean">
    <property name="email">
        <null/>
    </property>
</bean>

The above configuration is equivalent to the following Java code:

exampleBean.setEmail(null)

XML shortcut with the p-namespace

The p-namespace enables you to use the bean element’s attributes, instead of nested <property/> elements, to describe your property values and/or collaborating beans.

Spring supports extensible configuration formats with namespaces, which are based on an XML Schema definition. The beans configuration format discussed in this chapter is defined in an XML Schema document. However, the p-namespace is not defined in an XSD file and exists only in the core of Spring.

The following example shows two XML snippets that resolve to the same result: The first uses standard XML format and the second uses the p-namespace.

<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:p="http://www.springframework.org/schema/p"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd">

    <bean name="classic" class="com.example.ExampleBean">
        <property name="email" value="[email protected]"/>
    </bean>

    <bean name="p-namespace" class="com.example.ExampleBean"
        p:email="[email protected]"/>
</beans>

The example shows an attribute in the p-namespace called email in the bean definition. This tells Spring to include a property declaration. As previously mentioned, the p-namespace does not have a schema definition, so you can set the name of the attribute to the property name.

This next example includes two more bean definitions that both have a reference to another bean:

<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:p="http://www.springframework.org/schema/p"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd">

    <bean name="john-classic" class="com.example.Person">
        <property name="name" value="John Doe"/>
        <property name="spouse" ref="jane"/>
    </bean>

    <bean name="john-modern"
        class="com.example.Person"
        p:name="John Doe"
        p:spouse-ref="jane"/>

    <bean name="jane" class="com.example.Person">
        <property name="name" value="Jane Doe"/>
    </bean>
</beans>

As you can see, this example includes not only a property value using the p-namespace, but also uses a special format to declare property references. Whereas the first bean definition uses <property name="spouse" ref="jane"/> to create a reference from bean john to bean jane, the second bean definition uses p:spouse-ref="jane" as an attribute to do the exact same thing. In this case spouse is the property name, whereas the -ref part indicates that this is not a straight value but rather a reference to another bean.

[Note]Note

The p-namespace is not as flexible as the standard XML format. For example, the format for declaring property references clashes with properties that end in Ref, whereas the standard XML format does not. We recommend that you choose your approach carefully and communicate this to your team members, to avoid producing XML documents that use all three approaches at the same time.

XML shortcut with the c-namespace

Similar to the the section called “XML shortcut with the p-namespace”, the c-namespace, newly introduced in Spring 3.1, allows usage of inlined attributes for configuring the constructor arguments rather then nested constructor-arg elements.

Let’s review the examples from the section called “Constructor-based dependency injection” with the c: namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:c="http://www.springframework.org/schema/c"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd">

    <bean id="bar" class="x.y.Bar"/>
    <bean id="baz" class="x.y.Baz"/>

    <!-- traditional declaration -->
    <bean id="foo" class="x.y.Foo">
        <constructor-arg ref="bar"/>
        <constructor-arg ref="baz"/>
        <constructor-arg value="[email protected]"/>
    </bean>

    <!-- c-namespace declaration -->
    <bean id="foo" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:email="[email protected]"/>

</beans>

The c: namespace uses the same conventions as the p: one (trailing -ref for bean references) for setting the constructor arguments by their names. And just as well, it needs to be declared even though it is not defined in an XSD schema (but it exists inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if the bytecode was compiled without debugging information), one can use fallback to the argument indexes:

<!-- c-namespace index declaration -->
<bean id="foo" class="x.y.Foo" c:_0-ref="bar" c:_1-ref="baz"/>
[Note]Note

Due to the XML grammar, the index notation requires the presence of the leading _ as XML attribute names cannot start with a number (even though some IDE allow it).

In practice, the constructor resolution mechanism is quite efficient in matching arguments so unless one really needs to, we recommend using the name notation through-out your configuration.

Compound property names

You can use compound or nested property names when you set bean properties, as long as all components of the path except the final property name are not null. Consider the following bean definition.

<bean id="foo" class="foo.Bar">
    <property name="fred.bob.sammy" value="123" />
</bean>

The foo bean has a fred property, which has a bob property, which has a sammy property, and that final sammy property is being set to the value 123. In order for this to work, the fred property of foo, and the bob property of fred must not be null after the bean is constructed, or a NullPointerException is thrown.

5.4.3 Using depends-on

If a bean is a dependency of another that usually means that one bean is set as a property of another. Typically you accomplish this with the <ref/> element in XML-based configuration metadata. However, sometimes dependencies between beans are less direct; for example, a static initializer in a class needs to be triggered, such as database driver registration. The depends-on attribute can explicitly force one or more beans to be initialized before the bean using this element is initialized. The following example uses the depends-on attribute to express a dependency on a single bean:

<bean id="beanOne" class="ExampleBean" depends-on="manager"/>
<bean id="manager" class="ManagerBean" />

To express a dependency on multiple beans, supply a list of bean names as the value of the depends-on attribute, with commas, whitespace and semicolons, used as valid delimiters:

<bean id="beanOne" class="ExampleBean" depends-on="manager,accountDao">
    <property name="manager" ref="manager" />
</bean>

<bean id="manager" class="ManagerBean" />
<bean id="accountDao" class="x.y.jdbc.JdbcAccountDao" />
[Note]Note

The depends-on attribute in the bean definition can specify both an initialization time dependency and, in the case of singleton beans only, a corresponding destroy time dependency. Dependent beans that define a depends-on relationship with a given bean are destroyed first, prior to the given bean itself being destroyed. Thus depends-on can also control shutdown order.

5.4.4 Lazy-initialized beans

By default, ApplicationContext implementations eagerly create and configure all singleton beans as part of the initialization process. Generally, this pre-instantiation is desirable, because errors in the configuration or surrounding environment are discovered immediately, as opposed to hours or even days later. When this behavior is not desirable, you can prevent pre-instantiation of a singleton bean by marking the bean definition as lazy-initialized. A lazy-initialized bean tells the IoC container to create a bean instance when it is first requested, rather than at startup.

In XML, this behavior is controlled by the lazy-init attribute on the <bean/> element; for example:

<bean id="lazy" class="com.foo.ExpensiveToCreateBean" lazy-init="true"/>
<bean name="not.lazy" class="com.foo.AnotherBean"/>

When the preceding configuration is consumed by an ApplicationContext, the bean named lazy is not eagerly pre-instantiated when the ApplicationContext is starting up, whereas the not.lazy bean is eagerly pre-instantiated.

However, when a lazy-initialized bean is a dependency of a singleton bean that is not lazy-initialized, the ApplicationContext creates the lazy-initialized bean at startup, because it must satisfy the singleton’s dependencies. The lazy-initialized bean is injected into a singleton bean elsewhere that is not lazy-initialized.

You can also control lazy-initialization at the container level by using the default-lazy-init attribute on the <beans/> element; for example:

<beans default-lazy-init="true">
    <!-- no beans will be pre-instantiated... -->
</beans>

5.4.5 Autowiring collaborators

The Spring container can autowire relationships between collaborating beans. You can allow Spring to resolve collaborators (other beans) automatically for your bean by inspecting the contents of the ApplicationContext. Autowiring has the following advantages:

  • Autowiring can significantly reduce the need to specify properties or constructor arguments. (Other mechanisms such as a bean template discussed elsewhere in this chapter are also valuable in this regard.)
  • Autowiring can update a configuration as your objects evolve. For example, if you need to add a dependency to a class, that dependency can be satisfied automatically without you needing to modify the configuration. Thus autowiring can be especially useful during development, without negating the option of switching to explicit wiring when the code base becomes more stable.

When using XML-based configuration metadata [2], you specify autowire mode for a bean definition with the autowire attribute of the <bean/> element. The autowiring functionality has five modes. You specify autowiring per bean and thus can choose which ones to autowire.

Table 5.2. Autowiring modes

ModeExplanation

no

(Default) No autowiring. Bean references must be defined via a ref element. Changing the default setting is not recommended for larger deployments, because specifying collaborators explicitly gives greater control and clarity. To some extent, it documents the structure of a system.

byName

Autowiring by property name. Spring looks for a bean with the same name as the property that needs to be autowired. For example, if a bean definition is set to autowire by name, and it contains a master property (that is, it has a setMaster(..) method), Spring looks for a bean definition named master, and uses it to set the property.

byType

Allows a property to be autowired if exactly one bean of the property type exists in the container. If more than one exists, a fatal exception is thrown, which indicates that you may not use byType autowiring for that bean. If there are no matching beans, nothing happens; the property is not set.

constructor

Analogous to byType, but applies to constructor arguments. If there is not exactly one bean of the constructor argument type in the container, a fatal error is raised.


With byType or constructor autowiring mode, you can wire arrays and typed-collections. In such cases all autowire candidates within the container that match the expected type are provided to satisfy the dependency. You can autowire strongly-typed Maps if the expected key type is String. An autowired Maps values will consist of all bean instances that match the expected type, and the Maps keys will contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after autowiring completes.

Limitations and disadvantages of autowiring

Autowiring works best when it is used consistently across a project. If autowiring is not used in general, it might be confusing to developers to use it to wire only one or two bean definitions.

Consider the limitations and disadvantages of autowiring:

  • Explicit dependencies in property and constructor-arg settings always override autowiring. You cannot autowire so-called simple properties such as primitives, Strings, and Classes (and arrays of such simple properties). This limitation is by-design.
  • Autowiring is less exact than explicit wiring. Although, as noted in the above table, Spring is careful to avoid guessing in case of ambiguity that might have unexpected results, the relationships between your Spring-managed objects are no longer documented explicitly.
  • Wiring information may not be available to tools that may generate documentation from a Spring container.
  • Multiple bean definitions within the container may match the type specified by the setter method or constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily a problem. However for dependencies that expect a single value, this ambiguity is not arbitrarily resolved. If no unique bean definition is available, an exception is thrown.

In the latter scenario, you have several options:

  • Abandon autowiring in favor of explicit wiring.
  • Avoid autowiring for a bean definition by setting its autowire-candidate attributes to false as described in the next section.
  • Designate a single bean definition as the primary candidate by setting the primary attribute of its <bean/> element to true.
  • Implement the more fine-grained control available with annotation-based configuration, as described in Section 5.9, “Annotation-based container configuration”.

Excluding a bean from autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring’s XML format, set the autowire-candidate attribute of the <bean/> element to false; the container makes that specific bean definition unavailable to the autowiring infrastructure (including annotation style configurations such as @Autowired).

You can also limit autowire candidates based on pattern-matching against bean names. The top-level <beans/> element accepts one or more patterns within its default-autowire-candidates attribute. For example, to limit autowire candidate status to any bean whose name ends with Repository, provide a value of *Repository. To provide multiple patterns, define them in a comma-separated list. An explicit value of true or false for a bean definitions autowire-candidate attribute always takes precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other beans by autowiring. It does not mean that an excluded bean cannot itself be configured using autowiring. Rather, the bean itself is not a candidate for autowiring other beans.

5.4.6 Method injection

In most application scenarios, most beans in the container are singletons. When a singleton bean needs to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with another non-singleton bean, you typically handle the dependency by defining one bean as a property of the other. A problem arises when the bean lifecycles are different. Suppose singleton bean A needs to use non-singleton (prototype) bean B, perhaps on each method invocation on A. The container only creates the singleton bean A once, and thus only gets one opportunity to set the properties. The container cannot provide bean A with a new instance of bean B every time one is needed.

A solution is to forego some inversion of control. You can make bean A aware of the container by implementing the ApplicationContextAware interface, and by making a getBean("B") call to the container ask for (a typically new) bean B instance every time bean A needs it. The following is an example of this approach:

// a class that uses a stateful Command-style class to perform some processing
package fiona.apple;

// Spring-API imports
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;

public class CommandManager implements ApplicationContextAware {

    private ApplicationContext applicationContext;

    public Object process(Map commandState) {
        // grab a new instance of the appropriate Command
        Command command = createCommand();
        // set the state on the (hopefully brand new) Command instance
        command.setState(commandState);
        return command.execute();
    }

    protected Command createCommand() {
        // notice the Spring API dependency!
        return this.applicationContext.getBean("command", Command.class);
    }

    public void setApplicationContext(
            ApplicationContext applicationContext) throws BeansException {
        this.applicationContext = applicationContext;
    }
}

The preceding is not desirable, because the business code is aware of and coupled to the Spring Framework. Method Injection, a somewhat advanced feature of the Spring IoC container, allows this use case to be handled in a clean fashion.

Lookup method injection

Lookup method injection is the ability of the container to override methods on container managed beans, to return the lookup result for another named bean in the container. The lookup typically involves a prototype bean as in the scenario described in the preceding section. The Spring Framework implements this method injection by using bytecode generation from the CGLIB library to generate dynamically a subclass that overrides the method.

[Note]Note

For this dynamic subclassing to work, the class that the Spring container will subclass cannot be final, and the method to be overridden cannot be final either. Also, testing a class that has an abstract method requires you to subclass the class yourself and to supply a stub implementation of the abstract method. Finally, objects that have been the target of method injection cannot be serialized. As of Spring 3.2 it is no longer necessary to add CGLIB to your classpath, because CGLIB classes are repackaged under org.springframework and distributed within the spring-core JAR. This is done both for convenience as well as to avoid potential conflicts with other projects that use differing versions of CGLIB.

Looking at the CommandManager class in the previous code snippet, you see that the Spring container will dynamically override the implementation of the createCommand() method. Your CommandManager class will not have any Spring dependencies, as can be seen in the reworked example:

package fiona.apple;

// no more Spring imports!

public abstract class CommandManager {

    public Object process(Object commandState) {
        // grab a new instance of the appropriate Command interface
        Command command = createCommand();
        // set the state on the (hopefully brand new) Command instance
        command.setState(commandState);
        return command.execute();
    }

    // okay... but where is the implementation of this method?
    protected abstract Command createCommand();
}

In the client class containing the method to be injected (the CommandManager in this case), the method to be injected requires a signature of the following form:

<public|protected> [abstract] <return-type> theMethodName(no-arguments);

If the method is abstract, the dynamically-generated subclass implements the method. Otherwise, the dynamically-generated subclass overrides the concrete method defined in the original class. For example:

<!-- a stateful bean deployed as a prototype (non-singleton) -->
<bean id="command" class="fiona.apple.AsyncCommand" scope="prototype">
    <!-- inject dependencies here as required -->
</bean>

<!-- commandProcessor uses statefulCommandHelper -->
<bean id="commandManager" class="fiona.apple.CommandManager">
    <lookup-method name="createCommand" bean="command"/>
</bean>

The bean identified as commandManager calls its own method createCommand() whenever it needs a new instance of the command bean. You must be careful to deploy the command bean as a prototype, if that is actually what is needed. If it is deployed as a singleton, the same instance of the command bean is returned each time.

[Tip]Tip

The interested reader may also find the ServiceLocatorFactoryBean (in the org.springframework.beans.factory.config package) to be of use. The approach used in ServiceLocatorFactoryBean is similar to that of another utility class, ObjectFactoryCreatingFactoryBean, but it allows you to specify your own lookup interface as opposed to a Spring-specific lookup interface. Consult the javadocs of these classes for additional information.

Arbitrary method replacement

A less useful form of method injection than lookup method Injection is the ability to replace arbitrary methods in a managed bean with another method implementation. Users may safely skip the rest of this section until the functionality is actually needed.

With XML-based configuration metadata, you can use the replaced-method element to replace an existing method implementation with another, for a deployed bean. Consider the following class, with a method computeValue, which we want to override:

public class MyValueCalculator {

    public String computeValue(String input) {
        // some real code...
    }

    // some other methods...

}

A class implementing the org.springframework.beans.factory.support.MethodReplacer interface provides the new method definition.

/**
 * meant to be used to override the existing computeValue(String)
 * implementation in MyValueCalculator
 */
public class ReplacementComputeValue implements MethodReplacer {

    public Object reimplement(Object o, Method m, Object[] args) throws Throwable {
        // get the input value, work with it, and return a computed result
        String input = (String) args[0];
        ...
        return ...;
    }
}

The bean definition to deploy the original class and specify the method override would look like this:

<bean id="myValueCalculator" class="x.y.z.MyValueCalculator">
    <!-- arbitrary method replacement -->
    <replaced-method name="computeValue" replacer="replacementComputeValue">
        <arg-type>String</arg-type>
    </replaced-method>
</bean>

<bean id="replacementComputeValue" class="a.b.c.ReplacementComputeValue"/>

You can use one or more contained <arg-type/> elements within the <replaced-method/> element to indicate the method signature of the method being overridden. The signature for the arguments is necessary only if the method is overloaded and multiple variants exist within the class. For convenience, the type string for an argument may be a substring of the fully qualified type name. For example, the following all match java.lang.String:

java.lang.String
String
Str

Because the number of arguments is often enough to distinguish between each possible choice, this shortcut can save a lot of typing, by allowing you to type only the shortest string that will match an argument type.

5.5 Bean scopes

When you create a bean definition, you create a recipe for creating actual instances of the class defined by that bean definition. The idea that a bean definition is a recipe is important, because it means that, as with a class, you can create many object instances from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into an object that is created from a particular bean definition, but also the scope of the objects created from a particular bean definition. This approach is powerful and flexible in that you can choose the scope of the objects you create through configuration instead of having to bake in the scope of an object at the Java class level. Beans can be defined to be deployed in one of a number of scopes: out of the box, the Spring Framework supports five scopes, three of which are available only if you use a web-aware ApplicationContext.

The following scopes are supported out of the box. You can also create a custom scope.

Table 5.3. Bean scopes

ScopeDescription

singleton

(Default) Scopes a single bean definition to a single object instance per Spring IoC container.

prototype

Scopes a single bean definition to any number of object instances.

request

Scopes a single bean definition to the lifecycle of a single HTTP request; that is, each HTTP request has its own instance of a bean created off the back of a single bean definition. Only valid in the context of a web-aware Spring ApplicationContext.

session

Scopes a single bean definition to the lifecycle of an HTTP Session. Only valid in the context of a web-aware Spring ApplicationContext.

global session

Scopes a single bean definition to the lifecycle of a global HTTP Session. Typically only valid when used in a portlet context. Only valid in the context of a web-aware Spring ApplicationContext.

application

Scopes a single bean definition to the lifecycle of a ServletContext. Only valid in the context of a web-aware Spring ApplicationContext.


[Note]Note

As of Spring 3.0, a thread scope is available, but is not registered by default. For more information, see the documentation for SimpleThreadScope. For instructions on how to register this or any other custom scope, see the section called “Using a custom scope”.

5.5.1 The singleton scope

Only one shared instance of a singleton bean is managed, and all requests for beans with an id or ids matching that bean definition result in that one specific bean instance being returned by the Spring container.

To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring IoC container creates exactly one instance of the object defined by that bean definition. This single instance is stored in a cache of such singleton beans, and all subsequent requests and references for that named bean return the cached object.

Figure 5.2. 

singleton

Spring’s concept of a singleton bean differs from the Singleton pattern as defined in the Gang of Four (GoF) patterns book. The GoF Singleton hard-codes the scope of an object such that one and only one instance of a particular class is created per ClassLoader. The scope of the Spring singleton is best described as per container and per bean. This means that if you define one bean for a particular class in a single Spring container, then the Spring container creates one and only one instance of the class defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as a singleton in XML, you would write, for example:

<bean id="accountService" class="com.foo.DefaultAccountService"/>

<!-- the following is equivalent, though redundant (singleton scope is the default) -->
<bean id="accountService" class="com.foo.DefaultAccountService" scope="singleton"/>

5.5.2 The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance every time a request for that specific bean is made. That is, the bean is injected into another bean or you request it through a getBean() method call on the container. As a rule, use the prototype scope for all stateful beans and the singleton scope for stateless beans.

