Home | Libraries | People | FAQ | More |
Generic numeric programming employs templates to use the same code for different floating-point types and functions. Consider the area of a circle a of radius r, given by
a = π * r2
The area of a circle can be computed in generic programming using Boost.Math for the constant π as shown below:
#include <boost/math/constants/constants.hpp> template<typename T> inline T area_of_a_circle(T r) { using boost::math::constants::pi; return pi<T>() * r * r; }
It is possible to use area_of_a_circle()
with built-in floating-point types
as well as floating-point types from Boost.Multiprecision. In particular,
consider a system with 4-byte single-precision float, 8-byte double-precision
double and also the cpp_dec_float_50
data type from Boost.Multiprecision with 50 decimal digits of precision.
We can compute and print the approximate area of a circle with radius
123/100 for float
, double
and cpp_dec_float_50
with the program below (see next section for choosing 123/100 instead
of 1.23).
#include <iostream> #include <iomanip> #include <boost/multiprecision/cpp_dec_float.hpp> using boost::multiprecision::cpp_dec_float_50; int main(int, char**) { const float r_f(float(123) / 100); const float a_f = area_of_a_circle(r_f); const double r_d(double(123) / 100); const double a_d = area_of_a_circle(r_d); const cpp_dec_float_50 r_mp(cpp_dec_float_50(123) / 100); const cpp_dec_float_50 a_mp = area_of_a_circle(r_mp); // 4.75292 std::cout << std::setprecision(std::numeric_limits<float>::digits10) << a_f << std::endl; // 4.752915525616 std::cout << std::setprecision(std::numeric_limits<double>::digits10) << a_d << std::endl; // 4.7529155256159981904701331745635599135018975843146 std::cout << std::setprecision(std::numeric_limits<cpp_dec_float_50>::digits10) << a_mp << std::endl; }
In later examples we'll look at calling both standard library and Boost.Math functions from within generic code. We'll also show how to cope with template arguments which are expression-templates rather than number types.
But first some warnings about how multiprecision types are slightly but significantly different fundamental (built-in) types.