Zyacc

A Parser-Generator

Edition 1.0, for Zyacc Version 1.
July 1997

Adapted from The Bison Manual

Zerksis D. Umrigar







Copyright (©) 1996, 1997 Zerksis D. Umrigar

This is the first edition of the Zyacc documentation.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the sections entitled “GNU General Public License” and
“Conditions for Using Zyacc are included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.



Introduction 1

Introduction

Zyacc is a general-purpose parser generator that converts a grammar description for an LALR(1)
context-free grammar into a C program to parse that grammar. Once you are proficient with
Zyacc, you may use it to develop a wide range of language parsers, from those used in simple desk
calculators to complex programming languages.

Zyacc is largely upward compatible with Yacc and Bison: all properly-written Yacc and Bison
grammars ought to work with Zyacc with minimal change. Anyone familiar with Yacc or Bison
should be able to use Zyacc with little trouble. This manual uses the spellings Zyacc, Bison and
Yacc to refer to the specific programs, while using the spelling yacc to refer to any one of the above
programs. You need to be fluent in C programming in order to use Zyacc or to understand this
manual.

We begin with tutorial chapters that explain the basic concepts of using Zyacc and show six
explained examples, each building on the last. If you don’t know yacc or Zyacc, start by reading
these chapters. Reference chapters follow which describe specific aspects of Zyacc in detail.

Acknowledgements

The bulk of this manual is derived from the well-written Bison manual (see section “Bison
Manual” in Bison: The YACC-compatible Parser Generator). The changes made by the present
author include reformatting the examples and adding sections specific to Zyacc.

Many of the algorithms used within Zyacc is based on work by others. See the zyacc/refs.bib
file included with the distribution for some of the references.

Zyacc Enhancements

Zyacc provides the following enhancements:

e Supports inherited attributes which can be uniquely evaluated in a left-to-right parse (see
Section 3.5.7 [Inherited Attributes|, page 41).

e Supports semantic tests which allow the outcome of runtime semantic tests to affect parsing
decisions (see Section 3.5.8 [Semantic Tests|, page 43).

e Permits remote interactive debugging of generated parsers either by using a textual interface
or by using a java-based GUI (see Chapter 8 [Debugging], page 76). The debugger allows the
setting of breakpoints on any grammar symbol and selective display of the current parser state.

e Allows named attribute variables which make maintaining grammars easier (see Section 3.5.6
[Named Attributes|, page 39).

e Can generate its parser description files in HT'ML which can then be viewed using any Web
browser (see Section 9.3 [Zyacc Options|, page 87).

e Provides a %1look directive to check (at parser construction time) whether a reduction requires
lookahead (see Section 3.6.11 [Specifying the Lookahead], page 52).

e Allows multiple start nonterminals and allows a call to the parsing function to be made for a
particular start nonterminal (see Section 3.6.7 [Start Decl], page 49).

e It is possible to avoid having types which are only used in describing nonterminal semantics
written into the generated ‘.h’ file (see Section 3.5.1 [Value Type], page 35).
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e Allows multiple-character quoted literal tokens (see Section 3.6.3 [Multi-Character Lits],
page 48).

e Allows command-line options to be specified from within the parser file (see Section 3.6.10
[Option Decl], page 52).
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1 The Concepts of Zyacc

This chapter introduces many of the basic concepts without which the details of Zyacc will not
make sense. If you do not already know how to use Zyacc, we suggest you start by reading this
chapter carefully.

1.1 Languages and Context-Free Grammars

In order for Zyacc to parse a language, it must be described by a context-free grammar. This
means that you specify one or more syntactic groupings and give rules for constructing them from
their parts. For example, in the C language, one kind of grouping is called an ‘expression’. One
rule for making an expression might be, “An expression can be made of a minus sign and another
expression”. Another would be, “An expression can be an integer”. As you can see, rules are often
recursive, but there must be at least one rule which leads out of the recursion.