The following diagram illustrates the Spring prototype scope. A data access object (DAO) is not typically configured as a prototype, because a typical DAO does not hold any conversational state; it was just easier for this author to reuse the core of the singleton diagram.

Figure 5.3. 

prototype

The following example defines a bean as a prototype in XML:

<bean id="accountService" class="com.foo.DefaultAccountService" scope="prototype"/>

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean: the container instantiates, configures, and otherwise assembles a prototype object, and hands it to the client, with no further record of that prototype instance. Thus, although initialization lifecycle callback methods are called on all objects regardless of scope, in the case of prototypes, configured destruction lifecycle callbacks are not called. The client code must clean up prototype-scoped objects and release expensive resources that the prototype bean(s) are holding. To get the Spring container to release resources held by prototype-scoped beans, try using a custom bean post-processor, which holds a reference to beans that need to be cleaned up.

In some respects, the Spring container’s role in regard to a prototype-scoped bean is a replacement for the Java new operator. All lifecycle management past that point must be handled by the client. (For details on the lifecycle of a bean in the Spring container, see Section 5.6.1, “Lifecycle callbacks”.)

5.5.3 Singleton beans with prototype-bean dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that dependencies are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped bean into a singleton-scoped bean, a new prototype bean is instantiated and then dependency-injected into the singleton bean. The prototype instance is the sole instance that is ever supplied to the singleton-scoped bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-scoped bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into your singleton bean, because that injection occurs only once, when the Spring container is instantiating the singleton bean and resolving and injecting its dependencies. If you need a new instance of a prototype bean at runtime more than once, see Section 5.4.6, “Method injection”

5.5.4 Request, session, and global session scopes

The request, session, and global session scopes are only available if you use a web-aware Spring ApplicationContext implementation (such as XmlWebApplicationContext). If you use these scopes with regular Spring IoC containers such as the ClassPathXmlApplicationContext, you get an IllegalStateException complaining about an unknown bean scope.

Initial web configuration

To support the scoping of beans at the request, session, and global session levels (web-scoped beans), some minor initial configuration is required before you define your beans. (This initial setup is not required for the standard scopes, singleton and prototype.)

How you accomplish this initial setup depends on your particular Servlet environment..

If you access scoped beans within Spring Web MVC, in effect, within a request that is processed by the Spring DispatcherServlet, or DispatcherPortlet, then no special setup is necessary: DispatcherServlet and DispatcherPortlet already expose all relevant state.

If you use a Servlet 2.5 web container, with requests processed outside of Spring’s DispatcherServlet (for example, when using JSF or Struts), you need to register the org.springframework.web.context.request.RequestContextListener ServletRequestListener. For Servlet 3.0+, this can done programmatically via the WebApplicationInitializer interface. Alternatively, or for older containers, add the following declaration to your web application’s web.xml file:

<web-app>
    ...
    <listener>
        <listener-class>
            org.springframework.web.context.request.RequestContextListener
        </listener-class>
    </listener>
    ...
</web-app>

Alternatively, if there are issues with your listener setup, consider the provided RequestContextFilter. The filter mapping depends on the surrounding web application configuration, so you have to change it as appropriate.

<web-app>
    ...
    <filter>
        <filter-name>requestContextFilter</filter-name>
        <filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
    </filter>
    <filter-mapping>
        <filter-name>requestContextFilter</filter-name>
        <url-pattern>/*</url-pattern>
    </filter-mapping>
    ...
</web-app>

DispatcherServlet, RequestContextListener and RequestContextFilter all do exactly the same thing, namely bind the HTTP request object to the Thread that is servicing that request. This makes beans that are request- and session-scoped available further down the call chain.

Request scope

Consider the following bean definition:

<bean id="loginAction" class="com.foo.LoginAction" scope="request"/>

The Spring container creates a new instance of the LoginAction bean by using the loginAction bean definition for each and every HTTP request. That is, the loginAction bean is scoped at the HTTP request level. You can change the internal state of the instance that is created as much as you want, because other instances created from the same loginAction bean definition will not see these changes in state; they are particular to an individual request. When the request completes processing, the bean that is scoped to the request is discarded.

Session scope

Consider the following bean definition:

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>

The Spring container creates a new instance of the UserPreferences bean by using the userPreferences bean definition for the lifetime of a single HTTP Session. In other words, the userPreferences bean is effectively scoped at the HTTP Session level. As with request-scoped beans, you can change the internal state of the instance that is created as much as you want, knowing that other HTTP Session instances that are also using instances created from the same userPreferences bean definition do not see these changes in state, because they are particular to an individual HTTP Session. When the HTTP Session is eventually discarded, the bean that is scoped to that particular HTTP Session is also discarded.

Global session scope

Consider the following bean definition:

<bean id="userPreferences" class="com.foo.UserPreferences" scope="globalSession"/>

The global session scope is similar to the standard HTTP Session scope (described above), and applies only in the context of portlet-based web applications. The portlet specification defines the notion of a global Session that is shared among all portlets that make up a single portlet web application. Beans defined at the global session scope are scoped (or bound) to the lifetime of the global portlet Session.

If you write a standard Servlet-based web application and you define one or more beans as having global session scope, the standard HTTP Session scope is used, and no error is raised.

Application scope

Consider the following bean definition:

<bean id="appPreferences" class="com.foo.AppPreferences" scope="application"/>

The Spring container creates a new instance of the AppPreferences bean by using the appPreferences bean definition once for the entire web application. That is, the appPreferences bean is scoped at the ServletContext level, stored as a regular ServletContext attribute. This is somewhat similar to a Spring singleton bean but differs in two important ways: It is a singleton per ServletContext, not per Spring ApplicationContext (or which there may be several in any given web application), and it is actually exposed and therefore visible as a ServletContext attribute.

Scoped beans as dependencies

The Spring IoC container manages not only the instantiation of your objects (beans), but also the wiring up of collaborators (or dependencies). If you want to inject (for example) an HTTP request scoped bean into another bean, you must inject an AOP proxy in place of the scoped bean. That is, you need to inject a proxy object that exposes the same public interface as the scoped object but that can also retrieve the real, target object from the relevant scope (for example, an HTTP request) and delegate method calls onto the real object.

[Note]Note

You do not need to use the <aop:scoped-proxy/> in conjunction with beans that are scoped as singletons or prototypes.

The configuration in the following example is only one line, but it is important to understand the "why" as well as the "how" behind it.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:aop="http://www.springframework.org/schema/aop"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/aop
        http://www.springframework.org/schema/aop/spring-aop.xsd">

    <!-- an HTTP Session-scoped bean exposed as a proxy -->
    <bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
        <!-- instructs the container to proxy the surrounding bean -->
        <aop:scoped-proxy/>
    </bean>

    <!-- a singleton-scoped bean injected with a proxy to the above bean -->
    <bean id="userService" class="com.foo.SimpleUserService">
        <!-- a reference to the proxied userPreferences bean -->
        <property name="userPreferences" ref="userPreferences"/>
    </bean>
</beans>

To create such a proxy, you insert a child <aop:scoped-proxy/> element into a scoped bean definition. See the section called “Choosing the type of proxy to create” and Chapter 34, XML Schema-based configuration.) Why do definitions of beans scoped at the request, session, globalSession and custom-scope levels require the <aop:scoped-proxy/> element ? Let’s examine the following singleton bean definition and contrast it with what you need to define for the aforementioned scopes. (The following userPreferences bean definition as it stands is incomplete.)

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>

<bean id="userManager" class="com.foo.UserManager">
    <property name="userPreferences" ref="userPreferences"/>
</bean>

In the preceding example, the singleton bean userManager is injected with a reference to the HTTP Session-scoped bean userPreferences. The salient point here is that the userManager bean is a singleton: it will be instantiated exactly once per container, and its dependencies (in this case only one, the userPreferences bean) are also injected only once. This means that the userManager bean will only operate on the exact same userPreferences object, that is, the one that it was originally injected with.

This is not the behavior you want when injecting a shorter-lived scoped bean into a longer-lived scoped bean, for example injecting an HTTP Session-scoped collaborating bean as a dependency into singleton bean. Rather, you need a single userManager object, and for the lifetime of an HTTP Session, you need a userPreferences object that is specific to said HTTP Session. Thus the container creates an object that exposes the exact same public interface as the UserPreferences class (ideally an object that is a UserPreferences instance) which can fetch the real UserPreferences object from the scoping mechanism (HTTP request, Session, etc.). The container injects this proxy object into the userManager bean, which is unaware that this UserPreferences reference is a proxy. In this example, when a UserManager instance invokes a method on the dependency-injected UserPreferences object, it actually is invoking a method on the proxy. The proxy then fetches the real UserPreferences object from (in this case) the HTTP Session, and delegates the method invocation onto the retrieved real UserPreferences object.

Thus you need the following, correct and complete, configuration when injecting request-, session-, and globalSession-scoped beans into collaborating objects:

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
    <aop:scoped-proxy/>
</bean>
<bean id="userManager" class="com.foo.UserManager">
    <property name="userPreferences" ref="userPreferences"/>
</bean>
Choosing the type of proxy to create

By default, when the Spring container creates a proxy for a bean that is marked up with the <aop:scoped-proxy/> element, a CGLIB-based class proxy is created.

[Note]Note

CGLIB proxies only intercept public method calls! Do not call non-public methods on such a proxy; they will not be delegated to the actual scoped target object.

Alternatively, you can configure the Spring container to create standard JDK interface-based proxies for such scoped beans, by specifying false for the value of the proxy-target-class attribute of the <aop:scoped-proxy/> element. Using JDK interface-based proxies means that you do not need additional libraries in your application classpath to effect such proxying. However, it also means that the class of the scoped bean must implement at least one interface, and that all collaborators into which the scoped bean is injected must reference the bean through one of its interfaces.

<!-- DefaultUserPreferences implements the UserPreferences interface -->
<bean id="userPreferences" class="com.foo.DefaultUserPreferences" scope="session">
    <aop:scoped-proxy proxy-target-class="false"/>
</bean>
<bean id="userManager" class="com.foo.UserManager">
    <property name="userPreferences" ref="userPreferences"/>
</bean>

For more detailed information about choosing class-based or interface-based proxying, see Section 9.6, “Proxying mechanisms”.

5.5.5 Custom scopes

The bean scoping mechanism is extensible; You can define your own scopes, or even redefine existing scopes, although the latter is considered bad practice and you cannot override the built-in singleton and prototype scopes.

Creating a custom scope

To integrate your custom scope(s) into the Spring container, you need to implement the org.springframework.beans.factory.config.Scope interface, which is described in this section. For an idea of how to implement your own scopes, see the Scope implementations that are supplied with the Spring Framework itself and the Scope javadocs, which explains the methods you need to implement in more detail.

The Scope interface has four methods to get objects from the scope, remove them from the scope, and allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope implementation, for example, returns the session-scoped bean (and if it does not exist, the method returns a new instance of the bean, after having bound it to the session for future reference).

Object get(String name, ObjectFactory objectFactory)

The following method removes the object from the underlying scope. The session scope implementation for example, removes the session-scoped bean from the underlying session. The object should be returned, but you can return null if the object with the specified name is not found.

Object remove(String name)

The following method registers the callbacks the scope should execute when it is destroyed or when the specified object in the scope is destroyed. Refer to the javadocs or a Spring scope implementation for more information on destruction callbacks.

void registerDestructionCallback(String name, Runnable destructionCallback)

The following method obtains the conversation identifier for the underlying scope. This identifier is different for each scope. For a session scoped implementation, this identifier can be the session identifier.

String getConversationId()

Using a custom scope

After you write and test one or more custom Scope implementations, you need to make the Spring container aware of your new scope(s). The following method is the central method to register a new Scope with the Spring container:

void registerScope(String scopeName, Scope scope);

This method is declared on the ConfigurableBeanFactory interface, which is available on most of the concrete ApplicationContext implementations that ship with Spring via the BeanFactory property.

The first argument to the registerScope(..) method is the unique name associated with a scope; examples of such names in the Spring container itself are singleton and prototype. The second argument to the registerScope(..) method is an actual instance of the custom Scope implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as below.

[Note]Note

The example below uses SimpleThreadScope which is included with Spring, but not registered by default. The instructions would be the same for your own custom Scope implementations.

Scope threadScope = new SimpleThreadScope();
beanFactory.registerScope("thread", threadScope);

You then create bean definitions that adhere to the scoping rules of your custom Scope:

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration of the scope. You can also do the Scope registration declaratively, using the CustomScopeConfigurer class:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:aop="http://www.springframework.org/schema/aop"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/aop
        http://www.springframework.org/schema/aop/spring-aop.xsd">

    <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
        <property name="scopes">
            <map>
                <entry key="thread">
                    <bean class="org.springframework.context.support.SimpleThreadScope"/>
                </entry>
            </map>
        </property>
    </bean>

    <bean id="bar" class="x.y.Bar" scope="thread">
        <property name="name" value="Rick"/>
        <aop:scoped-proxy/>
    </bean>

    <bean id="foo" class="x.y.Foo">
        <property name="bar" ref="bar"/>
    </bean>

</beans>
[Note]Note

When you place <aop:scoped-proxy/> in a FactoryBean implementation, it is the factory bean itself that is scoped, not the object returned from getObject().

5.6 Customizing the nature of a bean

5.6.1 Lifecycle callbacks

To interact with the container’s management of the bean lifecycle, you can implement the Spring InitializingBean and DisposableBean interfaces. The container calls afterPropertiesSet() for the former and destroy() for the latter to allow the bean to perform certain actions upon initialization and destruction of your beans.

[Tip]Tip

The JSR-250 @PostConstruct and @PreDestroy annotations are generally considered best practice for receiving lifecycle callbacks in a modern Spring application. Using these annotations means that your beans are not coupled to Spring specific interfaces. For details see Section 5.9.7, “@PostConstruct and @PreDestroy”.

If you don’t want to use the JSR-250 annotations but you are still looking to remove coupling consider the use of init-method and destroy-method object definition metadata.

Internally, the Spring Framework uses BeanPostProcessor implementations to process any callback interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle behavior Spring does not offer out-of-the-box, you can implement a BeanPostProcessor yourself. For more information, see Section 5.8, “Container Extension Points”.

In addition to the initialization and destruction callbacks, Spring-managed objects may also implement the Lifecycle interface so that those objects can participate in the startup and shutdown process as driven by the container’s own lifecycle.

The lifecycle callback interfaces are described in this section.

Initialization callbacks

The org.springframework.beans.factory.InitializingBean interface allows a bean to perform initialization work after all necessary properties on the bean have been set by the container. The InitializingBean interface specifies a single method:

void afterPropertiesSet() throws Exception;

It is recommended that you do not use the InitializingBean interface because it unnecessarily couples the code to Spring. Alternatively, use the @PostConstruct annotation or specify a POJO initialization method. In the case of XML-based configuration metadata, you use the init-method attribute to specify the name of the method that has a void no-argument signature. With Java config you use the initMethod attribute of @Bean, see the section called “Receiving lifecycle callbacks”. For example, the following:

<bean id="exampleInitBean" class="examples.ExampleBean" init-method="init"/>
public class ExampleBean {

    public void init() {
        // do some initialization work
    }

}

…is exactly the same as…

<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>
public class AnotherExampleBean implements InitializingBean {

    public void afterPropertiesSet() {
        // do some initialization work
    }

}

but does not couple the code to Spring.

Destruction callbacks

Implementing the org.springframework.beans.factory.DisposableBean interface allows a bean to get a callback when the container containing it is destroyed. The DisposableBean interface specifies a single method:

void destroy() throws Exception;

It is recommended that you do not use the DisposableBean callback interface because it unnecessarily couples the code to Spring. Alternatively, use the @PreDestroy annotation or specify a generic method that is supported by bean definitions. With XML-based configuration metadata, you use the destroy-method attribute on the <bean/>. With Java config you use the destroyMethod attribute of @Bean, see the section called “Receiving lifecycle callbacks”. For example, the following definition:

<bean id="exampleInitBean" class="examples.ExampleBean" destroy-method="cleanup"/>
public class ExampleBean {

    public void cleanup() {
        // do some destruction work (like releasing pooled connections)
    }

}

is exactly the same as:

<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>
public class AnotherExampleBean implements DisposableBean {

    public void destroy() {
        // do some destruction work (like releasing pooled connections)
    }

}

but does not couple the code to Spring.

[Tip]Tip

The destroy-method attribute of a <bean> element can be assigned a special (inferred) value which instructs Spring to automatically detect a public close or shutdown method on the specific bean class. This special (inferred) value can also be set on the default-destroy-method attribute of a <beans> element to apply this behavior to an entire set of beans (see the section called “Default initialization and destroy methods”). Note that this is the default behavior with Java config.

Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the Spring-specific InitializingBean and DisposableBean callback interfaces, you typically write methods with names such as init(), initialize(), dispose(), and so on. Ideally, the names of such lifecycle callback methods are standardized across a project so that all developers use the same method names and ensure consistency.

You can configure the Spring container to look for named initialization and destroy callback method names on every bean. This means that you, as an application developer, can write your application classes and use an initialization callback called init(), without having to configure an init-method="init" attribute with each bean definition. The Spring IoC container calls that method when the bean is created (and in accordance with the standard lifecycle callback contract described previously). This feature also enforces a consistent naming convention for initialization and destroy method callbacks.

Suppose that your initialization callback methods are named init() and destroy callback methods are named destroy(). Your class will resemble the class in the following example.

public class DefaultBlogService implements BlogService {

    private BlogDao blogDao;

    public void setBlogDao(BlogDao blogDao) {
        this.blogDao = blogDao;
    }

    // this is (unsurprisingly) the initialization callback method
    public void init() {
        if (this.blogDao == null) {
            throw new IllegalStateException("The [blogDao] property must be set.");
        }
    }

}
<beans default-init-method="init">

    <bean id="blogService" class="com.foo.DefaultBlogService">
        <property name="blogDao" ref="blogDao" />
    </bean>

</beans>

The presence of the default-init-method attribute on the top-level <beans/> element attribute causes the Spring IoC container to recognize a method called init on beans as the initialization method callback. When a bean is created and assembled, if the bean class has such a method, it is invoked at the appropriate time.

You configure destroy method callbacks similarly (in XML, that is) by using the default-destroy-method attribute on the top-level <beans/> element.

Where existing bean classes already have callback methods that are named at variance with the convention, you can override the default by specifying (in XML, that is) the method name using the init-method and destroy-method attributes of the <bean/> itself.

The Spring container guarantees that a configured initialization callback is called immediately after a bean is supplied with all dependencies. Thus the initialization callback is called on the raw bean reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target bean is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. If the target bean and the proxy are defined separately, your code can even interact with the raw target bean, bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the init method, because doing so would couple the lifecycle of the target bean with its proxy/interceptors and leave strange semantics when your code interacts directly to the raw target bean.

Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the InitializingBean and DisposableBean callback interfaces; custom init() and destroy() methods; and the @PostConstruct and @PreDestroy annotations. You can combine these mechanisms to control a given bean.

[Note]Note

If multiple lifecycle mechanisms are configured for a bean, and each mechanism is configured with a different method name, then each configured method is executed in the order listed below. However, if the same method name is configured - for example, init() for an initialization method - for more than one of these lifecycle mechanisms, that method is executed once, as explained in the preceding section.

