Home | Libraries | People | FAQ | More |
#include <boost/multiprecision/complex128.hpp>
namespace boost{ namespace multiprecision{ class complex128_backend; typedef number<complex128_backend, et_off> complex128; }} // namespaces
The complex128
number type
is a very thin wrapper around GCC's __float128
or Intel's _Quad
data types
and provides a complex-number type that is a drop-in replacement for the
native C++ floating-point types, but with a 113 bit mantissa, and compatible
with FORTRAN's 128-bit QUAD real.
All the usual standard library functions are available, performance should be equivalent to the underlying native types.
As well as the usual conversions from arithmetic and string types, instances
of float128
are copy constructible
and assignable from GCC's __float128
and Intel's _Quad
data
types.
Things you should know when using this type:
complex128
s
have the value zero.
number
on this backend
move aware.
_Quad
as the underlying type: this is a current limitation of our code. Round
tripping when using __float128
as the underlying type is possible (both for GCC and Intel).
std::runtime_error
being thrown if the string can not be interpreted as a valid floating-point
number.
__float128
if it's available and
_Quad
if not. You can
override the default by defining either BOOST_MP_USE_FLOAT128
or BOOST_MP_USE_QUAD
.
_Quad
type, the code must be compiled with the compiler option -Qoption,cpp,--extended_float_type
.
#include <iostream> #include <complex> #include <boost/multiprecision/complex128.hpp> template<class Complex> void complex_number_examples() { Complex z1{0, 1}; std::cout << std::setprecision(std::numeric_limits<typename Complex::value_type>::digits10); std::cout << std::scientific << std::fixed; std::cout << "Print a complex number: " << z1 << std::endl; std::cout << "Square it : " << z1*z1 << std::endl; std::cout << "Real part : " << z1.real() << " = " << real(z1) << std::endl; std::cout << "Imaginary part : " << z1.imag() << " = " << imag(z1) << std::endl; using std::abs; std::cout << "Absolute value : " << abs(z1) << std::endl; std::cout << "Argument : " << arg(z1) << std::endl; std::cout << "Norm : " << norm(z1) << std::endl; std::cout << "Complex conjugate : " << conj(z1) << std::endl; std::cout << "Projection onto Riemann sphere: " << proj(z1) << std::endl; typename Complex::value_type r = 1; typename Complex::value_type theta = 0.8; using std::polar; std::cout << "Polar coordinates (phase = 0) : " << polar(r) << std::endl; std::cout << "Polar coordinates (phase !=0) : " << polar(r, theta) << std::endl; std::cout << "\nElementary special functions:\n"; using std::exp; std::cout << "exp(z1) = " << exp(z1) << std::endl; using std::log; std::cout << "log(z1) = " << log(z1) << std::endl; using std::log10; std::cout << "log10(z1) = " << log10(z1) << std::endl; using std::pow; std::cout << "pow(z1, z1) = " << pow(z1, z1) << std::endl; using std::sqrt; std::cout << "Take its square root : " << sqrt(z1) << std::endl; using std::sin; std::cout << "sin(z1) = " << sin(z1) << std::endl; using std::cos; std::cout << "cos(z1) = " << cos(z1) << std::endl; using std::tan; std::cout << "tan(z1) = " << tan(z1) << std::endl; using std::asin; std::cout << "asin(z1) = " << asin(z1) << std::endl; using std::acos; std::cout << "acos(z1) = " << acos(z1) << std::endl; using std::atan; std::cout << "atan(z1) = " << atan(z1) << std::endl; using std::sinh; std::cout << "sinh(z1) = " << sinh(z1) << std::endl; using std::cosh; std::cout << "cosh(z1) = " << cosh(z1) << std::endl; using std::tanh; std::cout << "tanh(z1) = " << tanh(z1) << std::endl; using std::asinh; std::cout << "asinh(z1) = " << asinh(z1) << std::endl; using std::acosh; std::cout << "acosh(z1) = " << acosh(z1) << std::endl; using std::atanh; std::cout << "atanh(z1) = " << atanh(z1) << std::endl; } int main() { std::cout << "First, some operations we usually perform with std::complex:\n"; complex_number_examples<std::complex<double>>(); std::cout << "\nNow the same operations performed using quad precision complex numbers:\n"; complex_number_examples<boost::multiprecision::complex128>(); return 0; }
Which results in the output:
Print a complex number: (0.000000000000000000000000000000000,1.000000000000000000000000000000000) Square it : -1.000000000000000000000000000000000 Real part : 0.000000000000000000000000000000000 = 0.000000000000000000000000000000000 Imaginary part : 1.000000000000000000000000000000000 = 1.000000000000000000000000000000000 Absolute value : 1.000000000000000000000000000000000 Argument : 1.570796326794896619231321691639751 Norm : 1.000000000000000000000000000000000 Complex conjugate : (0.000000000000000000000000000000000,-1.000000000000000000000000000000000) Projection onto Riemann sphere: (0.000000000000000000000000000000000,1.000000000000000000000000000000000) Polar coordinates (phase = 0) : 1.000000000000000000000000000000000 Polar coordinates (phase !=0) : (0.696706709347165389063740022772449,0.717356090899522792567167815703377) Elementary special functions: exp(z1) = (0.540302305868139717400936607442977,0.841470984807896506652502321630299) log(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751) log10(z1) = (0.000000000000000000000000000000000,0.682188176920920673742891812715678) pow(z1, z1) = 0.207879576350761908546955619834979 Take its square root : (0.707106781186547524400844362104849,0.707106781186547524400844362104849) sin(z1) = (0.000000000000000000000000000000000,1.175201193643801456882381850595601) cos(z1) = 1.543080634815243778477905620757061 tan(z1) = (0.000000000000000000000000000000000,0.761594155955764888119458282604794) asin(z1) = (0.000000000000000000000000000000000,0.881373587019543025232609324979792) acos(z1) = (1.570796326794896619231321691639751,-0.881373587019543025232609324979792) atan(z1) = (0.000000000000000000000000000000000,inf) sinh(z1) = (0.000000000000000000000000000000000,0.841470984807896506652502321630299) cosh(z1) = 0.540302305868139717400936607442977 tanh(z1) = (0.000000000000000000000000000000000,1.557407724654902230506974807458360) asinh(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751) acosh(z1) = (0.881373587019543025232609324979792,1.570796326794896619231321691639751) atanh(z1) = (0.000000000000000000000000000000000,0.785398163397448309615660845819876)