The most common formal system for presenting such rules for humans to read is Backus-Naur
Form or “BNF”, which was developed in order to specify the language Algol 60. Any grammar
expressed in BNF is a context-free grammar. The input to Zyacc is essentially machine-readable
BNF.

Not all context-free languages can be handled by Zyacc, only those that are LALR(1). In
brief, this means that it must be possible to tell how to parse any portion of an input string with
just a single token of look-ahead. Strictly speaking, that is a description of an LR(1) grammar,
and LALR(1) involves additional restrictions that are hard to explain simply; but it is rare in
actual practice to find an LR(1) grammar that fails to be LALR(1). See Section 5.7 [Mysterious
Reduce/Reduce Conflicts], page 69, for more information on this.

In the formal grammatical rules for a language, each kind of syntactic unit or grouping is named
by a symbol. Those which are built by grouping smaller constructs according to grammatical rules
are called nonterminal symbols; those which can’t be subdivided are called terminal symbols or
token types. We call a piece of input corresponding to a single terminal symbol a token, and a
piece corresponding to a single nonterminal symbol a grouping.

We can use the C language as an example of what symbols, terminal and nonterminal, mean.
The tokens of C are identifiers, constants (numeric and string), and the various keywords, arithmetic
operators and punctuation marks. So the terminal symbols of a grammar for C include ‘identifier’,
‘number’, ‘string’, plus one symbol for each keyword, operator or punctuation mark: ‘if’, ‘return’,
‘const’, ‘static’, ‘int’, ‘char’, ‘plus-sign’, ‘open-brace’, ‘close-brace’, ‘comma’ and many more. (These
tokens can be subdivided into characters, but that is a matter of lexicography, not grammar.)

Here is a simple C function subdivided into tokens:

int /* keyword ‘int’ */
square (x) /* identifier, open-paren, */
/* identifier, close-paren */
int x; /* keyword ‘int’, identifier, semicolon */
{ /* open-brace */

return x * x; /* keyword ‘return’, identifier, */
/* asterisk, identifier, semicolon */
} /* close-brace */
The syntactic groupings of C include the expression, the statement, the declaration, and the
function definition. These are represented in the grammar of C by nonterminal symbols ‘expression’,
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‘statement’, ‘declaration’ and ‘function definition’. The full grammar uses dozens of additional
language constructs, each with its own nonterminal symbol, in order to express the meanings
of these four. The example above is a function definition; it contains one declaration, and one
statement. In the statement, each ‘x’ is an expression and so is ‘x * x’.

Each nonterminal symbol must have grammatical rules showing how it is made out of simpler
constructs. For example, one kind of C statement is the return statement; this would be described
with a grammar rule which reads informally as follows:

A ‘statement’ can be made of a ‘return’ keyword, an ‘expression’ and a ‘semicolon’.
There would be many other rules for ‘statement’, one for each kind of statement in C.

One nonterminal symbol must be distinguished as the special one which defines a complete
utterance in the language. It is called the start symbol. In a compiler, this means a complete input
program. In the C language, the nonterminal symbol ‘sequence of definitions and declarations’
plays this role.

For example, ‘1 + 2’ is a valid C expression—a valid part of a C program—but it is not valid as
an entire C program. In the context-free grammar of C, this follows from the fact that ‘expression’
is not the start symbol.

The Zyacc parser reads a sequence of tokens as its input, and groups the tokens using the
grammar rules. If the input is valid, the end result is that the entire token sequence reduces to a
single grouping whose symbol is the grammar’s start symbol. If we use a grammar for C, the entire
input must be a ‘sequence of definitions and declarations’. If not, the parser reports a syntax error.

1.2 From Formal Rules to Zyacc Input

A formal grammar is a mathematical construct. To define the language for Zyacc, you must
write a file expressing the grammar in Zyacc syntax: a Zyacc grammar file. See Chapter 3 [Zyacc
Grammar Files], page 31.

A nonterminal symbol in the formal grammar is represented in Zyacc input as an identifier, like
an identifier in C. By convention, it should be in lower case, such as expr, stmt or declaration.