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, are called as follows:

  • Methods annotated with @PostConstruct
  • afterPropertiesSet() as defined by the InitializingBean callback interface
  • A custom configured init() method

Destroy methods are called in the same order:

  • Methods annotated with @PreDestroy
  • destroy() as defined by the DisposableBean callback interface
  • A custom configured destroy() method

Startup and shutdown callbacks

The Lifecycle interface defines the essential methods for any object that has its own lifecycle requirements (e.g. starts and stops some background process):

public interface Lifecycle {

    void start();

    void stop();

    boolean isRunning();

}

Any Spring-managed object may implement that interface. Then, when the ApplicationContext itself starts and stops, it will cascade those calls to all Lifecycle implementations defined within that context. It does this by delegating to a LifecycleProcessor:

public interface LifecycleProcessor extends Lifecycle {

    void onRefresh();

    void onClose();

}

Notice that the LifecycleProcessor is itself an extension of the Lifecycle interface. It also adds two other methods for reacting to the context being refreshed and closed.

The order of startup and shutdown invocations can be important. If a "depends-on" relationship exists between any two objects, the dependent side will start after its dependency, and it will stop before its dependency. However, at times the direct dependencies are unknown. You may only know that objects of a certain type should start prior to objects of another type. In those cases, the SmartLifecycle interface defines another option, namely the getPhase() method as defined on its super-interface, Phased.

public interface Phased {

    int getPhase();

}
public interface SmartLifecycle extends Lifecycle, Phased {

    boolean isAutoStartup();

    void stop(Runnable callback);

}

When starting, the objects with the lowest phase start first, and when stopping, the reverse order is followed. Therefore, an object that implements SmartLifecycle and whose getPhase() method returns Integer.MIN_VALUE would be among the first to start and the last to stop. At the other end of the spectrum, a phase value of Integer.MAX_VALUE would indicate that the object should be started last and stopped first (likely because it depends on other processes to be running). When considering the phase value, it’s also important to know that the default phase for any "normal" Lifecycle object that does not implement SmartLifecycle would be 0. Therefore, any negative phase value would indicate that an object should start before those standard components (and stop after them), and vice versa for any positive phase value.

As you can see the stop method defined by SmartLifecycle accepts a callback. Any implementation must invoke that callback’s run() method after that implementation’s shutdown process is complete. That enables asynchronous shutdown where necessary since the default implementation of the LifecycleProcessor interface, DefaultLifecycleProcessor, will wait up to its timeout value for the group of objects within each phase to invoke that callback. The default per-phase timeout is 30 seconds. You can override the default lifecycle processor instance by defining a bean named "lifecycleProcessor" within the context. If you only want to modify the timeout, then defining the following would be sufficient:

<bean id="lifecycleProcessor" class="org.springframework.context.support.DefaultLifecycleProcessor">
    <!-- timeout value in milliseconds -->
    <property name="timeoutPerShutdownPhase" value="10000"/>
</bean>

As mentioned, the LifecycleProcessor interface defines callback methods for the refreshing and closing of the context as well. The latter will simply drive the shutdown process as if stop() had been called explicitly, but it will happen when the context is closing. The refresh callback on the other hand enables another feature of SmartLifecycle beans. When the context is refreshed (after all objects have been instantiated and initialized), that callback will be invoked, and at that point the default lifecycle processor will check the boolean value returned by each SmartLifecycle object’s isAutoStartup() method. If "true", then that object will be started at that point rather than waiting for an explicit invocation of the context’s or its own start() method (unlike the context refresh, the context start does not happen automatically for a standard context implementation). The "phase" value as well as any "depends-on" relationships will determine the startup order in the same way as described above.

Shutting down the Spring IoC container gracefully in non-web applications

[Note]Note

This section applies only to non-web applications. Spring’s web-based ApplicationContext implementations already have code in place to shut down the Spring IoC container gracefully when the relevant web application is shut down.

If you are using Spring’s IoC container in a non-web application environment; for example, in a rich client desktop environment; you register a shutdown hook with the JVM. Doing so ensures a graceful shutdown and calls the relevant destroy methods on your singleton beans so that all resources are released. Of course, you must still configure and implement these destroy callbacks correctly.

To register a shutdown hook, you call the registerShutdownHook() method that is declared on the AbstractApplicationContext class:

import org.springframework.context.support.AbstractApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public final class Boot {

    public static void main(final String[] args) throws Exception {

        AbstractApplicationContext ctx = new ClassPathXmlApplicationContext(
                new String []{"beans.xml"});

        // add a shutdown hook for the above context...
        ctx.registerShutdownHook();

        // app runs here...

        // main method exits, hook is called prior to the app shutting down...

    }
}

5.6.2 ApplicationContextAware and BeanNameAware

When an ApplicationContext creates an object instance that implements the org.springframework.context.ApplicationContextAware interface, the instance is provided with a reference to that ApplicationContext.

public interface ApplicationContextAware {

    void setApplicationContext(ApplicationContext applicationContext) throws BeansException;

}

Thus beans can manipulate programmatically the ApplicationContext that created them, through the ApplicationContext interface, or by casting the reference to a known subclass of this interface, such as ConfigurableApplicationContext, which exposes additional functionality. One use would be the programmatic retrieval of other beans. Sometimes this capability is useful; however, in general you should avoid it, because it couples the code to Spring and does not follow the Inversion of Control style, where collaborators are provided to beans as properties. Other methods of the ApplicationContext provide access to file resources, publishing application events, and accessing a MessageSource. These additional features are described in Section 5.15, “Additional Capabilities of the ApplicationContext”

As of Spring 2.5, autowiring is another alternative to obtain reference to the ApplicationContext. The "traditional" constructor and byType autowiring modes (as described in Section 5.4.5, “Autowiring collaborators”) can provide a dependency of type ApplicationContext for a constructor argument or setter method parameter, respectively. For more flexibility, including the ability to autowire fields and multiple parameter methods, use the new annotation-based autowiring features. If you do, the ApplicationContext is autowired into a field, constructor argument, or method parameter that is expecting the ApplicationContext type if the field, constructor, or method in question carries the @Autowired annotation. For more information, see Section 5.9.2, “@Autowired”.

When an ApplicationContext creates a class that implements the org.springframework.beans.factory.BeanNameAware interface, the class is provided with a reference to the name defined in its associated object definition.

public interface BeanNameAware {

    void setBeanName(string name) throws BeansException;

}

The callback is invoked after population of normal bean properties but before an initialization callback such as InitializingBean afterPropertiesSet or a custom init-method.

5.6.3 Other Aware interfaces

Besides ApplicationContextAware and BeanNameAware discussed above, Spring offers a range of Aware interfaces that allow beans to indicate to the container that they require a certain infrastructure dependency. The most important Aware interfaces are summarized below - as a general rule, the name is a good indication of the dependency type:

Table 5.4. Aware interfaces

NameInjected DependencyExplained in…

ApplicationContextAware

Declaring ApplicationContext

Section 5.6.2, “ApplicationContextAware and BeanNameAware”

ApplicationEventPublisherAware

Event publisher of the enclosing ApplicationContext

Section 5.15, “Additional Capabilities of the ApplicationContext”

BeanClassLoaderAware

Class loader used to load the bean classes.

Section 5.3.2, “Instantiating beans”

BeanFactoryAware

Declaring BeanFactory

Section 5.6.2, “ApplicationContextAware and BeanNameAware”

BeanNameAware

Name of the declaring bean

Section 5.6.2, “ApplicationContextAware and BeanNameAware”

BootstrapContextAware

Resource adapter BootstrapContext the container runs in. Typically available only in JCA aware ApplicationContexts

Chapter 26, JCA CCI

LoadTimeWeaverAware

Defined weaver for processing class definition at load time

Section 9.8.4, “Load-time weaving with AspectJ in the Spring Framework”

MessageSourceAware

Configured strategy for resolving messages (with support for parametrization and internationalization)

Section 5.15, “Additional Capabilities of the ApplicationContext”

NotificationPublisherAware

Spring JMX notification publisher

Section 25.7, “Notifications”

PortletConfigAware

Current PortletConfig the container runs in. Valid only in a web-aware Spring ApplicationContext

Chapter 20, Portlet MVC Framework

PortletContextAware

Current PortletContext the container runs in. Valid only in a web-aware Spring ApplicationContext

Chapter 20, Portlet MVC Framework

ResourceLoaderAware

Configured loader for low-level access to resources

Chapter 6, Resources

ServletConfigAware

Current ServletConfig the container runs in. Valid only in a web-aware Spring ApplicationContext

Chapter 17, Web MVC framework

ServletContextAware

Current ServletContext the container runs in. Valid only in a web-aware Spring ApplicationContext

Chapter 17, Web MVC framework


Note again that usage of these interfaces ties your code to the Spring API and does not follow the Inversion of Control style. As such, they are recommended for infrastructure beans that require programmatic access to the container.

5.7 Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor arguments, property values, and container-specific information such as initialization method, static factory method name, and so on. A child bean definition inherits configuration data from a parent definition. The child definition can override some values, or add others, as needed. Using parent and child bean definitions can save a lot of typing. Effectively, this is a form of templating.

If you work with an ApplicationContext interface programmatically, child bean definitions are represented by the ChildBeanDefinition class. Most users do not work with them on this level, instead configuring bean definitions declaratively in something like the ClassPathXmlApplicationContext. When you use XML-based configuration metadata, you indicate a child bean definition by using the parent attribute, specifying the parent bean as the value of this attribute.

<bean id="inheritedTestBean" abstract="true"
        class="org.springframework.beans.TestBean">
    <property name="name" value="parent"/>
    <property name="age" value="1"/>
</bean>

<bean id="inheritsWithDifferentClass"
        class="org.springframework.beans.DerivedTestBean"
        parent="inheritedTestBean" init-method="initialize">
    <property name="name" value="override"/>
    <!-- the age property value of 1 will be inherited from parent -->
</bean>

A child bean definition uses the bean class from the parent definition if none is specified, but can also override it. In the latter case, the child bean class must be compatible with the parent, that is, it must accept the parent’s property values.

A child bean definition inherits scope, constructor argument values, property values, and method overrides from the parent, with the option to add new values. Any scope, initialization method, destroy method, and/or static factory method settings that you specify will override the corresponding parent settings.

The remaining settings are always taken from the child definition: depends on, autowire mode, dependency check, singleton, lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using the abstract attribute. If the parent definition does not specify a class, explicitly marking the parent bean definition as abstract is required, as follows:

<bean id="inheritedTestBeanWithoutClass" abstract="true">
    <property name="name" value="parent"/>
    <property name="age" value="1"/>
</bean>

<bean id="inheritsWithClass" class="org.springframework.beans.DerivedTestBean"
        parent="inheritedTestBeanWithoutClass" init-method="initialize">
    <property name="name" value="override"/>
    <!-- age will inherit the value of 1 from the parent bean definition-->
</bean>

The parent bean cannot be instantiated on its own because it is incomplete, and it is also explicitly marked as abstract. When a definition is abstract like this, it is usable only as a pure template bean definition that serves as a parent definition for child definitions. Trying to use such an abstract parent bean on its own, by referring to it as a ref property of another bean or doing an explicit getBean() call with the parent bean id, returns an error. Similarly, the container’s internal preInstantiateSingletons() method ignores bean definitions that are defined as abstract.

[Note]Note

ApplicationContext pre-instantiates all singletons by default. Therefore, it is important (at least for singleton beans) that if you have a (parent) bean definition which you intend to use only as a template, and this definition specifies a class, you must make sure to set the abstract attribute to true, otherwise the application context will actually (attempt to) pre-instantiate the abstract bean.

5.8 Container Extension Points

Typically, an application developer does not need to subclass ApplicationContext implementation classes. Instead, the Spring IoC container can be extended by plugging in implementations of special integration interfaces. The next few sections describe these integration interfaces.

5.8.1 Customizing beans using a BeanPostProcessor

The BeanPostProcessor interface defines callback methods that you can implement to provide your own (or override the container’s default) instantiation logic, dependency-resolution logic, and so forth. If you want to implement some custom logic after the Spring container finishes instantiating, configuring, and initializing a bean, you can plug in one or more BeanPostProcessor implementations.

You can configure multiple BeanPostProcessor instances, and you can control the order in which these BeanPostProcessors execute by setting the order property. You can set this property only if the BeanPostProcessor implements the Ordered interface; if you write your own BeanPostProcessor you should consider implementing the Ordered interface too. For further details, consult the javadocs of the BeanPostProcessor and Ordered interfaces. See also the note below on programmatic registration of BeanPostProcessors

[Note]Note

BeanPostProcessors operate on bean (or object) instances; that is to say, the Spring IoC container instantiates a bean instance and then BeanPostProcessors do their work.

BeanPostProcessors are scoped per-container. This is only relevant if you are using container hierarchies. If you define a BeanPostProcessor in one container, it will only post-process the beans in that container. In other words, beans that are defined in one container are not post-processed by a BeanPostProcessor defined in another container, even if both containers are part of the same hierarchy.

To change the actual bean definition (i.e., the blueprint that defines the bean), you instead need to use a BeanFactoryPostProcessor as described in Section 5.8.2, “Customizing configuration metadata with a BeanFactoryPostProcessor”.

The org.springframework.beans.factory.config.BeanPostProcessor interface consists of exactly two callback methods. When such a class is registered as a post-processor with the container, for each bean instance that is created by the container, the post-processor gets a callback from the container both before container initialization methods (such as InitializingBean’s afterPropertiesSet() and any declared init method) are called as well as after any bean initialization callbacks. The post-processor can take any action with the bean instance, including ignoring the callback completely. A bean post-processor typically checks for callback interfaces or may wrap a bean with a proxy. Some Spring AOP infrastructure classes are implemented as bean post-processors in order to provide proxy-wrapping logic.

An ApplicationContext automatically detects any beans that are defined in the configuration metadata which implement the BeanPostProcessor interface. The ApplicationContext registers these beans as post-processors so that they can be called later upon bean creation. Bean post-processors can be deployed in the container just like any other beans.

Note that when declaring a BeanPostProcessor using an @Bean factory method on a configuration class, the return type of the factory method should be the implementation class itself or at least the org.springframework.beans.factory.config.BeanPostProcessor interface, clearly indicating the post-processor nature of that bean. Otherwise, the ApplicationContext won’t be able to autodetect it by type before fully creating it. Since a BeanPostProcessor needs to be instantiated early in order to apply to the initialization of other beans in the context, this early type detection is critical.

[Note]Note

Programmatically registering BeanPostProcessors

While the recommended approach for BeanPostProcessor registration is through ApplicationContext auto-detection (as described above), it is also possible to register them programmatically against a ConfigurableBeanFactory using the addBeanPostProcessor method. This can be useful when needing to evaluate conditional logic before registration, or even for copying bean post processors across contexts in a hierarchy. Note however that BeanPostProcessors added programmatically do not respect the Ordered interface. Here it is the order of registration that dictates the order of execution. Note also that BeanPostProcessors registered programmatically are always processed before those registered through auto-detection, regardless of any explicit ordering.

[Note]Note

BeanPostProcessors and AOP auto-proxying

Classes that implement the BeanPostProcessor interface are special and are treated differently by the container. All BeanPostProcessors and beans that they reference directly are instantiated on startup, as part of the special startup phase of the ApplicationContext. Next, all BeanPostProcessors are registered in a sorted fashion and applied to all further beans in the container. Because AOP auto-proxying is implemented as a BeanPostProcessor itself, neither BeanPostProcessors nor the beans they reference directly are eligible for auto-proxying, and thus do not have aspects woven into them.

For any such bean, you should see an informational log message: "Bean foo is not eligible for getting processed by all BeanPostProcessor interfaces (for example: not eligible for auto-proxying)".

Note that if you have beans wired into your BeanPostProcessor using autowiring or @Resource (which may fall back to autowiring), Spring might access unexpected beans when searching for type-matching dependency candidates, and therefore make them ineligible for auto-proxying or other kinds of bean post-processing. For example, if you have a dependency annotated with @Resource where the field/setter name does not directly correspond to the declared name of a bean and no name attribute is used, then Spring will access other beans for matching them by type.

The following examples show how to write, register, and use BeanPostProcessors in an ApplicationContext.

Example: Hello World, BeanPostProcessor-style

This first example illustrates basic usage. The example shows a custom BeanPostProcessor implementation that invokes the toString() method of each bean as it is created by the container and prints the resulting string to the system console.

Find below the custom BeanPostProcessor implementation class definition:

package scripting;

import org.springframework.beans.factory.config.BeanPostProcessor;
import org.springframework.beans.BeansException;

public class InstantiationTracingBeanPostProcessor implements BeanPostProcessor {

    // simply return the instantiated bean as-is
    public Object postProcessBeforeInitialization(Object bean,
            String beanName) throws BeansException {
        return bean; // we could potentially return any object reference here...
    }

    public Object postProcessAfterInitialization(Object bean,
            String beanName) throws BeansException {
        System.out.println("Bean '" + beanName + "' created : " + bean.toString());
        return bean;
    }

}
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:lang="http://www.springframework.org/schema/lang"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/lang
        http://www.springframework.org/schema/lang/spring-lang.xsd">

    <lang:groovy id="messenger"
            script-source="classpath:org/springframework/scripting/groovy/Messenger.groovy">
        <lang:property name="message" value="Fiona Apple Is Just So Dreamy."/>
    </lang:groovy>

    <!--
    when the above bean (messenger) is instantiated, this custom
    BeanPostProcessor implementation will output the fact to the system console
    -->
    <bean class="scripting.InstantiationTracingBeanPostProcessor"/>

</beans>

Notice how the InstantiationTracingBeanPostProcessor is simply defined. It does not even have a name, and because it is a bean it can be dependency-injected just like any other bean. (The preceding configuration also defines a bean that is backed by a Groovy script. The Spring dynamic language support is detailed in the chapter entitled Chapter 29, Dynamic language support.)

The following simple Java application executes the preceding code and configuration:

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.scripting.Messenger;

public final class Boot {

    public static void main(final String[] args) throws Exception {
        ApplicationContext ctx = new ClassPathXmlApplicationContext("scripting/beans.xml");
        Messenger messenger = (Messenger) ctx.getBean("messenger");
        System.out.println(messenger);
    }

}

The output of the preceding application resembles the following:

Bean messenger created : org.springframework.scripting.groovy.GroovyMessenger@272961
org.springframework.scripting.groovy.GroovyMessenger@272961

Example: The RequiredAnnotationBeanPostProcessor

Using callback interfaces or annotations in conjunction with a custom BeanPostProcessor implementation is a common means of extending the Spring IoC container. An example is Spring’s RequiredAnnotationBeanPostProcessor - a BeanPostProcessor implementation that ships with the Spring distribution which ensures that JavaBean properties on beans that are marked with an (arbitrary) annotation are actually (configured to be) dependency-injected with a value.

5.8.2 Customizing configuration metadata with a BeanFactoryPostProcessor

The next extension point that we will look at is the org.springframework.beans.factory.config.BeanFactoryPostProcessor. The semantics of this interface are similar to those of the BeanPostProcessor, with one major difference: BeanFactoryPostProcessor operates on the bean configuration metadata; that is, the Spring IoC container allows a BeanFactoryPostProcessor to read the configuration metadata and potentially change it before the container instantiates any beans other than BeanFactoryPostProcessors.

You can configure multiple BeanFactoryPostProcessors, and you can control the order in which these BeanFactoryPostProcessors execute by setting the order property. However, you can only set this property if the BeanFactoryPostProcessor implements the Ordered interface. If you write your own BeanFactoryPostProcessor, you should consider implementing the Ordered interface too. Consult the javadocs of the BeanFactoryPostProcessor and Ordered interfaces for more details.

[Note]Note

If you want to change the actual bean instances (i.e., the objects that are created from the configuration metadata), then you instead need to use a BeanPostProcessor (described above in Section 5.8.1, “Customizing beans using a BeanPostProcessor”). While it is technically possible to work with bean instances within a BeanFactoryPostProcessor (e.g., using BeanFactory.getBean()), doing so causes premature bean instantiation, violating the standard container lifecycle. This may cause negative side effects such as bypassing bean post processing.