The Zyacc representation for a terminal symbol is also called a token type. Token types as well
can be represented as C-like identifiers. By convention, these identifiers should be upper case to
distinguish them from nonterminals: for example, INTEGER, IDENTIFIER, IF or RETURN. A terminal
symbol that stands for a particular keyword in the language should be named after that keyword
converted to upper case. The terminal symbol error is reserved for error recovery. See Section 3.2
[Symbols], page 32.

A terminal symbol can also be represented as a character literal, just like a C character constant.
You should do this whenever a token is just a single character (parenthesis, plus-sign, etc.): use
that same character in a literal as the terminal symbol for that token. Zyacc also permits literal
token names consisting of multiple characters — in that case, it is necessary to define an alias used
for referring to that token external to the parser.

Given this notation, it is easy to express grammar rules in Zyacc syntax. For example, here
is the Zyacc rule for a C return statement. The semicolon in quotes is a literal character token,
representing part of the C syntax for the statement; the naked semicolon, and the colon, are Zyacc
punctuation used in every rule.
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stmt
: RETURN expr ’;’

See Section 3.3 [Syntax of Grammar Rules|, page 33.

1.3 Semantic Values

A formal grammar selects tokens only by their classifications: for example, if a rule mentions
the terminal symbol ‘integer constant’, it means that any integer constant is grammatically valid
in that position. The precise value of the constant is irrelevant to how to parse the input: if ‘x+4’
is grammatical then ‘x+1’ or ‘x+3989’ is equally grammatical.

But the precise value is very important for what the input means once it is parsed. A compiler is
useless if it fails to distinguish between 4, 1 and 3989 as constants in the program! Therefore, each
token in a Zyacc grammar has both a token type and a semantic value. See Section 3.5 [Defining
Language Semantics|, page 35, for details.

The token type is a terminal symbol defined in the grammar, such as INTEGER, IDENTIFIER or
7,7, It tells everything you need to know to decide where the token may validly appear and how
to group it with other tokens. The grammar rules know nothing about tokens except their types.

The semantic value has all the rest of the information about the meaning of the token, such as
the value of an integer, or the name of an identifier. (A token such as ’,’ which is just punctuation
doesn’t need to have any semantic value.)

For example, an input token might be classified as token type INTEGER and have the semantic
value 4. Another input token might have the same token type INTEGER but value 3989. When a
grammar rule says that INTEGER is allowed, either of these tokens is acceptable because each is an
INTEGER. When the parser accepts the token, it keeps track of the token’s semantic value.

Each grouping can also have a semantic value as well as its nonterminal symbol. For example,
in a calculator, an expression typically has a semantic value that is a number. In a compiler for
a programming language, an expression typically has a semantic value that is a tree structure
describing the meaning of the expression.

1.4 Semantic Actions

In order to be useful, a program must do more than parse input; it must also produce some
output based on the input. In a Zyacc grammar, a grammar rule can have an action made up of
C statements. Each time the parser recognizes a match for that rule, the action is executed. See
Section 3.5.3 [Actions|, page 35.

Most of the time, the purpose of an action is to compute the semantic value of the whole
construct from the semantic values of its parts. For example, suppose we have a rule which says
an expression can be the sum of two expressions. When the parser recognizes such a sum, each of
the subexpressions has a semantic value which describes how it was built up. The action for this
rule should create a similar sort of value for the newly recognized larger expression.

For example, here is a rule that says an expression can be the sum of two subexpressions:



Chapter 1: The Concepts of Zyacc 6

expr
: expr ’+’ expr { $$ = $1 + $3; }

The action says how to produce the semantic value of the sum expression from the values of the

two subexpressions.

1.5 Zyacc Output: the Parser File

When you run Zyacc, you give it a Zyacc grammar file as input. The output is a C source file
that parses the language described by the grammar. This file is called a Zyacc parser. Keep in
mind that the Zyacc utility and the Zyacc parser are two distinct programs: the Zyacc utility is a
program whose output is the Zyacc parser that becomes part of your program.