Also, BeanFactoryPostProcessors are scoped per-container. This is only relevant if you are using container hierarchies. If you define a BeanFactoryPostProcessor in one container, it will only be applied to the bean definitions in that container. Bean definitions in one container will not be post-processed by BeanFactoryPostProcessors in another container, even if both containers are part of the same hierarchy.

A bean factory post-processor is executed automatically when it is declared inside an ApplicationContext, in order to apply changes to the configuration metadata that define the container. Spring includes a number of predefined bean factory post-processors, such as PropertyOverrideConfigurer and PropertyPlaceholderConfigurer. A custom BeanFactoryPostProcessor can also be used, for example, to register custom property editors.

An ApplicationContext automatically detects any beans that are deployed into it that implement the BeanFactoryPostProcessor interface. It uses these beans as bean factory post-processors, at the appropriate time. You can deploy these post-processor beans as you would any other bean.

[Note]Note

As with BeanPostProcessors , you typically do not want to configure BeanFactoryPostProcessors for lazy initialization. If no other bean references a Bean(Factory)PostProcessor, that post-processor will not get instantiated at all. Thus, marking it for lazy initialization will be ignored, and the Bean(Factory)PostProcessor will be instantiated eagerly even if you set the default-lazy-init attribute to true on the declaration of your <beans /> element.

Example: the Class name substitution PropertyPlaceholderConfigurer

You use the PropertyPlaceholderConfigurer to externalize property values from a bean definition in a separate file using the standard Java Properties format. Doing so enables the person deploying an application to customize environment-specific properties such as database URLs and passwords, without the complexity or risk of modifying the main XML definition file or files for the container.

Consider the following XML-based configuration metadata fragment, where a DataSource with placeholder values is defined. The example shows properties configured from an external Properties file. At runtime, a PropertyPlaceholderConfigurer is applied to the metadata that will replace some properties of the DataSource. The values to replace are specified as placeholders of the form ${property-name} which follows the Ant / log4j / JSP EL style.

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
    <property name="locations" value="classpath:com/foo/jdbc.properties"/>
</bean>

<bean id="dataSource" destroy-method="close"
        class="org.apache.commons.dbcp.BasicDataSource">
    <property name="driverClassName" value="${jdbc.driverClassName}"/>
    <property name="url" value="${jdbc.url}"/>
    <property name="username" value="${jdbc.username}"/>
    <property name="password" value="${jdbc.password}"/>
</bean>

The actual values come from another file in the standard Java Properties format:

jdbc.driverClassName=org.hsqldb.jdbcDriver
jdbc.url=jdbc:hsqldb:hsql://production:9002
jdbc.username=sa
jdbc.password=root

Therefore, the string ${jdbc.username} is replaced at runtime with the value sa, and the same applies for other placeholder values that match keys in the properties file. The PropertyPlaceholderConfigurer checks for placeholders in most properties and attributes of a bean definition. Furthermore, the placeholder prefix and suffix can be customized.

With the context namespace introduced in Spring 2.5, it is possible to configure property placeholders with a dedicated configuration element. One or more locations can be provided as a comma-separated list in the location attribute.

<context:property-placeholder location="classpath:com/foo/jdbc.properties"/>

The PropertyPlaceholderConfigurer not only looks for properties in the Properties file you specify. By default it also checks against the Java System properties if it cannot find a property in the specified properties files. You can customize this behavior by setting the systemPropertiesMode property of the configurer with one of the following three supported integer values:

  • never (0): Never check system properties
  • fallback (1): Check system properties if not resolvable in the specified properties files. This is the default.
  • override (2): Check system properties first, before trying the specified properties files. This allows system properties to override any other property source.

Consult the PropertyPlaceholderConfigurer javadocs for more information.

[Tip]Tip

You can use the PropertyPlaceholderConfigurer to substitute class names, which is sometimes useful when you have to pick a particular implementation class at runtime. For example:

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
    <property name="locations">
        <value>classpath:com/foo/strategy.properties</value>
    </property>
    <property name="properties">
        <value>custom.strategy.class=com.foo.DefaultStrategy</value>
    </property>
</bean>

<bean id="serviceStrategy" class="${custom.strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean fails when it is about to be created, which is during the preInstantiateSingletons() phase of an ApplicationContext for a non-lazy-init bean.

Example: the PropertyOverrideConfigurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the PropertyPlaceholderConfigurer, but unlike the latter, the original definitions can have default values or no values at all for bean properties. If an overriding Properties file does not have an entry for a certain bean property, the default context definition is used.

Note that the bean definition is not aware of being overridden, so it is not immediately obvious from the XML definition file that the override configurer is being used. In case of multiple PropertyOverrideConfigurer instances that define different values for the same bean property, the last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:

beanName.property=value

For example:

dataSource.driverClassName=com.mysql.jdbc.Driver
dataSource.url=jdbc:mysql:mydb

This example file can be used with a container definition that contains a bean called dataSource, which has driver and url properties.

Compound property names are also supported, as long as every component of the path except the final property being overridden is already non-null (presumably initialized by the constructors). In this example…

foo.fred.bob.sammy=123
  1. the sammy property of the bob property of the fred property of the foo bean is set to the scalar value 123.
[Note]Note

Specified override values are always literal values; they are not translated into bean references. This convention also applies when the original value in the XML bean definition specifies a bean reference.

With the context namespace introduced in Spring 2.5, it is possible to configure property overriding with a dedicated configuration element:

<context:property-override location="classpath:override.properties"/>

5.8.3 Customizing instantiation logic with a FactoryBean

Implement the org.springframework.beans.factory.FactoryBean interface for objects that are themselves factories.

The FactoryBean interface is a point of pluggability into the Spring IoC container’s instantiation logic. If you have complex initialization code that is better expressed in Java as opposed to a (potentially) verbose amount of XML, you can create your own FactoryBean, write the complex initialization inside that class, and then plug your custom FactoryBean into the container.

The FactoryBean interface provides three methods:

  • Object getObject(): returns an instance of the object this factory creates. The instance can possibly be shared, depending on whether this factory returns singletons or prototypes.
  • boolean isSingleton(): returns true if this FactoryBean returns singletons, false otherwise.
  • Class getObjectType(): returns the object type returned by the getObject() method or null if the type is not known in advance.

The FactoryBean concept and interface is used in a number of places within the Spring Framework; more than 50 implementations of the FactoryBean interface ship with Spring itself.

When you need to ask a container for an actual FactoryBean instance itself instead of the bean it produces, preface the bean’s id with the ampersand symbol ( &) when calling the getBean() method of the ApplicationContext. So for a given FactoryBean with an id of myBean, invoking getBean("myBean") on the container returns the product of the FactoryBean; whereas, invoking getBean("&myBean") returns the FactoryBean instance itself.

5.9 Annotation-based container configuration

An alternative to XML setups is provided by annotation-based configuration which rely on the bytecode metadata for wiring up components instead of angle-bracket declarations. Instead of using XML to describe a bean wiring, the developer moves the configuration into the component class itself by using annotations on the relevant class, method, or field declaration. As mentioned in the section called “Example: The RequiredAnnotationBeanPostProcessor”, using a BeanPostProcessor in conjunction with annotations is a common means of extending the Spring IoC container. For example, Spring 2.0 introduced the possibility of enforcing required properties with the @Required annotation. Spring 2.5 made it possible to follow that same general approach to drive Spring’s dependency injection. Essentially, the @Autowired annotation provides the same capabilities as described in Section 5.4.5, “Autowiring collaborators” but with more fine-grained control and wider applicability. Spring 2.5 also added support for JSR-250 annotations such as @PostConstruct, and @PreDestroy. Spring 3.0 added support for JSR-330 (Dependency Injection for Java) annotations contained in the javax.inject package such as @Inject and @Named. Details about those annotations can be found in the relevant section.

[Note]Note

Annotation injection is performed before XML injection, thus the latter configuration will override the former for properties wired through both approaches.

As always, you can register them as individual bean definitions, but they can also be implicitly registered by including the following tag in an XML-based Spring configuration (notice the inclusion of the context namespace):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:context="http://www.springframework.org/schema/context"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/context
        http://www.springframework.org/schema/context/spring-context.xsd">

    <context:annotation-config/>

</beans>

(The implicitly registered post-processors include AutowiredAnnotationBeanPostProcessor, CommonAnnotationBeanPostProcessor, PersistenceAnnotationBeanPostProcessor, as well as the aforementioned RequiredAnnotationBeanPostProcessor.)

[Note]Note

<context:annotation-config/> only looks for annotations on beans in the same application context in which it is defined. This means that, if you put <context:annotation-config/> in a WebApplicationContext for a DispatcherServlet, it only checks for @Autowired beans in your controllers, and not your services. See Section 17.2, “The DispatcherServlet” for more information.

5.9.1 @Required

The @Required annotation applies to bean property setter methods, as in the following example:

public class SimpleMovieLister {

    private MovieFinder movieFinder;

    @Required
    public void setMovieFinder(MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

    // ...

}

This annotation simply indicates that the affected bean property must be populated at configuration time, through an explicit property value in a bean definition or through autowiring. The container throws an exception if the affected bean property has not been populated; this allows for eager and explicit failure, avoiding NullPointerExceptions or the like later on. It is still recommended that you put assertions into the bean class itself, for example, into an init method. Doing so enforces those required references and values even when you use the class outside of a container.

5.9.2 @Autowired

As expected, you can apply the @Autowired annotation to "traditional" setter methods:

public class SimpleMovieLister {

    private MovieFinder movieFinder;

    @Autowired
    public void setMovieFinder(MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

    // ...

}
[Note]Note

JSR 330’s @Inject annotation can be used in place of Spring’s @Autowired annotation in the examples below. See here for more details

You can also apply the annotation to methods with arbitrary names and/or multiple arguments:

public class MovieRecommender {

    private MovieCatalog movieCatalog;

    private CustomerPreferenceDao customerPreferenceDao;

    @Autowired
    public void prepare(MovieCatalog movieCatalog,
            CustomerPreferenceDao customerPreferenceDao) {
        this.movieCatalog = movieCatalog;
        this.customerPreferenceDao = customerPreferenceDao;
    }

    // ...

}

You can apply @Autowired to constructors and fields:

public class MovieRecommender {

    @Autowired
    private MovieCatalog movieCatalog;

    private CustomerPreferenceDao customerPreferenceDao;

    @Autowired
    public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {
        this.customerPreferenceDao = customerPreferenceDao;
    }

    // ...

}

It is also possible to provide all beans of a particular type from the ApplicationContext by adding the annotation to a field or method that expects an array of that type:

public class MovieRecommender {

    @Autowired
    private MovieCatalog[] movieCatalogs;

    // ...

}

The same applies for typed collections:

public class MovieRecommender {

    private Set<MovieCatalog> movieCatalogs;

    @Autowired
    public void setMovieCatalogs(Set<MovieCatalog> movieCatalogs) {
        this.movieCatalogs = movieCatalogs;
    }

    // ...

}
[Tip]Tip

Your beans can implement the org.springframework.core.Ordered interface or either use the @Order or standard @Priority annotation if you want items in the array or list to be sorted into a specific order.

Even typed Maps can be autowired as long as the expected key type is String. The Map values will contain all beans of the expected type, and the keys will contain the corresponding bean names:

public class MovieRecommender {

    private Map<String, MovieCatalog> movieCatalogs;

    @Autowired
    public void setMovieCatalogs(Map<String, MovieCatalog> movieCatalogs) {
        this.movieCatalogs = movieCatalogs;
    }

    // ...

}

By default, the autowiring fails whenever zero candidate beans are available; the default behavior is to treat annotated methods, constructors, and fields as indicating required dependencies. This behavior can be changed as demonstrated below.

public class SimpleMovieLister {

    private MovieFinder movieFinder;

    @Autowired(required=false)
    public void setMovieFinder(MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

    // ...

}
[Note]Note

Only one annotated constructor per-class can be marked as required, but multiple non-required constructors can be annotated. In that case, each is considered among the candidates and Spring uses the greediest constructor whose dependencies can be satisfied, that is the constructor that has the largest number of arguments.

@Autowired's required attribute is recommended over the @Required annotation. The required attribute indicates that the property is not required for autowiring purposes, the property is ignored if it cannot be autowired. @Required, on the other hand, is stronger in that it enforces the property that was set by any means supported by the container. If no value is injected, a corresponding exception is raised.

You can also use @Autowired for interfaces that are well-known resolvable dependencies: BeanFactory, ApplicationContext, Environment, ResourceLoader, ApplicationEventPublisher, and MessageSource. These interfaces and their extended interfaces, such as ConfigurableApplicationContext or ResourcePatternResolver, are automatically resolved, with no special setup necessary.

public class MovieRecommender {

    @Autowired
    private ApplicationContext context;

    public MovieRecommender() {
    }

    // ...

}
[Note]Note

@Autowired, @Inject, @Resource, and @Value annotations are handled by a Spring BeanPostProcessor implementations which in turn means that you cannot apply these annotations within your own BeanPostProcessor or BeanFactoryPostProcessor types (if any). These types must be wired up explicitly via XML or using a Spring @Bean method.

5.9.3 Fine-tuning annotation-based autowiring with qualifiers

Because autowiring by type may lead to multiple candidates, it is often necessary to have more control over the selection process. One way to accomplish this is with Spring’s @Qualifier annotation. You can associate qualifier values with specific arguments, narrowing the set of type matches so that a specific bean is chosen for each argument. In the simplest case, this can be a plain descriptive value:

public class MovieRecommender {

    @Autowired
    @Qualifier("main")
    private MovieCatalog movieCatalog;

    // ...

}

The @Qualifier annotation can also be specified on individual constructor arguments or method parameters:

public class MovieRecommender {

    private MovieCatalog movieCatalog;

    private CustomerPreferenceDao customerPreferenceDao;

    @Autowired
    public void prepare(@Qualifier("main")MovieCatalog movieCatalog,
            CustomerPreferenceDao customerPreferenceDao) {
        this.movieCatalog = movieCatalog;
        this.customerPreferenceDao = customerPreferenceDao;
    }

    // ...

}

The corresponding bean definitions appear as follows. The bean with qualifier value "main" is wired with the constructor argument that is qualified with the same value.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:context="http://www.springframework.org/schema/context"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/context
        http://www.springframework.org/schema/context/spring-context.xsd">

    <context:annotation-config/>

    <bean class="example.SimpleMovieCatalog">
        <qualifier value="main"/>

        <!-- inject any dependencies required by this bean -->
    </bean>

    <bean class="example.SimpleMovieCatalog">
        <qualifier value="action"/>

        <!-- inject any dependencies required by this bean -->
    </bean>

    <bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

For a fallback match, the bean name is considered a default qualifier value. Thus you can define the bean with an id "main" instead of the nested qualifier element, leading to the same matching result. However, although you can use this convention to refer to specific beans by name, @Autowired is fundamentally about type-driven injection with optional semantic qualifiers. This means that qualifier values, even with the bean name fallback, always have narrowing semantics within the set of type matches; they do not semantically express a reference to a unique bean id. Good qualifier values are "main" or "EMEA" or "persistent", expressing characteristics of a specific component that are independent from the bean id, which may be auto-generated in case of an anonymous bean definition like the one in the preceding example.

Qualifiers also apply to typed collections, as discussed above, for example, to Set<MovieCatalog>. In this case, all matching beans according to the declared qualifiers are injected as a collection. This implies that qualifiers do not have to be unique; they rather simply constitute filtering criteria. For example, you can define multiple MovieCatalog beans with the same qualifier value "action"; all of which would be injected into a Set<MovieCatalog> annotated with @Qualifier("action").

[Tip]Tip

If you intend to express annotation-driven injection by name, do not primarily use @Autowired, even if is technically capable of referring to a bean name through @Qualifier values. Instead, use the JSR-250 @Resource annotation, which is semantically defined to identify a specific target component by its unique name, with the declared type being irrelevant for the matching process.

As a specific consequence of this semantic difference, beans that are themselves defined as a collection or map type cannot be injected through @Autowired, because type matching is not properly applicable to them. Use @Resource for such beans, referring to the specific collection or map bean by unique name.

@Autowired applies to fields, constructors, and multi-argument methods, allowing for narrowing through qualifier annotations at the parameter level. By contrast, @Resource is supported only for fields and bean property setter methods with a single argument. As a consequence, stick with qualifiers if your injection target is a constructor or a multi-argument method.

You can create your own custom qualifier annotations. Simply define an annotation and provide the @Qualifier annotation within your definition:

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface Genre {

    String value();
}

Then you can provide the custom qualifier on autowired fields and parameters:

public class MovieRecommender {

    @Autowired
    @Genre("Action")
    private MovieCatalog actionCatalog;
    private MovieCatalog comedyCatalog;

    @Autowired
    public void setComedyCatalog(@Genre("Comedy") MovieCatalog comedyCatalog) {
        this.comedyCatalog = comedyCatalog;
    }

    // ...

}

Next, provide the information for the candidate bean definitions. You can add <qualifier/> tags as sub-elements of the <bean/> tag and then specify the type and value to match your custom qualifier annotations. The type is matched against the fully-qualified class name of the annotation. Or, as a convenience if no risk of conflicting names exists, you can use the short class name. Both approaches are demonstrated in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:context="http://www.springframework.org/schema/context"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/context
        http://www.springframework.org/schema/context/spring-context.xsd">

    <context:annotation-config/>

    <bean class="example.SimpleMovieCatalog">
        <qualifier type="Genre" value="Action"/>
        <!-- inject any dependencies required by this bean -->
    </bean>

    <bean class="example.SimpleMovieCatalog">
        _<qualifier type="example.Genre" value="Comedy"/>
        <!-- inject any dependencies required by this bean -->
    </bean>

    <bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

In Section 5.10, “Classpath scanning and managed components”, you will see an annotation-based alternative to providing the qualifier metadata in XML. Specifically, see Section 5.10.8, “Providing qualifier metadata with annotations”.

In some cases, it may be sufficient to use an annotation without a value. This may be useful when the annotation serves a more generic purpose and can be applied across several different types of dependencies. For example, you may provide an offline catalog that would be searched when no Internet connection is available. First define the simple annotation:

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface Offline {

}

Then add the annotation to the field or property to be autowired:

public class MovieRecommender {

    @Autowired
    @Offline
    private MovieCatalog offlineCatalog;

    // ...

}

Now the bean definition only needs a qualifier type:

<bean class="example.SimpleMovieCatalog">
    <qualifier type="Offline"/>
    <!-- inject any dependencies required by this bean -->
</bean>

You can also define custom qualifier annotations that accept named attributes in addition to or instead of the simple value attribute. If multiple attribute values are then specified on a field or parameter to be autowired, a bean definition must match all such attribute values to be considered an autowire candidate. As an example, consider the following annotation definition:

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface MovieQualifier {

    String genre();

    Format format();

}

In this case Format is an enum:

public enum Format {
    VHS, DVD, BLURAY
}

The fields to be autowired are annotated with the custom qualifier and include values for both attributes: genre and format.

public class MovieRecommender {

    @Autowired
    @MovieQualifier(format=Format.VHS, genre="Action")
    private MovieCatalog actionVhsCatalog;

    @Autowired
    @MovieQualifier(format=Format.VHS, genre="Comedy")
    private MovieCatalog comedyVhsCatalog;

    @Autowired
    @MovieQualifier(format=Format.DVD, genre="Action")
    private MovieCatalog actionDvdCatalog;

    @Autowired
    @MovieQualifier(format=Format.BLURAY, genre="Comedy")
    private MovieCatalog comedyBluRayCatalog;

    // ...

}

Finally, the bean definitions should contain matching qualifier values. This example also demonstrates that bean meta attributes may be used instead of the <qualifier/> sub-elements. If available, the <qualifier/> and its attributes take precedence, but the autowiring mechanism falls back on the values provided within the <meta/> tags if no such qualifier is present, as in the last two bean definitions in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:context="http://www.springframework.org/schema/context"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/context
        http://www.springframework.org/schema/context/spring-context.xsd">

    <context:annotation-config/>

    <bean class="example.SimpleMovieCatalog">
        <qualifier type="MovieQualifier">
            <attribute key="format" value="VHS"/>
            <attribute key="genre" value="Action"/>
        </qualifier>
        <!-- inject any dependencies required by this bean -->
    </bean>

    <bean class="example.SimpleMovieCatalog">
        <qualifier type="MovieQualifier">
            <attribute key="format" value="VHS"/>
            <attribute key="genre" value="Comedy"/>
        </qualifier>
        <!-- inject any dependencies required by this bean -->
    </bean>

    <bean class="example.SimpleMovieCatalog">
        <meta key="format" value="DVD"/>
        <meta key="genre" value="Action"/>
        <!-- inject any dependencies required by this bean -->
    </bean>

    <bean class="example.SimpleMovieCatalog">
        <meta key="format" value="BLURAY"/>
        <meta key="genre" value="Comedy"/>
        <!-- inject any dependencies required by this bean -->
    </bean>

</beans>

5.9.4 Using generics as autowiring qualifiers

In addition to the @Qualifier annotation, it is also possible to use Java generic types as an implicit form of qualification. For example, suppose you have the following configuration:

@Configuration
public class MyConfiguration {

    @Bean
    public StringStore stringStore() {
        return new StringStore();
    }

    @Bean
    public IntegerStore integerStore() {
        return new IntegerStore();
    }

}

Assuming that beans above implement a generic interface, i.e. Store<String> and Store<Integer>, you can @Autowire the Store interface and the generic will be used as a qualifier:

@Autowired
private Store<String> s1; // <String> qualifier, injects the stringStore bean

@Autowired
private Store<Integer> s2; // <Integer> qualifier, injects the integerStore bean

Generic qualifiers also apply when autowiring Lists, Maps and Arrays:

// Inject all Store beans as long as they have an <Integer> generic
// Store<String> beans will not appear in this list
@Autowired
private List<Store<Integer>> s;

5.9.5 CustomAutowireConfigurer

The CustomAutowireConfigurer is a BeanFactoryPostProcessor that enables you to register your own custom qualifier annotation types even if they are not annotated with Spring’s @Qualifier annotation.

<bean id="customAutowireConfigurer"
        class="org.springframework.beans.factory.annotation.CustomAutowireConfigurer">
    <property name="customQualifierTypes">
        <set>
            <value>example.CustomQualifier</value>
        </set>
    </property>
</bean>

The AutowireCandidateResolver determines autowire candidates by:

  • the autowire-candidate value of each bean definition
  • any default-autowire-candidates pattern(s) available on the <beans/> element
  • the presence of @Qualifier annotations and any custom annotations registered with the CustomAutowireConfigurer

When multiple beans qualify as autowire candidates, the determination of a "primary" is the following: if exactly one bean definition among the candidates has a primary attribute set to true, it will be selected.

5.9.6 @Resource

Spring also supports injection using the JSR-250 @Resource annotation on fields or bean property setter methods. This is a common pattern in Java EE 5 and 6, for example in JSF 1.2 managed beans or JAX-WS 2.0 endpoints. Spring supports this pattern for Spring-managed objects as well.

@Resource takes a name attribute, and by default Spring interprets that value as the bean name to be injected. In other words, it follows by-name semantics, as demonstrated in this example:

public class SimpleMovieLister {

    private MovieFinder movieFinder;

    @Resource(name="myMovieFinder")
    public void setMovieFinder(MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

}

If no name is specified explicitly, the default name is derived from the field name or setter method. In case of a field, it takes the field name; in case of a setter method, it takes the bean property name. So the following example is going to have the bean with name "movieFinder" injected into its setter method:

public class SimpleMovieLister {

    private MovieFinder movieFinder;

    @Resource
    public void setMovieFinder(MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

}
[Note]Note

The name provided with the annotation is resolved as a bean name by the ApplicationContext of which the CommonAnnotationBeanPostProcessor is aware. The names can be resolved through JNDI if you configure Spring’s SimpleJndiBeanFactory explicitly. However, it is recommended that you rely on the default behavior and simply use Spring’s JNDI lookup capabilities to preserve the level of indirection.

In the exclusive case of @Resource usage with no explicit name specified, and similar to @Autowired, @Resource finds a primary type match instead of a specific named bean and resolves well-known resolvable dependencies: the BeanFactory, ApplicationContext, ResourceLoader, ApplicationEventPublisher, and MessageSource interfaces.

Thus in the following example, the customerPreferenceDao field first looks for a bean named customerPreferenceDao, then falls back to a primary type match for the type CustomerPreferenceDao. The "context" field is injected based on the known resolvable dependency type ApplicationContext.

public class MovieRecommender {

    @Resource
    private CustomerPreferenceDao customerPreferenceDao;

    @Resource
    private ApplicationContext context;

    public MovieRecommender() {
    }

    // ...

}

5.9.7 @PostConstruct and @PreDestroy

The CommonAnnotationBeanPostProcessor not only recognizes the @Resource annotation but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support for these annotations offers yet another alternative to those described in initialization callbacks and destruction callbacks. Provided that the CommonAnnotationBeanPostProcessor is registered within the Spring ApplicationContext, a method carrying one of these annotations is invoked at the same point in the lifecycle as the corresponding Spring lifecycle interface method or explicitly declared callback method. In the example below, the cache will be pre-populated upon initialization and cleared upon destruction.

public class CachingMovieLister {

    @PostConstruct
    public void populateMovieCache() {
        // populates the movie cache upon initialization...
    }

    @PreDestroy
    public void clearMovieCache() {
        // clears the movie cache upon destruction...
    }

}
[Note]Note

For details about the effects of combining various lifecycle mechanisms, see the section called “Combining lifecycle mechanisms”.

5.10 Classpath scanning and managed components

Most examples in this chapter use XML to specify the configuration metadata that produces each BeanDefinition within the Spring container. The previous section (Section 5.9, “Annotation-based container configuration”) demonstrates how to provide a lot of the configuration metadata through source-level annotations. Even in those examples, however, the "base" bean definitions are explicitly defined in the XML file, while the annotations only drive the dependency injection. This section describes an option for implicitly detecting the candidate components by scanning the classpath. Candidate components are classes that match against a filter criteria and have a corresponding bean definition registered with the container. This removes the need to use XML to perform bean registration, instead you can use annotations (for example @Component), AspectJ type expressions, or your own custom filter criteria to select which classes will have bean definitions registered with the container.

[Note]Note

Starting with Spring 3.0, many features provided by the Spring JavaConfig project are part of the core Spring Framework. This allows you to define beans using Java rather than using the traditional XML files. Take a look at the @Configuration, @Bean, @Import, and @DependsOn annotations for examples of how to use these new features.

5.10.1 @Component and further stereotype annotations

The @Repository annotation is a marker for any class that fulfills the role or stereotype (also known as Data Access Object or DAO) of a repository. Among the uses of this marker is the automatic translation of exceptions as described in Section 15.2.2, “Exception translation”.

Spring provides further stereotype annotations: @Component, @Service, and @Controller. @Component is a generic stereotype for any Spring-managed component. @Repository, @Service, and @Controller are specializations of @Component for more specific use cases, for example, in the persistence, service, and presentation layers, respectively. Therefore, you can annotate your component classes with @Component, but by annotating them with @Repository, @Service, or @Controller instead, your classes are more properly suited for processing by tools or associating with aspects. For example, these stereotype annotations make ideal targets for pointcuts. It is also possible that @Repository, @Service, and @Controller may carry additional semantics in future releases of the Spring Framework. Thus, if you are choosing between using @Component or @Service for your service layer, @Service is clearly the better choice. Similarly, as stated above, @Repository is already supported as a marker for automatic exception translation in your persistence layer.

5.10.2 Meta-annotations

Many of the annotations provided by Spring can be used as "meta-annotations" in your own code. A meta-annotation is simply an annotation, that can be applied to another annotation. For example, The @Service annotation mentioned above is meta-annotated with with @Component:

@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component // Spring will see this and treat @Service in the same way as @Component
public @interface Service {

    // ....

}

Meta-annotations can also be combined together to create composed annotations. For example, the @RestController annotation from Spring MVC is composed of @Controller and @ResponseBody.

With the exception of value(), meta-annotated types may redeclare attributes from the source annotation to allow user customization. This can be particularly useful when you want to only expose a subset of the source annotation attributes. For example, here is a custom @Scope annotation that defines session scope, but still allows customization of the proxyMode.

@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Scope("session")
public @interface SessionScope {

    ScopedProxyMode proxyMode() default ScopedProxyMode.DEFAULT

}

5.10.3 Automatically detecting classes and registering bean definitions

Spring can automatically detect stereotyped classes and register corresponding BeanDefinitions with the ApplicationContext. For example, the following two classes are eligible for such autodetection:

@Service
public class SimpleMovieLister {

    private MovieFinder movieFinder;

    @Autowired
    public SimpleMovieLister(MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

}
@Repository
public class JpaMovieFinder implements MovieFinder {
    // implementation elided for clarity
}

To autodetect these classes and register the corresponding beans, you need to add @ComponentScan to your @Configuration class, where the basePackages attribute is a common parent package for the two classes. (Alternatively, you can specify a comma/semicolon/space-separated list that includes the parent package of each class.)

@Configuration
@ComponentScan(basePackages = "org.example")
public class AppConfig  {
    ...
}
[Note]Note

for concision, the above may have used the value attribute of the annotation, i.e. ComponentScan("org.example")

The following is an alternative using XML

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:context="http://www.springframework.org/schema/context"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/context
        http://www.springframework.org/schema/context/spring-context.xsd">

    <context:component-scan base-package="org.example"/>

</beans>
[Tip]Tip

The use of <context:component-scan> implicitly enables the functionality of <context:annotation-config>. There is usually no need to include the <context:annotation-config> element when using <context:component-scan>.

[Note]Note

The scanning of classpath packages requires the presence of corresponding directory entries in the classpath. When you build JARs with Ant, make sure that you do not activate the files-only switch of the JAR task. Also, classpath directories may not get exposed based on security policies in some environments, e.g. standalone apps on JDK 1.7.0_45 and higher (which requires Trusted-Library setup in your manifests; see http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources).

Furthermore, the AutowiredAnnotationBeanPostProcessor and CommonAnnotationBeanPostProcessor are both included implicitly when you use the component-scan element. That means that the two components are autodetected and wired together - all without any bean configuration metadata provided in XML.

[Note]Note

You can disable the registration of AutowiredAnnotationBeanPostProcessor and CommonAnnotationBeanPostProcessor by including the annotation-config attribute with a value of false.

5.10.4 Using filters to customize scanning

By default, classes annotated with @Component, @Repository, @Service, @Controller, or a custom annotation that itself is annotated with @Component are the only detected candidate components. However, you can modify and extend this behavior simply by applying custom filters. Add them as includeFilters or excludeFilters parameters of the @ComponentScan annotation (or as include-filter or exclude-filter sub-elements of the component-scan element). Each filter element requires the type and expression attributes. The following table describes the filtering options.

Table 5.5. Filter Types

Filter TypeExample ExpressionDescription

annotation (default)

org.example.SomeAnnotation

An annotation to be present at the type level in target components.

assignable

org.example.SomeClass

A class (or interface) that the target components are assignable to (extend/implement).

aspectj

org.example..*Service+

An AspectJ type expression to be matched by the target components.

regex

org\.example\.Default.*

A regex expression to be matched by the target components class names.

custom

org.example.MyTypeFilter

A custom implementation of the org.springframework.core.type .TypeFilter interface.


The following example shows the configuration ignoring all @Repository annotations and using "stub" repositories instead.

@Configuration
@ComponentScan(basePackages = "org.example",
        includeFilters = @Filter(type = FilterType.REGEX, pattern = ".*Stub.*Repository"),
        excludeFilters = @Filter(Repository.class))
public class AppConfig {
    ...
}

and the equivalent using XML

<beans>
    <context:component-scan base-package="org.example">
        <context:include-filter type="regex"
                expression=".*Stub.*Repository"/>
        <context:exclude-filter type="annotation"
                expression="org.springframework.stereotype.Repository"/>
    </context:component-scan>
</beans>
[Note]Note

You can also disable the default filters by setting useDefaultFilters=false on the annotation or providing use-default-filters="false" as an attribute of the <component-scan/> element. This will in effect disable automatic detection of classes annotated with @Component, @Repository, @Service, or @Controller.

5.10.5 Defining bean metadata within components

Spring components can also contribute bean definition metadata to the container. You do this with the same @Bean annotation used to define bean metadata within @Configuration annotated classes. Here is a simple example:

@Component
public class FactoryMethodComponent {

    @Bean
    @Qualifier("public")
    public TestBean publicInstance() {
        return new TestBean("publicInstance");
    }

    public void doWork() {
        // Component method implementation omitted
    }

}

This class is a Spring component that has application-specific code contained in its doWork() method. However, it also contributes a bean definition that has a factory method referring to the method publicInstance(). The @Bean annotation identifies the factory method and other bean definition properties, such as a qualifier value through the @Qualifier annotation. Other method level annotations that can be specified are @Scope, @Lazy, and custom qualifier annotations.

[Tip]Tip

In addition to its role for component initialization, the @Lazy annotation may also be placed on injection points marked with @Autowired or @Inject. In this context, it leads to the injection of a lazy-resolution proxy.

Autowired fields and methods are supported as previously discussed, with additional support for autowiring of @Bean methods:

@Component
public class FactoryMethodComponent {

    private static int i;

    @Bean
    @Qualifier("public")
    public TestBean publicInstance() {
        return new TestBean("publicInstance");
    }

    // use of a custom qualifier and autowiring of method parameters

    @Bean
    protected TestBean protectedInstance(
            @Qualifier("public") TestBean spouse,
            @Value("#{privateInstance.age}") String country) {
        TestBean tb = new TestBean("protectedInstance", 1);
        tb.setSpouse(spouse);
        tb.setCountry(country);
        return tb;
    }

    @Bean
    @Scope(BeanDefinition.SCOPE_SINGLETON)
    private TestBean privateInstance() {
        return new TestBean("privateInstance", i++);
    }

    @Bean
    @Scope(value = WebApplicationContext.SCOPE_SESSION, proxyMode = ScopedProxyMode.TARGET_CLASS)
    public TestBean requestScopedInstance() {
        return new TestBean("requestScopedInstance", 3);
    }

}

The example autowires the String method parameter country to the value of the Age property on another bean named privateInstance. A Spring Expression Language element defines the value of the property through the notation #{ <expression> }. For @Value annotations, an expression resolver is preconfigured to look for bean names when resolving expression text.

The @Bean methods in a Spring component are processed differently than their counterparts inside a Spring @Configuration class. The difference is that @Component classes are not enhanced with CGLIB to intercept the invocation of methods and fields. CGLIB proxying is the means by which invoking methods or fields within @Bean methods in @Configuration classes creates bean metadata references to collaborating objects; such methods are not invoked with normal Java semantics. In contrast, invoking a method or field in an @Bean method within a @Component class has standard Java semantics.

5.10.6 Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name is generated by the BeanNameGenerator strategy known to that scanner. By default, any Spring stereotype annotation ( @Component, @Repository, @Service, and @Controller) that contains a name value will thereby provide that name to the corresponding bean definition.

If such an annotation contains no name value or for any other detected component (such as those discovered by custom filters), the default bean name generator returns the uncapitalized non-qualified class name. For example, if the following two components were detected, the names would be myMovieLister and movieFinderImpl:

@Service("myMovieLister")
public class SimpleMovieLister {
    // ...
}
@Repository
public class MovieFinderImpl implements MovieFinder {
    // ...
}
[Note]Note

If you do not want to rely on the default bean-naming strategy, you can provide a custom bean-naming strategy. First, implement the BeanNameGenerator interface, and be sure to include a default no-arg constructor. Then, provide the fully-qualified class name when configuring the scanner:

@Configuration
@ComponentScan(basePackages = "org.example", nameGenerator = MyNameGenerator.class)
public class AppConfig {
    ...
}
<beans>
    <context:component-scan base-package="org.example"
        name-generator="org.example.MyNameGenerator" />
</beans>

As a general rule, consider specifying the name with the annotation whenever other components may be making explicit references to it. On the other hand, the auto-generated names are adequate whenever the container is responsible for wiring.

5.10.7 Providing a scope for autodetected components

As with Spring-managed components in general, the default and most common scope for autodetected components is singleton. However, sometimes you need other scopes, which Spring 2.5 provides with a new @Scope annotation. Simply provide the name of the scope within the annotation:

@Scope("prototype")
@Repository
public class MovieFinderImpl implements MovieFinder {
    // ...
}
[Note]Note

To provide a custom strategy for scope resolution rather than relying on the annotation-based approach, implement the ScopeMetadataResolver interface, and be sure to include a default no-arg constructor. Then, provide the fully-qualified class name when configuring the scanner:

@Configuration
@ComponentScan(basePackages = "org.example", scopeResolver = MyScopeResolver.class)
public class AppConfig {
    ...
}
<beans>
    <context:component-scan base-package="org.example"
            scope-resolver="org.example.MyScopeResolver" />
</beans>

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped objects. The reasoning is described in the section called “Scoped beans as dependencies”. For this purpose, a scoped-proxy attribute is available on the component-scan element. The three possible values are: no, interfaces, and targetClass. For example, the following configuration will result in standard JDK dynamic proxies:

@Configuration
@ComponentScan(basePackages = "org.example", scopedProxy = ScopedProxyMode.INTERFACES)
public class AppConfig {
    ...
}
<beans>
    <context:component-scan base-package="org.example"
        scoped-proxy="interfaces" />
</beans>

5.10.8 Providing qualifier metadata with annotations

The @Qualifier annotation is discussed in Section 5.9.3, “Fine-tuning annotation-based autowiring with qualifiers”. The examples in that section demonstrate the use of the @Qualifier annotation and custom qualifier annotations to provide fine-grained control when you resolve autowire candidates. Because those examples were based on XML bean definitions, the qualifier metadata was provided on the candidate bean definitions using the qualifier or meta sub-elements of the bean element in the XML. When relying upon classpath scanning for autodetection of components, you provide the qualifier metadata with type-level annotations on the candidate class. The following three examples demonstrate this technique:

@Component
@Qualifier("Action")
public class ActionMovieCatalog implements MovieCatalog {
    // ...
}
@Component
@Genre("Action")
public class ActionMovieCatalog implements MovieCatalog {
    // ...
}
@Component
@Offline
public class CachingMovieCatalog implements MovieCatalog {
    // ...
}
[Note]Note

As with most annotation-based alternatives, keep in mind that the annotation metadata is bound to the class definition itself, while the use of XML allows for multiple beans of the same type to provide variations in their qualifier metadata, because that metadata is provided per-instance rather than per-class.

5.11 Using JSR 330 Standard Annotations

Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations (Dependency Injection). Those annotations are scanned in the same way as the Spring annotations. You just need to have the relevant jars in your classpath.

[Note]Note

If you are using Maven, the javax.inject artifact is available in the standard Maven repository ( http://repo1.maven.org/maven2/javax/inject/javax.inject/1/). You can add the following dependency to your file pom.xml:

<dependency>
    <groupId>javax.inject</groupId>
    <artifactId>javax.inject</artifactId>
    <version>1</version>
</dependency>

5.11.1 Dependency Injection with @Inject and @Named

Instead of @Autowired, @javax.inject.Inject may be used as follows:

import javax.inject.Inject;

public class SimpleMovieLister {

    private MovieFinder movieFinder;

    @Inject
    public void setMovieFinder(MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

    // ...