The job of the Zyacc parser is to group tokens into groupings according to the grammar rules—
for example, to build identifiers and operators into expressions. As it does this, it runs the actions
for the grammar rules it uses.

The tokens come from a function called the lexical analyzer that you must supply in some
fashion (such as by writing it in C). The Zyacc parser calls the lexical analyzer each time it wants
a new token. It doesn’t know what is “inside” the tokens (though their semantic values may reflect
this). Typically the lexical analyzer makes the tokens by parsing characters of text, but Zyacc does
not depend on this. See Section 4.2 [The Lexical Analyzer Function yylex], page 54.

The Zyacc parser file is C code which defines a function named yyparse which implements that
grammar. This function does not make a complete C program: you must supply some additional
functions. One is the lexical analyzer. Another is an error-reporting function which the parser calls
to report an error. In addition, a complete C program must start with a function called main; you
have to provide this, and arrange for it to call yyparse or the parser will never run. See Chapter 4
[Parser C-Language Interface], page 54.

Aside from the token type names and the symbols in the actions you write, all variable and
function names used in the Zyacc parser file begin with ‘yy’ or ‘YY’. This includes interface func-
tions such as the lexical analyzer function yylex, the error reporting function yyerror and the
parser function yyparse itself. This also includes numerous identifiers used for internal purposes.
Therefore, you should avoid using C identifiers starting with ‘yy’ or ‘YY’ in the Zyacc grammar file
except for the ones defined in this manual.

1.6 Stages in Using Zyacc

The actual language-design process using Zyacc, from grammar specification to a working com-
piler or interpreter, has these parts:

1. Formally specify the grammar in a form recognized by Zyacc (see Chapter 3 [Zyacc Grammar
Files|, page 31). For each grammatical rule in the language, describe the action that is to be
taken when an instance of that rule is recognized. The action is described by a sequence of C
statements.

2. Write a lexical analyzer to process input and pass tokens to the parser. The lexical analyzer
may be written by hand in C (see Section 4.2 [The Lexical Analyzer Function yylex|, page 54).
It could also be produced using Lex, but the use of Lex is not discussed in this manual.
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3. Write a controlling function that calls the Zyacc-produced parser.

4. Write error-reporting routines.

To turn this source code as written into a runnable program, you must follow these steps:
1. Run Zyacc on the grammar to produce the parser.
2. Compile the code output by Zyacc, as well as any other source files.
3. Link the object files to produce the finished product.

1.7 The Overall Layout of a Zyacc Grammar

The input file for the Zyacc utility is a Zyacc grammar file. The general form of a Zyacc grammar
file is as follows:

hi

C declarations

h}

Zyacc declarations

hte

Grammar rules

he

Additional C code
The “%%’, ‘4{’ and ‘%}’ are punctuation that appears in every Zyacc grammar file to separate the
sections.

The C declarations may define types and variables used in the actions. You can also use
preprocessor commands to define macros used there, and use #include to include header files that
do any of these things.

The Zyacc declarations declare the names of the terminal and nonterminal symbols, and may
also describe operator precedence and the data types of semantic values of various symbols.

The grammar rules define how to construct each nonterminal symbol from its parts.

The additional C code can contain any C code you want to use. Often the definition of the
lexical analyzer yylex goes here, plus subroutines called by the actions in the grammar rules. In a
simple program, all the rest of the program can go here.
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2 Examples

Now we show and explain six sample programs written using Zyacc. The first three examples
illustrate features of Zyacc which are also present in yacc. These are a reverse polish notation
calculator, an algebraic (infix) notation calculator, and a multi-function calculator. The last three
illustrate features which are unique in Zyacc: these include a differently sugared implementation
of the multi-function calculator, a calculator which evaluates polynomials and a lazy person’s
calculator which allows omitting some sets of parentheses.

The code shown in this manual has been extracted automatically from code which has been
tested. These examples are simple, but Zyacc grammars for real programming languages are written
the same way.

If you have access to the Zyacc distribution, you will find these examples under the doc directory.