}

As with @Autowired, it is possible to use @Inject at the class-level, field-level, method-level and constructor-argument level. If you would like to use a qualified name for the dependency that should be injected, you should use the @Named annotation as follows:

import javax.inject.Inject;
import javax.inject.Named;

public class SimpleMovieLister {

    private MovieFinder movieFinder;

    @Inject
    public void setMovieFinder(@Named("main") MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

    // ...

}

5.11.2 @Named: a standard equivalent to the @Component annotation

Instead of @Component, @javax.inject.Named may be used as follows:

import javax.inject.Inject;
import javax.inject.Named;

@Named("movieListener")
public class SimpleMovieLister {

    private MovieFinder movieFinder;

    @Inject
    public void setMovieFinder(MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

    // ...

}

It is very common to use @Component without specifying a name for the component. @Named can be used in a similar fashion:

import javax.inject.Inject;
import javax.inject.Named;

@Named
public class SimpleMovieLister {

    private MovieFinder movieFinder;

    @Inject
    public void setMovieFinder(MovieFinder movieFinder) {
        this.movieFinder = movieFinder;
    }

    // ...

}

When using @Named, it is possible to use component-scanning in the exact same way as when using Spring annotations:

@Configuration
@ComponentScan(basePackages = "org.example")
public class AppConfig  {
    ...
}

5.11.3 Limitations of the standard approach

When working with standard annotations, it is important to know that some significant features are not available as shown in the table below:

Table 5.6. Spring annotations vs. standard annotations

Springjavax.inject.*javax.inject restrictions / comments

@Autowired

@Inject

@Inject has no required attribute

@Component

@Named

-

@Scope("singleton")

@Singleton

The JSR-330 default scope is like Spring’s prototype. However, in order to keep it consistent with Spring’s general defaults, a JSR-330 bean declared in the Spring container is a singleton by default. In order to use a scope other than singleton, you should use Spring’s @Scope annotation.

javax.inject also provides a @Scope annotation. Nevertheless, this one is only intended to be used for creating your own annotations.

@Qualifier

@Named

-

@Value

-

no equivalent

@Required

-

no equivalent

@Lazy

-

no equivalent


5.12 Java-based container configuration

5.12.1 Basic concepts: @Bean and @Configuration

The central artifacts in Spring’s new Java-configuration support are @Configuration-annotated classes and @Bean-annotated methods.

The @Bean annotation is used to indicate that a method instantiates, configures and initializes a new object to be managed by the Spring IoC container. For those familiar with Spring’s <beans/> XML configuration the @Bean annotation plays the same role as the <bean/> element. You can use @Bean annotated methods with any Spring @Component, however, they are most often used with @Configuration beans.

Annotating a class with @Configuration indicates that its primary purpose is as a source of bean definitions. Furthermore, @Configuration classes allow inter-bean dependencies to be defined by simply calling other @Bean methods in the same class. The simplest possible @Configuration class would read as follows:

@Configuration
public class AppConfig {

    @Bean
    public MyService myService() {
        return new MyServiceImpl();
    }

}

The AppConfig class above would be equivalent to the following Spring <beans/> XML:

<beans>
    <bean id="myService" class="com.acme.services.MyServiceImpl"/>
</beans>

The @Bean and @Configuration annotations will be discussed in depth in the sections below. First, however, we’ll cover the various ways of creating a spring container using Java-based configuration.

5.12.2 Instantiating the Spring container using AnnotationConfigApplicationContext

The sections below document Spring’s AnnotationConfigApplicationContext, new in Spring 3.0. This versatile ApplicationContext implementation is capable of accepting not only @Configuration classes as input, but also plain @Component classes and classes annotated with JSR-330 metadata.

When @Configuration classes are provided as input, the @Configuration class itself is registered as a bean definition, and all declared @Bean methods within the class are also registered as bean definitions.

When @Component and JSR-330 classes are provided, they are registered as bean definitions, and it is assumed that DI metadata such as @Autowired or @Inject are used within those classes where necessary.

Simple construction

In much the same way that Spring XML files are used as input when instantiating a ClassPathXmlApplicationContext, @Configuration classes may be used as input when instantiating an AnnotationConfigApplicationContext. This allows for completely XML-free usage of the Spring container:

public static void main(String[] args) {
    ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
    MyService myService = ctx.getBean(MyService.class);
    myService.doStuff();
}

As mentioned above, AnnotationConfigApplicationContext is not limited to working only with @Configuration classes. Any @Component or JSR-330 annotated class may be supplied as input to the constructor. For example:

public static void main(String[] args) {
    ApplicationContext ctx = new AnnotationConfigApplicationContext(MyServiceImpl.class, Dependency1.class, Dependency2.class);
    MyService myService = ctx.getBean(MyService.class);
    myService.doStuff();
}

The above assumes that MyServiceImpl, Dependency1 and Dependency2 use Spring dependency injection annotations such as @Autowired.

Building the container programmatically using register(Class<?>…)

An AnnotationConfigApplicationContext may be instantiated using a no-arg constructor and then configured using the register() method. This approach is particularly useful when programmatically building an AnnotationConfigApplicationContext.

public static void main(String[] args) {
    AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
    ctx.register(AppConfig.class, OtherConfig.class);
    ctx.register(AdditionalConfig.class);
    ctx.refresh();
    MyService myService = ctx.getBean(MyService.class);
    myService.doStuff();
}

Enabling component scanning with scan(String…)

To enable component scanning, just annotate your @Configuration class as follows:

@Configuration
@ComponentScan(basePackages = "com.acme")
public class AppConfig  {
    ...
}
[Tip]Tip

Experienced Spring users will be familiar with the XML declaration equivalent from Spring’s context: namespace

<beans>
    <context:component-scan base-package="com.acme"/>
</beans>

In the example above, the com.acme package will be scanned, looking for any @Component-annotated classes, and those classes will be registered as Spring bean definitions within the container. AnnotationConfigApplicationContext exposes the scan(String...) method to allow for the same component-scanning functionality:

public static void main(String[] args) {
    AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
    ctx.scan("com.acme");
    ctx.refresh();
    MyService myService = ctx.getBean(MyService.class);
}
[Note]Note

Remember that @Configuration classes are meta-annotated with @Component, so they are candidates for component-scanning! In the example above, assuming that AppConfig is declared within the com.acme package (or any package underneath), it will be picked up during the call to scan(), and upon refresh() all its @Bean methods will be processed and registered as bean definitions within the container.

Support for web applications with AnnotationConfigWebApplicationContext

A WebApplicationContext variant of AnnotationConfigApplicationContext is available with AnnotationConfigWebApplicationContext. This implementation may be used when configuring the Spring ContextLoaderListener servlet listener, Spring MVC DispatcherServlet, etc. What follows is a web.xml snippet that configures a typical Spring MVC web application. Note the use of the contextClass context-param and init-param:

<web-app>
    <!-- Configure ContextLoaderListener to use AnnotationConfigWebApplicationContext
        instead of the default XmlWebApplicationContext -->
    <context-param>
        <param-name>contextClass</param-name>
        <param-value>
            org.springframework.web.context.support.AnnotationConfigWebApplicationContext
        </param-value>
    </context-param>

    <!-- Configuration locations must consist of one or more comma- or space-delimited
        fully-qualified @Configuration classes. Fully-qualified packages may also be
        specified for component-scanning -->
    <context-param>
        <param-name>contextConfigLocation</param-name>
        <param-value>com.acme.AppConfig</param-value>
    </context-param>

    <!-- Bootstrap the root application context as usual using ContextLoaderListener -->
    <listener>
        <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
    </listener>

    <!-- Declare a Spring MVC DispatcherServlet as usual -->
    <servlet>
        <servlet-name>dispatcher</servlet-name>
        <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
        <!-- Configure DispatcherServlet to use AnnotationConfigWebApplicationContext
            instead of the default XmlWebApplicationContext -->
        <init-param>
            <param-name>contextClass</param-name>
            <param-value>
                org.springframework.web.context.support.AnnotationConfigWebApplicationContext
            </param-value>
        </init-param>
        <!-- Again, config locations must consist of one or more comma- or space-delimited
            and fully-qualified @Configuration classes -->
        <init-param>
            <param-name>contextConfigLocation</param-name>
            <param-value>com.acme.web.MvcConfig</param-value>
        </init-param>
    </servlet>

    <!-- map all requests for /app/* to the dispatcher servlet -->
    <servlet-mapping>
        <servlet-name>dispatcher</servlet-name>
        <url-pattern>/app/*</url-pattern>
    </servlet-mapping>
</web-app>

5.12.3 Using the @Bean annotation

@Bean is a method-level annotation and a direct analog of the XML <bean/> element. The annotation supports some of the attributes offered by <bean/>, such as: init-method, destroy-method, autowiring and name.

You can use the @Bean annotation in a @Configuration-annotated or in a @Component-annotated class.

Declaring a bean

To declare a bean, simply annotate a method with the @Bean annotation. You use this method to register a bean definition within an ApplicationContext of the type specified as the method’s return value. By default, the bean name will be the same as the method name. The following is a simple example of a @Bean method declaration:

@Configuration
public class AppConfig {

    @Bean
    public TransferService transferService() {
        return new TransferServiceImpl();
    }

}

The preceding configuration is exactly equivalent to the following Spring XML:

<beans>
    <bean id="transferService" class="com.acme.TransferServiceImpl"/>
</beans>

Both declarations make a bean named transferService available in the ApplicationContext, bound to an object instance of type TransferServiceImpl:

transferService -> com.acme.TransferServiceImpl

Receiving lifecycle callbacks

Any classes defined with the @Bean annotation support the regular lifecycle callbacks and can use the @PostConstruct and @PreDestroy annotations from JSR-250, see JSR-250 annotations for further details.

The regular Spring lifecycle callbacks are fully supported as well. If a bean implements InitializingBean, DisposableBean, or Lifecycle, their respective methods are called by the container.

The standard set of *Aware interfaces such as BeanFactoryAware, BeanNameAware, MessageSourceAware, ApplicationContextAware, and so on are also fully supported.

The @Bean annotation supports specifying arbitrary initialization and destruction callback methods, much like Spring XML’s init-method and destroy-method attributes on the bean element:

public class Foo {
    public void init() {
        // initialization logic
    }
}

public class Bar {
    public void cleanup() {
        // destruction logic
    }
}

@Configuration
public class AppConfig {

    @Bean(initMethod = "init")
    public Foo foo() {
        return new Foo();
    }

    @Bean(destroyMethod = "cleanup")
    public Bar bar() {
        return new Bar();
    }

}
[Note]Note

By default, beans defined using Java config that have a public close or shutdown method are automatically enlisted with a destruction callback. If you have a public close or shutdown method and you do not wish for it to be called when the container shuts down, simply add @Bean(destroyMethod="") to your bean definition to disable the default (inferred) mode.

Of course, in the case of Foo above, it would be equally as valid to call the init() method directly during construction:

@Configuration
public class AppConfig {
    @Bean
    public Foo foo() {
        Foo foo = new Foo();
        foo.init();
        return foo;
    }

    // ...

}
[Tip]Tip

When you work directly in Java, you can do anything you like with your objects and do not always need to rely on the container lifecycle!

Specifying bean scope

Using the @Scope annotation

You can specify that your beans defined with the @Bean annotation should have a specific scope. You can use any of the standard scopes specified in the Bean Scopes section.

The default scope is singleton, but you can override this with the @Scope annotation:

@Configuration
public class MyConfiguration {

    @Bean
    @Scope("prototype")
    public Encryptor encryptor() {
        // ...
    }

}
@Scope and scoped-proxy

Spring offers a convenient way of working with scoped dependencies through scoped proxies. The easiest way to create such a proxy when using the XML configuration is the <aop:scoped-proxy/> element. Configuring your beans in Java with a @Scope annotation offers equivalent support with the proxyMode attribute. The default is no proxy ( ScopedProxyMode.NO), but you can specify ScopedProxyMode.TARGET_CLASS or ScopedProxyMode.INTERFACES.

If you port the scoped proxy example from the XML reference documentation (see preceding link) to our @Bean using Java, it would look like the following:

// an HTTP Session-scoped bean exposed as a proxy
@Bean
@Scope(value = "session", proxyMode = ScopedProxyMode.TARGET_CLASS)
public UserPreferences userPreferences() {
    return new UserPreferences();
}

@Bean
public Service userService() {
    UserService service = new SimpleUserService();
    // a reference to the proxied userPreferences bean
    service.setUserPreferences(userPreferences());
    return service;
}

Customizing bean naming

By default, configuration classes use a @Bean method’s name as the name of the resulting bean. This functionality can be overridden, however, with the name attribute.

@Configuration
public class AppConfig {

    @Bean(name = "myFoo")
    public Foo foo() {
        return new Foo();
    }

}

Bean aliasing

As discussed in Section 5.3.1, “Naming beans”, it is sometimes desirable to give a single bean multiple names, otherwise known asbean aliasing. The name attribute of the @Bean annotation accepts a String array for this purpose.

@Configuration
public class AppConfig {

    @Bean(name = { "dataSource", "subsystemA-dataSource", "subsystemB-dataSource" })
    public DataSource dataSource() {
        // instantiate, configure and return DataSource bean...
    }

}

Bean description

Sometimes it is helpful to provide a more detailed textual description of a bean. This can be particularly useful when beans are exposed (perhaps via JMX) for monitoring purposes.

To add a description to a @Bean the @Description annotation can be used:

@Configuration
public class AppConfig {

    @Bean
    @Description("Provides a basic example of a bean")
    public Foo foo() {
        return new Foo();
    }

}

5.12.4 Using the @Configuration annotation

@Configuration is a class-level annotation indicating that an object is a source of bean definitions. @Configuration classes declare beans via public @Bean annotated methods. Calls to @Bean methods on @Configuration classes can also be used to define inter-bean dependencies. See Section 5.12.1, “Basic concepts: @Bean and @Configuration” for a general introduction.

Injecting inter-bean dependencies

When @Beans have dependencies on one another, expressing that dependency is as simple as having one bean method call another:

@Configuration
public class AppConfig {

    @Bean
    public Foo foo() {
        return new Foo(bar());
    }

    @Bean
    public Bar bar() {
        return new Bar();
    }

}

In the example above, the foo bean receives a reference to bar via constructor injection.

[Note]Note

This method of declaring inter-bean dependencies only works when the @Bean method is declared within a @Configuration class. You cannot declare inter-bean dependencies using plain @Component classes.

Lookup method injection

As noted earlier, lookup method injection is an advanced feature that you should use rarely. It is useful in cases where a singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java for this type of configuration provides a natural means for implementing this pattern.

public abstract class CommandManager {
    public Object process(Object commandState) {
        // grab a new instance of the appropriate Command interface
        Command command = createCommand();

        // set the state on the (hopefully brand new) Command instance
        command.setState(commandState);
    return command.execute();
    }

    // okay... but where is the implementation of this method?
    protected abstract Command createCommand();
}

Using Java-configuration support , you can create a subclass of CommandManager where the abstract createCommand() method is overridden in such a way that it looks up a new (prototype) command object:

@Bean
@Scope("prototype")
public AsyncCommand asyncCommand() {
    AsyncCommand command = new AsyncCommand();
    // inject dependencies here as required
    return command;
}

@Bean
public CommandManager commandManager() {
    // return new anonymous implementation of CommandManager with command() overridden
    // to return a new prototype Command object
    return new CommandManager() {
        protected Command createCommand() {
            return asyncCommand();
        }
    }
}

Further information about how Java-based configuration works internally

The following example shows a @Bean annotated method being called twice:

@Configuration
public class AppConfig {

    @Bean
    public ClientService clientService1() {
        ClientServiceImpl clientService = new ClientServiceImpl();
        clientService.setClientDao(clientDao());
        return clientService;
    }

    @Bean
    public ClientService clientService2() {
        ClientServiceImpl clientService = new ClientServiceImpl();
        clientService.setClientDao(clientDao());
        return clientService;
    }

    @Bean
    public ClientDao clientDao() {
        return new ClientDaoImpl();
    }

}

clientDao() has been called once in clientService1() and once in clientService2(). Since this method creates a new instance of ClientDaoImpl and returns it, you would normally expect having 2 instances (one for each service). That definitely would be problematic: in Spring, instantiated beans have a singleton scope by default. This is where the magic comes in: All @Configuration classes are subclassed at startup-time with CGLIB. In the subclass, the child method checks the container first for any cached (scoped) beans before it calls the parent method and creates a new instance. Note that as of Spring 3.2, it is no longer necessary to add CGLIB to your classpath because CGLIB classes have been repackaged under org.springframework and included directly within the spring-core JAR.

[Note]Note

The behavior could be different according to the scope of your bean. We are talking about singletons here.

[Note]Note

There are a few restrictions due to the fact that CGLIB dynamically adds features at startup-time:

  • Configuration classes should not be final
  • They should have a constructor with no arguments

5.12.5 Composing Java-based configurations

Using the @Import annotation

Much as the <import/> element is used within Spring XML files to aid in modularizing configurations, the @Import annotation allows for loading @Bean definitions from another configuration class:

@Configuration
public class ConfigA {

     @Bean
    public A a() {
        return new A();
    }

}

@Configuration
@Import(ConfigA.class)
public class ConfigB {

    @Bean
    public B b() {
        return new B();
    }

}

Now, rather than needing to specify both ConfigA.class and ConfigB.class when instantiating the context, only ConfigB needs to be supplied explicitly:

public static void main(String[] args) {
    ApplicationContext ctx = new AnnotationConfigApplicationContext(ConfigB.class);

    // now both beans A and B will be available...
    A a = ctx.getBean(A.class);
    B b = ctx.getBean(B.class);
}

This approach simplifies container instantiation, as only one class needs to be dealt with, rather than requiring the developer to remember a potentially large number of @Configuration classes during construction.

Injecting dependencies on imported @Bean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have dependencies on one another across configuration classes. When using XML, this is not an issue, per se, because there is no compiler involved, and one can simply declare ref="someBean" and trust that Spring will work it out during container initialization. Of course, when using @Configuration classes, the Java compiler places constraints on the configuration model, in that references to other beans must be valid Java syntax.

Fortunately, solving this problem is simple. Remember that @Configuration classes are ultimately just another bean in the container - this means that they can take advantage of @Autowired injection metadata just like any other bean!

Let’s consider a more real-world scenario with several @Configuration classes, each depending on beans declared in the others:

@Configuration
public class ServiceConfig {

    @Autowired
    private AccountRepository accountRepository;

    @Bean
    public TransferService transferService() {
        return new TransferServiceImpl(accountRepository);
    }

}

@Configuration
public class RepositoryConfig {

    @Autowired
    private DataSource dataSource;

    @Bean
    public AccountRepository accountRepository() {
        return new JdbcAccountRepository(dataSource);
    }

}

@Configuration
@Import({ServiceConfig.class, RepositoryConfig.class})
public class SystemTestConfig {

    @Bean
    public DataSource dataSource() {
        // return new DataSource
    }

}

public static void main(String[] args) {
    ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class);
    // everything wires up across configuration classes...
    TransferService transferService = ctx.getBean(TransferService.class);
    transferService.transfer(100.00, "A123", "C456");
}

In the scenario above, using @Autowired works well and provides the desired modularity, but determining exactly where the autowired bean definitions are declared is still somewhat ambiguous. For example, as a developer looking at ServiceConfig, how do you know exactly where the @Autowired AccountRepository bean is declared? It’s not explicit in the code, and this may be just fine. Remember that the Spring Tool Suite provides tooling that can render graphs showing how everything is wired up - that may be all you need. Also, your Java IDE can easily find all declarations and uses of the AccountRepository type, and will quickly show you the location of @Bean methods that return that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation from within your IDE from one @Configuration class to another, consider autowiring the configuration classes themselves:

@Configuration
public class ServiceConfig {

    @Autowired
    private RepositoryConfig repositoryConfig;

    @Bean
    public TransferService transferService() {
        // navigate through the config class to the @Bean method!
        return new TransferServiceImpl(repositoryConfig.accountRepository());
    }

}

In the situation above, it is completely explicit where AccountRepository is defined. However, ServiceConfig is now tightly coupled to RepositoryConfig; that’s the tradeoff. This tight coupling can be somewhat mitigated by using interface-based or abstract class-based @Configuration classes. Consider the following:

@Configuration
public class ServiceConfig {

    @Autowired
    private RepositoryConfig repositoryConfig;

    @Bean
    public TransferService transferService() {
        return new TransferServiceImpl(repositoryConfig.accountRepository());
    }
}

@Configuration
public interface RepositoryConfig {

    @Bean
    AccountRepository accountRepository();

}

@Configuration
public class DefaultRepositoryConfig implements RepositoryConfig {

    @Bean
    public AccountRepository accountRepository() {
        return new JdbcAccountRepository(...);
    }

}

@Configuration
@Import({ServiceConfig.class, DefaultRepositoryConfig.class}) // import the concrete config!
public class SystemTestConfig {

    @Bean
    public DataSource dataSource() {
        // return DataSource
    }

}

public static void main(String[] args) {
    ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class);
    TransferService transferService = ctx.getBean(TransferService.class);
    transferService.transfer(100.00, "A123", "C456");
}

Now ServiceConfig is loosely coupled with respect to the concrete DefaultRepositoryConfig, and built-in IDE tooling is still useful: it will be easy for the developer to get a type hierarchy of RepositoryConfig implementations. In this way, navigating @Configuration classes and their dependencies becomes no different than the usual process of navigating interface-based code.

Conditionally including @Configuration classes or @Beans

It is often useful to conditionally enable to disable a complete @Configuration class, or even individual @Bean methods, based on some arbitrary system state. One common example of this it to use the @Profile annotation to active beans only when a specific profile has been enabled in the Spring Environment (see Section 5.13.1, “Bean definition profiles” for details).

The @Profile annotation is actually implemented using a much more flexible annotation called @Conditional. The @Conditional annotation indicates specific org.springframework.context.annotation.Condition implementations that should be consulted before a @Bean is registered.

Implementations of the Condition interface simply provide a matches(...) method that returns true or false. For example, here is the actual Condition implementation used for @Profile:

@Override
public boolean matches(ConditionContext context, AnnotatedTypeMetadata metadata) {
    if (context.getEnvironment() != null) {
        // Read the @Profile annotation attributes
        MultiValueMap<String, Object> attrs = metadata.getAllAnnotationAttributes(Profile.class.getName());
        if (attrs != null) {
            for (Object value : attrs.get("value")) {
                if (context.getEnvironment().acceptsProfiles(((String[]) value))) {
                    return true;
                }
            }
            return false;
        }
    }
    return true;
}

See the @Conditional javadocs for more detail.

Combining Java and XML configuration

Spring’s @Configuration class support does not aim to be a 100% complete replacement for Spring XML. Some facilities such as Spring XML namespaces remain an ideal way to configure the container. In cases where XML is convenient or necessary, you have a choice: either instantiate the container in an "XML-centric" way using, for example, ClassPathXmlApplicationContext, or in a "Java-centric" fashion using AnnotationConfigApplicationContext and the @ImportResource annotation to import XML as needed.

XML-centric use of @Configuration classes

It may be preferable to bootstrap the Spring container from XML and include @Configuration classes in an ad-hoc fashion. For example, in a large existing codebase that uses Spring XML, it will be easier to create @Configuration classes on an as-needed basis and include them from the existing XML files. Below you’ll find the options for using @Configuration classes in this kind of "XML-centric" situation.

Remember that @Configuration classes are ultimately just bean definitions in the container. In this example, we create a @Configuration class named AppConfig and include it within system-test-config.xml as a <bean/> definition. Because <context:annotation-config/> is switched on, the container will recognize the @Configuration annotation, and process the @Bean methods declared in AppConfig properly.

@Configuration
public class AppConfig {

    @Autowired
    private DataSource dataSource;

    @Bean
    public AccountRepository accountRepository() {
        return new JdbcAccountRepository(dataSource);
    }

    @Bean
    public TransferService transferService() {
        return new TransferService(accountRepository());
    }

}
system-test-config.xml
<beans>
    <!-- enable processing of annotations such as @Autowired and @Configuration -->
    <context:annotation-config/>
    <context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>

    <bean class="com.acme.AppConfig"/>

    <bean class="org.springframework.jdbc.datasource.DriverManagerDataSource">
        <property name="url" value="${jdbc.url}"/>
        <property name="username" value="${jdbc.username}"/>
        <property name="password" value="${jdbc.password}"/>
    </bean>
</beans>
jdbc.properties
jdbc.url=jdbc:hsqldb:hsql://localhost/xdb
jdbc.username=sa
jdbc.password=
public static void main(String[] args) {
    ApplicationContext ctx = new ClassPathXmlApplicationContext("classpath:/com/acme/system-test-config.xml");
    TransferService transferService = ctx.getBean(TransferService.class);
    // ...
}
[Note]Note

In system-test-config.xml above, the AppConfig<bean/> does not declare an id element. While it would be acceptable to do so, it is unnecessary given that no other bean will ever refer to it, and it is unlikely that it will be explicitly fetched from the container by name. Likewise with the DataSource bean - it is only ever autowired by type, so an explicit bean id is not strictly required.

Because @Configuration is meta-annotated with @Component, @Configuration-annotated classes are automatically candidates for component scanning. Using the same scenario as above, we can redefine system-test-config.xml to take advantage of component-scanning. Note that in this case, we don’t need to explicitly declare <context:annotation-config/>, because <context:component-scan/> enables all the same functionality.

system-test-config.xml
<beans>
    <!-- picks up and registers AppConfig as a bean definition -->
    <context:component-scan base-package="com.acme"/>
    <context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>

    <bean class="org.springframework.jdbc.datasource.DriverManagerDataSource">
        <property name="url" value="${jdbc.url}"/>
        <property name="username" value="${jdbc.username}"/>
        <property name="password" value="${jdbc.password}"/>
    </bean>
</beans>
@Configuration class-centric use of XML with @ImportResource

In applications where @Configuration classes are the primary mechanism for configuring the container, it will still likely be necessary to use at least some XML. In these scenarios, simply use @ImportResource and define only as much XML as is needed. Doing so achieves a "Java-centric" approach to configuring the container and keeps XML to a bare minimum.

@Configuration
@ImportResource("classpath:/com/acme/properties-config.xml")
public class AppConfig {

    @Value("${jdbc.url}")
    private String url;

    @Value("${jdbc.username}")
    private String username;

    @Value("${jdbc.password}")
    private String password;

    @Bean
    public DataSource dataSource() {
        return new DriverManagerDataSource(url, username, password);
    }

}
properties-config.xml
<beans>
    <context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>
</beans>
jdbc.properties
jdbc.url=jdbc:hsqldb:hsql://localhost/xdb
jdbc.username=sa
jdbc.password=
public static void main(String[] args) {
    ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
    TransferService transferService = ctx.getBean(TransferService.class);
    // ...
}

5.13 Environment abstraction

The Environment is an abstraction integrated in the container that models two key aspects of the application environment: profiles and properties.

A profile is a named, logical group of bean definitions to be registered with the container only if the given profile is active. Beans may be assigned to a profile whether defined in XML or via annotations. The role of the Environment object with relation to profiles is in determining which profiles (if any) are currently active, and which profiles (if any) should be active by default.

Properties play an important role in almost all applications, and may originate from a variety of sources: properties files, JVM system properties, system environment variables, JNDI, servlet context parameters, ad-hoc Properties objects, Maps, and so on. The role of the Environment object with relation to properties is to provide the user with a convenient service interface for configuring property sources and resolving properties from them.

5.13.1 Bean definition profiles

Bean definition profiles is a mechanism in the core container that allows for registration of different beans in different environments. The word environment can mean different things to different users and this feature can help with many use cases, including:

  • working against an in-memory datasource in development vs looking up that same datasource from JNDI when in QA or production
  • registering monitoring infrastructure only when deploying an application into a performance environment
  • registering customized implementations of beans for customer A vs. customer B deployments

Let’s consider the first use case in a practical application that requires a DataSource. In a test environment, the configuration may look like this:

@Bean
public DataSource dataSource() {
    return new EmbeddedDatabaseBuilder()
        .setType(EmbeddedDatabaseType.HSQL)
        .addScript("my-schema.sql")
        .addScript("my-test-data.sql")
        .build();
}

Let’s now consider how this application will be deployed into a QA or production environment, assuming that the datasource for the application will be registered with the production application server’s JNDI directory. Our dataSource bean now looks like this:

@Bean
public DataSource dataSource() throws Exception {
    Context ctx = new InitialContext();
    return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
}

The problem is how to switch between using these two variations based on the current environment. Over time, Spring users have devised a number of ways to get this done, usually relying on a combination of system environment variables and XML <import/> statements containing ${placeholder} tokens that resolve to the correct configuration file path depending on the value of an environment variable. Bean definition profiles is a core container feature that provides a solution to this problem.

If we generalize the example use case above of environment-specific bean definitions, we end up with the need to register certain bean definitions in certain contexts, while not in others. You could say that you want to register a certain profile of bean definitions in situation A, and a different profile in situation B. Let’s first see how we can update our configuration to reflect this need.

@Profile

The @Profile annotation allows to indicate that a component is eligible for registration when one or more specified profiles are active. Using our example above, we can rewrite the dataSource configuration as follows:

@Configuration
@Profile("dev")
public class StandaloneDataConfig {

    @Bean
    public DataSource dataSource() {
        return new EmbeddedDatabaseBuilder()
            .setType(EmbeddedDatabaseType.HSQL)
            .addScript("classpath:com/bank/config/sql/schema.sql")
            .addScript("classpath:com/bank/config/sql/test-data.sql")
            .build();
    }
}
@Configuration
@Profile("production")
public class JndiDataConfig {

    @Bean
    public DataSource dataSource() throws Exception {
        Context ctx = new InitialContext();
        return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
    }
}

@Profile can be used as a meta-annotation, for the purpose of composing custom stereotype annotations. The following example defines a @Production custom annotation that can be used as a drop-in replacement of @Profile("production"):

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Profile("production")
public @interface Production {
}

@Profile can also be specified at method-level to include only one particular bean of a configuration class:

@Configuration
public class AppConfig {

    @Bean
    @Profile("dev")
    public DataSource devDataSource() {
        return new EmbeddedDatabaseBuilder()
            .setType(EmbeddedDatabaseType.HSQL)
            .addScript("classpath:com/bank/config/sql/schema.sql")
            .addScript("classpath:com/bank/config/sql/test-data.sql")
            .build();
    }

    @Bean
    @Profile("production")
    public DataSource productionDataSource() throws Exception {
        Context ctx = new InitialContext();
        return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
    }
}
[Tip]Tip

If a @Configuration class is marked with @Profile, all of the @Bean methods and @Import annotations associated with that class will be bypassed unless one or more of the specified profiles are active. If a @Component or @Configuration class is marked with @Profile({"p1", "p2"}), that class will not be registered/ processed unless profiles p1 and/or p2 have been activated. If a given profile is prefixed with the NOT operator (!), the annotated element will be registered if the profile is not active. e.g., for @Profile({"p1", "!p2"}), registration will occur if profile p1 is active or if profile p2 is not active.

5.13.2 XML Bean definition profiles

The XML counterpart is an update of the beans element that accepts a profile attribute. Our sample configuration above can be rewritten in two XML files as follows:

<beans profile="dev"
    xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:jdbc="http://www.springframework.org/schema/jdbc"
    xsi:schemaLocation="...">

    <jdbc:embedded-database id="dataSource">
        <jdbc:script location="classpath:com/bank/config/sql/schema.sql"/>
        <jdbc:script location="classpath:com/bank/config/sql/test-data.sql"/>
    </jdbc:embedded-database>
</beans>
<beans profile="production"
    xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:jee="http://www.springframework.org/schema/jee"
    xsi:schemaLocation="...">

    <jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>
</beans>

It is also possible to avoid that split and nest <beans/> elements within the same file:

<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:jdbc="http://www.springframework.org/schema/jdbc"
    xmlns:jee="http://www.springframework.org/schema/jee"
    xsi:schemaLocation="...">

    <!-- other bean definitions -->

    <beans profile="dev">
        <jdbc:embedded-database id="dataSource">
            <jdbc:script location="classpath:com/bank/config/sql/schema.sql"/>
            <jdbc:script location="classpath:com/bank/config/sql/test-data.sql"/>
        </jdbc:embedded-database>
    </beans>

    <beans profile="production">
        <jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>
    </beans>
</beans>

The spring-bean.xsd has been constrained to allow such elements only as the last ones in the file. This should help provide flexibility without incurring clutter in the XML files.

Enabling a profile

Now that we have updated our configuration, we still need to instruct which profile is active. If we started our sample application right now, we would see a NoSuchBeanDefinitionException thrown, because the container could not find the Spring bean named dataSource.

Activating a profile can be done in several ways, but the most straightforward is to do it programmatically against the ApplicationContext API:

AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
ctx.getEnvironment().setActiveProfiles("dev");
ctx.register(SomeConfig.class, StandaloneDataConfig.class, JndiDataConfig.class);
ctx.refresh();

In addition, profiles may also be activated declaratively through the spring.profiles.active property which may be specified through system environment variables, JVM system properties, servlet context parameters in web.xml or even as an entry in JNDI (see Section 5.13.3, “PropertySource Abstraction”).

Note that profiles are not an "either-or" proposition; it is possible to activate multiple profiles at once. Programmatically, simply provide multiple profile names to the setActiveProfiles() method, which accepts String... varargs:

ctx.getEnvironment().setActiveProfiles("profile1", "profile2");

Declaratively, spring.profiles.active may accept a comma-separated list of profile names:

-Dspring.profiles.active="profile1,profile2"

Default profile

The default profile represents the profile that is enabled by default. Consider the following:

@Configuration
@Profile("default")
public class DefaultDataConfig {

    @Bean
    public DataSource dataSource() {
        return new EmbeddedDatabaseBuilder()
            .setType(EmbeddedDatabaseType.HSQL)
            .addScript("classpath:com/bank/config/sql/schema.sql")
            .build();
    }
}

If no profile is active, the dataSource above will be created; this can be seen as a way to provide a default definition for one or more beans. If any profile is enabled, the default profile will not apply.

The name of that default profile can be changed using setDefaultProfiles on the Environment or declaratively using the spring.profiles.default property.

5.13.3 PropertySource Abstraction

Spring’s Environment abstraction provides search operations over a configurable hierarchy of property sources. To explain fully, consider the following:

ApplicationContext ctx = new GenericApplicationContext();
Environment env = ctx.getEnvironment();
boolean containsFoo = env.containsProperty("foo");
System.out.println("Does my environment contain the 'foo' property? " + containsFoo);

In the snippet above, we see a high-level way of asking Spring whether the foo property is defined for the current environment. To answer this question, the Environment object performs a search over a set of PropertySource objects. A PropertySource is a simple abstraction over any source of key-value pairs, and Spring’s StandardEnvironment is configured with two PropertySource objects — one representing the set of JVM system properties (a la System.getProperties()) and one representing the set of system environment variables (a la System.getenv()).

[Note]Note

These default property sources are present for StandardEnvironment, for use in standalone applications. StandardServletEnvironment is populated with additional default property sources including servlet config and servlet context parameters. StandardPortletEnvironment similarly has access to portlet config and portlet context parameters as property sources. Both can optionally enable a JndiPropertySource. See Javadoc for details.

Concretely, when using the StandardEnvironment, the call to env.containsProperty("foo") will return true if a foo system property or foo environment variable is present at runtime.

[Tip]Tip

The search performed is hierarchical. By default, system properties have precedence over environment variables, so if the foo property happens to be set in both places during a call to env.getProperty("foo"), the system property value will win and be returned preferentially over the environment variable.

Most importantly, the entire mechanism is configurable. Perhaps you have a custom source of properties that you’d like to integrate into this search. No problem — simply implement and instantiate your own PropertySource and add it to the set of PropertySources for the current Environment:

ConfigurableApplicationContext ctx = new GenericApplicationContext();
MutablePropertySources sources = ctx.getEnvironment().getPropertySources();
sources.addFirst(new MyPropertySource());

In the code above, MyPropertySource has been added with highest precedence in the search. If it contains a foo property, it will be detected and returned ahead of any foo property in any other PropertySource. The MutablePropertySources API exposes a number of methods that allow for precise manipulation of the set of property sources.

5.13.4 @PropertySource

The @PropertySource annotation provides a convenient and declarative mechanism for adding a PropertySource to Spring’s Environment.

Given a file "app.properties" containing the key/value pair testbean.name=myTestBean, the following @Configuration class uses @PropertySource in such a way that a call to testBean.getName() will return "myTestBean".

@Configuration
@PropertySource("classpath:/com/myco/app.properties")
public class AppConfig {
    @Autowired
    Environment env;

    @Bean
    public TestBean testBean() {
        TestBean testBean = new TestBean();
        testBean.setName(env.getProperty("testbean.name"));
        return testBean;
    }
}

Any ${...} placeholders present in a @PropertySource resource location will be resolved against the set of property sources already registered against the environment. For example:

@Configuration
@PropertySource("classpath:/com/${my.placeholder:default/path}/app.properties")
public class AppConfig {
    @Autowired
    Environment env;

    @Bean
    public TestBean testBean() {
        TestBean testBean = new TestBean();
        testBean.setName(env.getProperty("testbean.name"));
        return testBean;
    }
}

Assuming that "my.placeholder" is present in one of the property sources already registered, e.g. system properties or environment variables, the placeholder will be resolved to the corresponding value. If not, then "default/path" will be used as a default. If no default is specified and a property cannot be resolved, an IllegalArgumentException will be thrown.

5.13.5 Placeholder resolution in statements

Historically, the value of placeholders in elements could be resolved only against JVM system properties or environment variables. No longer is this the case. Because the Environment abstraction is integrated throughout the container, it’s easy to route resolution of placeholders through it. This means that you may configure the resolution process in any way you like: change the precedence of searching through system properties and environment variables, or remove them entirely; add your own property sources to the mix as appropriate.

Concretely, the following statement works regardless of where the customer property is defined, as long as it is available in the Environment:

<beans>
    <import resource="com/bank/service/${customer}-config.xml"/>
</beans>

5.14 Registering a LoadTimeWeaver

The LoadTimeWeaver is used by Spring to dynamically transform classes as they are loaded into the Java virtual machine (JVM).

To enable load-time weaving add the @EnableLoadTimeWeaving to one of your @Configuration classes:

@Configuration
@EnableLoadTimeWeaving
public class AppConfig {

}

Alternatively for XML configuration use the context:load-time-weaver element:

<beans>
    <context:load-time-weaver/>
</beans>

Once configured for the ApplicationContext. Any bean within that ApplicationContext may implement LoadTimeWeaverAware, thereby receiving a reference to the load-time weaver instance. This is particularly useful in combination with Spring’s JPA support where load-time weaving may be necessary for JPA class transformation. Consult the LocalContainerEntityManagerFactoryBean javadocs for more detail. For more on AspectJ load-time weaving, see Section 9.8.4, “Load-time weaving with AspectJ in the Spring Framework”.