2.1 Reverse Polish Notation Calculator

The first example is that of a simple double-precision reverse polish notation calculator (a
calculator using postfix operators). This example provides a good starting point, since operator
precedence is not an issue. The second example will illustrate how operator precedence is handled.

The source code for this calculator is named ‘rpcalc.y’. The °

used for Zyacc input files.

.y’ extension is a convention

2.1.1 Declarations for rpcalc

Here are the C and Zyacc declarations for the reverse polish notation calculator. As in C,
comments are placed between ‘/*...x/’.

/* Reverse polish notation calculator. */

YA
#include <math.h>
#include <stdio.h>

#define YYSTYPE double

int yylex(void) ;
void yyerror (const char *errMsg);

h}
’%token NUM_TOK

%% /* Grammar rules and actions follow */

The C declarations section (see Section 3.1.1 [The C Declarations Section], page 31) contains
two preprocessor directives.

The #define directive defines the macro YYSTYPE, thus specifying the C data type for semantic
values of both tokens and groupings (see Section 3.5.1 [Data Types of Semantic Values], page 35).
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The Zyacc parser will use whatever type YYSTYPE is defined as; if you don’t define it, int is the
default. Because we specify double, each token and each expression has an associated value, which
is a floating point number.

The #include directive is used to declare the exponentiation function pow.

The second section, Zyacc declarations, provides information to Zyacc about the token types
(see Section 3.1.2 [The Zyacc Declarations Section], page 31). Each terminal symbol that is not a
single-character literal must be declared here. (Single-character literals normally don’t need to be
declared.) In this example, all the arithmetic operators are designated by single-character literals,
so the only terminal symbol that needs to be declared is NUM_TOK, the token type for numeric
constants (since Zyacc will #define NUM_TOK adding the ‘_TOK’ suffix prevents it from clashing
with identifiers used for other purposes).

2.1.2 Grammar Rules for rpcalc

Here are the grammar rules for the reverse polish notation calculator.
input
: /* empty */
| input line

2

line
)\n)
| exp ’\n’ { printf ("\t%.10g\n", $1); }

exp
NUM_TOK

exp exp '+’ { $$= $1 + $2;
exp exp -7 { $$= $1 - $2;
exp exp ’*’ { $$= $1 * $2;
exp exp /7 { $$= $1 / $2;
/* Exponentiation */

| exp exp ’°7 { $$= pow ($1, $2); }

/* Unary minus */

| exp ’n’ { $$= -81; }

e o

Tolh

The groupings of the rpcalc “language” defined here are the expression (given the name exp),
the line of input (1ine), and the complete input transcript (input). Each of these nonterminal
symbols has several alternate rules, joined by the ‘|’ punctuator which is read as “or”. The following
sections explain what these rules mean.

The semantics of the language is determined by the actions taken when a grouping is recognized.
The actions are the C code that appears inside braces. See Section 3.5.3 [Actions], page 35.

You must specify these actions in C, but Zyacc provides the means for passing semantic values
between the rules. In each action, the pseudo-variable $$ stands for the semantic value for the
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grouping that the rule is going to construct. Assigning a value to $$ is the main job of most
actions. The semantic values of the components of the rule are referred to as $1, $2, and so on.

2.1.2.1 Explanation of input

Consider the definition of input:

input
: /* empty */
| input line
This definition reads as follows: “A complete input is either an empty string, or a complete
input followed by an input line”. Notice that “complete input” is defined in terms of itself. This
definition is said to be left recursive since input appears always as the leftmost symbol in the
sequence. See Section 3.4 [Recursive Rules], page 34.

The first alternative is empty because there are no symbols between the colon and the first ‘|7
this means that input can match an empty string of input (no tokens). We write the rules this
way because it is legitimate to type Ctrl-d right after you start the calculator. It’s conventional
to put an empty alternative first and write the comment ‘/* empty */’ in it.

The second alternate rule (input line) handles all nontrivial input. It means, “After reading
any number of lines, read one more line if possible.” The left recursion makes this rule into a loop.
Since the first alternative matches empty input, the loop can be executed zero or more times.