5.15 Additional Capabilities of the ApplicationContext

As was discussed in the chapter introduction, the org.springframework.beans.factory package provides basic functionality for managing and manipulating beans, including in a programmatic way. The org.springframework.context package adds the ApplicationContext interface, which extends the BeanFactory interface, in addition to extending other interfaces to provide additional functionality in a more application framework-oriented style. Many people use the ApplicationContext in a completely declarative fashion, not even creating it programmatically, but instead relying on support classes such as ContextLoader to automatically instantiate an ApplicationContext as part of the normal startup process of a Java EE web application.

To enhance BeanFactory functionality in a more framework-oriented style the context package also provides the following functionality:

  • Access to messages in i18n-style, through the MessageSource interface.
  • Access to resources, such as URLs and files, through the ResourceLoader interface.
  • Event publication to beans implementing the ApplicationListener interface, through the use of the ApplicationEventPublisher interface.
  • Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, such as the web layer of an application, through the HierarchicalBeanFactory interface.

5.15.1 Internationalization using MessageSource

The ApplicationContext interface extends an interface called MessageSource, and therefore provides internationalization (i18n) functionality. Spring also provides the interface HierarchicalMessageSource, which can resolve messages hierarchically. Together these interfaces provide the foundation upon which Spring effects message resolution. The methods defined on these interfaces include:

  • String getMessage(String code, Object[] args, String default, Locale loc): The basic method used to retrieve a message from the MessageSource. When no message is found for the specified locale, the default message is used. Any arguments passed in become replacement values, using the MessageFormat functionality provided by the standard library.
  • String getMessage(String code, Object[] args, Locale loc): Essentially the same as the previous method, but with one difference: no default message can be specified; if the message cannot be found, a NoSuchMessageException is thrown.
  • String getMessage(MessageSourceResolvable resolvable, Locale locale): All properties used in the preceding methods are also wrapped in a class named MessageSourceResolvable, which you can use with this method.

When an ApplicationContext is loaded, it automatically searches for a MessageSource bean defined in the context. The bean must have the name messageSource. If such a bean is found, all calls to the preceding methods are delegated to the message source. If no message source is found, the ApplicationContext attempts to find a parent containing a bean with the same name. If it does, it uses that bean as the MessageSource. If the ApplicationContext cannot find any source for messages, an empty DelegatingMessageSource is instantiated in order to be able to accept calls to the methods defined above.

Spring provides two MessageSource implementations, ResourceBundleMessageSource and StaticMessageSource. Both implement HierarchicalMessageSource in order to do nested messaging. The StaticMessageSource is rarely used but provides programmatic ways to add messages to the source. The ResourceBundleMessageSource is shown in the following example:

<beans>
    <bean id="messageSource"
            class="org.springframework.context.support.ResourceBundleMessageSource">
        <property name="basenames">
            <list>
                <value>format</value>
                <value>exceptions</value>
                <value>windows</value>
            </list>
        </property>
    </bean>
</beans>

In the example it is assumed you have three resource bundles defined in your classpath called format, exceptions and windows. Any request to resolve a message will be handled in the JDK standard way of resolving messages through ResourceBundles. For the purposes of the example, assume the contents of two of the above resource bundle files are…

# in format.properties
message=Alligators rock!
# in exceptions.properties
argument.required=The {0} argument is required.

A program to execute the MessageSource functionality is shown in the next example. Remember that all ApplicationContext implementations are also MessageSource implementations and so can be cast to the MessageSource interface.

public static void main(String[] args) {
    MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
    String message = resources.getMessage("message", null, "Default", null);
    System.out.println(message);
}

The resulting output from the above program will be…

Alligators rock!

So to summarize, the MessageSource is defined in a file called beans.xml, which exists at the root of your classpath. The messageSource bean definition refers to a number of resource bundles through its basenames property. The three files that are passed in the list to the basenames property exist as files at the root of your classpath and are called format.properties, exceptions.properties, and windows.properties respectively.

The next example shows arguments passed to the message lookup; these arguments will be converted into Strings and inserted into placeholders in the lookup message.

<beans>

    <!-- this MessageSource is being used in a web application -->
    <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource">
        <property name="basename" value="exceptions"/>
    </bean>

    <!-- lets inject the above MessageSource into this POJO -->
    <bean id="example" class="com.foo.Example">
        <property name="messages" ref="messageSource"/>
    </bean>

</beans>
public class Example {

    private MessageSource messages;

    public void setMessages(MessageSource messages) {
        this.messages = messages;
    }

    public void execute() {
        String message = this.messages.getMessage("argument.required",
            new Object [] {"userDao"}, "Required", null);
        System.out.println(message);
    }

}

The resulting output from the invocation of the execute() method will be…

The userDao argument is required.

With regard to internationalization (i18n), Spring’s various MessageResource implementations follow the same locale resolution and fallback rules as the standard JDK ResourceBundle. In short, and continuing with the example messageSource defined previously, if you want to resolve messages against the British (en-GB) locale, you would create files called format_en_GB.properties, exceptions_en_GB.properties, and windows_en_GB.properties respectively.

Typically, locale resolution is managed by the surrounding environment of the application. In this example, the locale against which (British) messages will be resolved is specified manually.

# in exceptions_en_GB.properties
argument.required=Ebagum lad, the {0} argument is required, I say, required.
public static void main(final String[] args) {
    MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
    String message = resources.getMessage("argument.required",
        new Object [] {"userDao"}, "Required", Locale.UK);
    System.out.println(message);
}

The resulting output from the running of the above program will be…

Ebagum lad, the userDao argument is required, I say, required.

You can also use the MessageSourceAware interface to acquire a reference to any MessageSource that has been defined. Any bean that is defined in an ApplicationContext that implements the MessageSourceAware interface is injected with the application context’s MessageSource when the bean is created and configured.

[Note]Note

As an alternative to ResourceBundleMessageSource, Spring provides a ReloadableResourceBundleMessageSource class. This variant supports the same bundle file format but is more flexible than the standard JDK based ResourceBundleMessageSource implementation. In particular, it allows for reading files from any Spring resource location (not just from the classpath) and supports hot reloading of bundle property files (while efficiently caching them in between). Check out the ReloadableResourceBundleMessageSource javadocs for details.

5.15.2 Standard and Custom Events

Event handling in the ApplicationContext is provided through the ApplicationEvent class and ApplicationListener interface. If a bean that implements the ApplicationListener interface is deployed into the context, every time an ApplicationEvent gets published to the ApplicationContext, that bean is notified. Essentially, this is the standard Observer design pattern. Spring provides the following standard events:

Table 5.7. Built-in Events

EventExplanation

ContextRefreshedEvent

Published when the ApplicationContext is initialized or refreshed, for example, using the refresh() method on the ConfigurableApplicationContext interface. "Initialized" here means that all beans are loaded, post-processor beans are detected and activated, singletons are pre-instantiated, and the ApplicationContext object is ready for use. As long as the context has not been closed, a refresh can be triggered multiple times, provided that the chosen ApplicationContext actually supports such "hot" refreshes. For example, XmlWebApplicationContext supports hot refreshes, but GenericApplicationContext does not.

ContextStartedEvent

Published when the ApplicationContext is started, using the start() method on the ConfigurableApplicationContext interface. "Started" here means that all Lifecycle beans receive an explicit start signal. Typically this signal is used to restart beans after an explicit stop, but it may also be used to start components that have not been configured for autostart , for example, components that have not already started on initialization.

ContextStoppedEvent

Published when the ApplicationContext is stopped, using the stop() method on the ConfigurableApplicationContext interface. "Stopped" here means that all Lifecycle beans receive an explicit stop signal. A stopped context may be restarted through a start() call.

ContextClosedEvent

Published when the ApplicationContext is closed, using the close() method on the ConfigurableApplicationContext interface. "Closed" here means that all singleton beans are destroyed. A closed context reaches its end of life; it cannot be refreshed or restarted.

RequestHandledEvent

A web-specific event telling all beans that an HTTP request has been serviced. This event is published after the request is complete. This event is only applicable to web applications using Spring’s DispatcherServlet.


You can also create and publish your own custom events. This example demonstrates a simple class that extends Spring’s ApplicationEvent base class:

public class BlackListEvent extends ApplicationEvent {

    private final String address;
    private final String test;

    public BlackListEvent(Object source, String address, String test) {
        super(source);
        this.address = address;
        this.test = test;
    }

    // accessor and other methods...

}

To publish a custom ApplicationEvent, call the publishEvent() method on an ApplicationEventPublisher. Typically this is done by creating a class that implements ApplicationEventPublisherAware and registering it as a Spring bean. The following example demonstrates such a class:

public class EmailService implements ApplicationEventPublisherAware {

    private List<String> blackList;
    private ApplicationEventPublisher publisher;

    public void setBlackList(List<String> blackList) {
        this.blackList = blackList;
    }

    public void setApplicationEventPublisher(ApplicationEventPublisher publisher) {
        this.publisher = publisher;
    }

    public void sendEmail(String address, String text) {
        if (blackList.contains(address)) {
            BlackListEvent event = new BlackListEvent(this, address, text);
            publisher.publishEvent(event);
            return;
        }
        // send email...
    }

}

At configuration time, the Spring container will detect that EmailService implements ApplicationEventPublisherAware and will automatically call setApplicationEventPublisher(). In reality, the parameter passed in will be the Spring container itself; you’re simply interacting with the application context via its ApplicationEventPublisher interface.

To receive the custom ApplicationEvent, create a class that implements ApplicationListener and register it as a Spring bean. The following example demonstrates such a class:

public class BlackListNotifier implements ApplicationListener<BlackListEvent> {

    private String notificationAddress;

    public void setNotificationAddress(String notificationAddress) {
        this.notificationAddress = notificationAddress;
    }

    public void onApplicationEvent(BlackListEvent event) {
        // notify appropriate parties via notificationAddress...
    }

}

Notice that ApplicationListener is generically parameterized with the type of your custom event, BlackListEvent. This means that the onApplicationEvent() method can remain type-safe, avoiding any need for downcasting. You may register as many event listeners as you wish, but note that by default event listeners receive events synchronously. This means the publishEvent() method blocks until all listeners have finished processing the event. One advantage of this synchronous and single-threaded approach is that when a listener receives an event, it operates inside the transaction context of the publisher if a transaction context is available. If another strategy for event publication becomes necessary, refer to the JavaDoc for Spring’s ApplicationEventMulticaster interface.

The following example shows the bean definitions used to register and configure each of the classes above:

<bean id="emailService" class="example.EmailService">
    <property name="blackList">
        <list>
            <value>[email protected]</value>
            <value>[email protected]</value>
            <value>[email protected]</value>
        </list>
    </property>
</bean>

<bean id="blackListNotifier" class="example.BlackListNotifier">
    <property name="notificationAddress" value="[email protected]"/>
</bean>

Putting it all together, when the sendEmail() method of the emailService bean is called, if there are any emails that should be blacklisted, a custom event of type BlackListEvent is published. The blackListNotifier bean is registered as an ApplicationListener and thus receives the BlackListEvent, at which point it can notify appropriate parties.

[Note]Note

Spring’s eventing mechanism is designed for simple communication between Spring beans within the same application context. However, for more sophisticated enterprise integration needs, the separately-maintained Spring Integration project provides complete support for building lightweight, pattern-oriented, event-driven architectures that build upon the well-known Spring programming model.

5.15.3 Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally familiarize themselves with Spring’s Resource abstraction, as described in the chapter Chapter 6, Resources.

An application context is a ResourceLoader, which can be used to load Resources. A Resource is essentially a more feature rich version of the JDK class java.net.URL, in fact, the implementations of the Resource wrap an instance of java.net.URL where appropriate. A Resource can obtain low-level resources from almost any location in a transparent fashion, including from the classpath, a filesystem location, anywhere describable with a standard URL, and some other variations. If the resource location string is a simple path without any special prefixes, where those resources come from is specific and appropriate to the actual application context type.

You can configure a bean deployed into the application context to implement the special callback interface, ResourceLoaderAware, to be automatically called back at initialization time with the application context itself passed in as the ResourceLoader. You can also expose properties of type Resource, to be used to access static resources; they will be injected into it like any other properties. You can specify those Resource properties as simple String paths, and rely on a special JavaBean PropertyEditor that is automatically registered by the context, to convert those text strings to actual Resource objects when the bean is deployed.

The location path or paths supplied to an ApplicationContext constructor are actually resource strings, and in simple form are treated appropriately to the specific context implementation. ClassPathXmlApplicationContext treats a simple location path as a classpath location. You can also use location paths (resource strings) with special prefixes to force loading of definitions from the classpath or a URL, regardless of the actual context type.

5.15.4 Convenient ApplicationContext instantiation for web applications

You can create ApplicationContext instances declaratively by using, for example, a ContextLoader. Of course you can also create ApplicationContext instances programmatically by using one of the ApplicationContext implementations.

You can register an ApplicationContext using the ContextLoaderListener as follows:

<context-param>
    <param-name>contextConfigLocation</param-name>
    <param-value>/WEB-INF/daoContext.xml /WEB-INF/applicationContext.xml</param-value>
</context-param>

<listener>
    <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

The listener inspects the contextConfigLocation parameter. If the parameter does not exist, the listener uses /WEB-INF/applicationContext.xml as a default. When the parameter does exist, the listener separates the String by using predefined delimiters (comma, semicolon and whitespace) and uses the values as locations where application contexts will be searched. Ant-style path patterns are supported as well. Examples are /WEB-INF/*Context.xml for all files with names ending with "Context.xml", residing in the "WEB-INF" directory, and /WEB-INF/**/*Context.xml, for all such files in any subdirectory of "WEB-INF".

5.15.5 Deploying a Spring ApplicationContext as a Java EE RAR file

It is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the context and all of its required bean classes and library JARs in a Java EE RAR deployment unit. This is the equivalent of bootstrapping a standalone ApplicationContext, just hosted in Java EE environment, being able to access the Java EE servers facilities. RAR deployment is more natural alternative to scenario of deploying a headless WAR file, in effect, a WAR file without any HTTP entry points that is used only for bootstrapping a Spring ApplicationContext in a Java EE environment.

RAR deployment is ideal for application contexts that do not need HTTP entry points but rather consist only of message endpoints and scheduled jobs. Beans in such a context can use application server resources such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS ConnectionFactory instances, and may also register with the platform’s JMX server - all through Spring’s standard transaction management and JNDI and JMX support facilities. Application components can also interact with the application server’s JCA WorkManager through Spring’s TaskExecutor abstraction.

Check out the JavaDoc of the SpringContextResourceAdapter class for the configuration details involved in RAR deployment.

For a simple deployment of a Spring ApplicationContext as a Java EE RAR file: package all application classes into a RAR file, which is a standard JAR file with a different file extension. Add all required library JARs into the root of the RAR archive. Add a "META-INF/ra.xml" deployment descriptor (as shown in SpringContextResourceAdapter's JavaDoc) and the corresponding Spring XML bean definition file(s) (typically "META-INF/applicationContext.xml"), and drop the resulting RAR file into your application server’s deployment directory.

[Note]Note

Such RAR deployment units are usually self-contained; they do not expose components to the outside world, not even to other modules of the same application. Interaction with a RAR-based ApplicationContext usually occurs through JMS destinations that it shares with other modules. A RAR-based ApplicationContext may also, for example, schedule some jobs, reacting to new files in the file system (or the like). If it needs to allow synchronous access from the outside, it could for example export RMI endpoints, which of course may be used by other application modules on the same machine.

5.16 The BeanFactory

The BeanFactory provides the underlying basis for Spring’s IoC functionality but it is only used directly in integration with other third-party frameworks and is now largely historical in nature for most users of Spring. The BeanFactory and related interfaces, such as BeanFactoryAware, InitializingBean, DisposableBean, are still present in Spring for the purposes of backward compatibility with the large number of third-party frameworks that integrate with Spring. Often third-party components that can not use more modern equivalents such as @PostConstruct or @PreDestroy in order to remain compatible with JDK 1.4 or to avoid a dependency on JSR-250.

This section provides additional background into the differences between the BeanFactory and ApplicationContext and how one might access the IoC container directly through a classic singleton lookup.

5.16.1 BeanFactory or ApplicationContext?

Use an ApplicationContext unless you have a good reason for not doing so.

Because the ApplicationContext includes all functionality of the BeanFactory, it is generally recommended over the BeanFactory, except for a few situations such as in embedded applications running on resource-constrained devices where memory consumption might be critical and a few extra kilobytes might make a difference. However, for most typical enterprise applications and systems, the ApplicationContext is what you will want to use. Spring makes heavy use of the BeanPostProcessor extension point (to effect proxying and so on). If you use only a plain BeanFactory, a fair amount of support such as transactions and AOP will not take effect, at least not without some extra steps on your part. This situation could be confusing because nothing is actually wrong with the configuration.

The following table lists features provided by the BeanFactory and ApplicationContext interfaces and implementations.

Table 5.8. Feature Matrix

FeatureBeanFactoryApplicationContext

Bean instantiation/wiring

Yes

Yes

Automatic BeanPostProcessor registration

No

Yes

Automatic BeanFactoryPostProcessor registration

No

Yes

Convenient MessageSource access (for i18n)

No

Yes

ApplicationEvent publication

No

Yes


To explicitly register a bean post-processor with a BeanFactory implementation, you must write code like this:

ConfigurableBeanFactory factory = new XmlBeanFactory(...);

// now register any needed BeanPostProcessor instances
MyBeanPostProcessor postProcessor = new MyBeanPostProcessor();
factory.addBeanPostProcessor(postProcessor);

// now start using the factory

To explicitly register a BeanFactoryPostProcessor when using a BeanFactory implementation, you must write code like this:

XmlBeanFactory factory = new XmlBeanFactory(new FileSystemResource("beans.xml"));

// bring in some property values from a Properties file
PropertyPlaceholderConfigurer cfg = new PropertyPlaceholderConfigurer();
cfg.setLocation(new FileSystemResource("jdbc.properties"));

// now actually do the replacement
cfg.postProcessBeanFactory(factory);

In both cases, the explicit registration step is inconvenient, which is one reason why the various ApplicationContext implementations are preferred above plain BeanFactory implementations in the vast majority of Spring-backed applications, especially when using BeanFactoryPostProcessors and BeanPostProcessors. These mechanisms implement important functionality such as property placeholder replacement and AOP.

5.16.2 Glue code and the evil singleton

It is best to write most application code in a dependency-injection (DI) style, where that code is served out of a Spring IoC container, has its own dependencies supplied by the container when it is created, and is completely unaware of the container. However, for the small glue layers of code that are sometimes needed to tie other code together, you sometimes need a singleton (or quasi-singleton) style access to a Spring IoC container. For example, third-party code may try to construct new objects directly ( Class.forName() style), without the ability to get these objects out of a Spring IoC container.If the object constructed by the third-party code is a small stub or proxy, which then uses a singleton style access to a Spring IoC container to get a real object to delegate to, then inversion of control has still been achieved for the majority of the code (the object coming out of the container). Thus most code is still unaware of the container or how it is accessed, and remains decoupled from other code, with all ensuing benefits. EJBs may also use this stub/proxy approach to delegate to a plain Java implementation object, retrieved from a Spring IoC container. While the Spring IoC container itself ideally does not have to be a singleton, it may be unrealistic in terms of memory usage or initialization times (when using beans in the Spring IoC container such as a Hibernate SessionFactory) for each bean to use its own, non-singleton Spring IoC container.

Looking up the application context in a service locator style is sometimes the only option for accessing shared Spring-managed components, such as in an EJB 2.1 environment, or when you want to share a single ApplicationContext as a parent to WebApplicationContexts across WAR files. In this case you should look into using the utility class ContextSingletonBeanFactoryLocator locator that is described in this Spring team blog entry.