The parser function yyparse continues to process input until a grammatical error is seen or the
lexical analyzer says there are no more input tokens; we will arrange for the latter to happen at
end of file.

2.1.2.2 Explanation of 1line

Now consider the definition of 1ine:

line
: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }
The first alternative is a token which is a newline character; this means that rpcalc accepts

a blank line (and ignores it, since there is no action). The second alternative is an expression
followed by a newline. This is the alternative that makes rpcalc useful. The semantic value of the
exp grouping is the value of $1 because the exp in question is the first symbol in the alternative.
The action prints this value, which is the result of the computation the user asked for.

This action is unusual because it does not assign a value to $8. As a consequence, the semantic
value associated with the line is uninitialized (its value will be unpredictable). This would be a
bug if that value were ever used, but we don’t use it: once rpcalc has printed the value of the user’s
input line, that value is no longer needed.
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2.1.2.3 Explanation of expr

The exp grouping has several rules, one for each kind of expression. The first rule handles the
simplest expressions: those that are just numbers. The second handles an addition-expression,
which looks like two expressions followed by a plus-sign. The third handles subtraction, and so on.

exp
: NUM_TOK
| exp exp ’+’ { 8% = 81 + 8$2; b
| exp exp -’ { $3 = $1 - $2; }

Note that there is no semantic action specified in the case when a exp is a NUM_TOK. That is
because if a rule has no associated semantic action, then Zyacc automatically generates the implicit
action { $$= $1; }, which is exactly what we need in this case.

We have used ‘|’ to join all the rules for exp, but we could equally well have written them
separately:
exp
: NUM_TOK

exp

: exp exp '+’ { 8% = 81 + 8$2; b
exp

exp exp ’-’ { 83 = $1 - $2; }

Most of the rules have actions that compute the value of the expression in terms of the value of
its parts. For example, in the rule for addition, $1 refers to the first component exp and $2 refers
to the second one. The third component, ’+’, has no meaningful associated semantic value, but if
it had one you could refer to it as $3. When yyparse recognizes a sum expression using this rule,
the sum of the two subexpressions’ values is produced as the value of the entire expression. See
Section 3.5.3 [Actions|, page 35.

You don’t have to give an action for every rule. When a rule has no action, Zyacc by default
copies the value of $1 into $$. This is what happens in the first rule (the one that uses NUM_TOK).

The formatting shown here is the recommended convention, but Zyacc does not require it. You
can add or change whitespace as much as you wish. For example, this:

exp : NUM_TOK | exp exp ’+’ {$$ = $1 + $2; } | ... ;
means the same thing as this:
exp
: NUM_TOK

| exp exp ’+’ {38 =391+ 8%2; }

2

The latter, however, is much more readable.
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2.1.3 The rpcalc Lexical Analyzer

The lexical analyzer’s job is low-level parsing: converting characters or sequences of characters
into tokens. The Zyacc parser gets its tokens by calling the lexical analyzer. See Section 4.2 [The
Lexical Analyzer Function yylex]|, page 54.

Ounly a simple lexical analyzer is needed for the RPN calculator. This lexical analyzer skips
blanks and tabs, then reads in numbers as double and returns them as NUM_TOK tokens. Any other
character that isn’t part of a number is a separate token. Note that the token-code for such a
single-character token is the character itself.

The return value of the lexical analyzer function is a numeric code which represents a token
type. The same text used in Zyacc rules to stand for this token type is also a C expression for the
numeric code for the type. This works in two ways. If the token type is a character literal, then its
numeric code is the ASCII code for that character; you can use the same character literal in the
lexical analyzer to express the number. If the token type is an identifier, that identifier is defined
by Zyacc as a C macro whose definition is the appropriate number. In this example, therefore,
NUM_TOK becomes a macro for yylex to use.

The semantic value of the token (if it has one) is stored into the global variable yylval, which is
where the Zyacc parser will look for it. (The C data type of yylval is YYSTYPE, which was defined
at the beginning of the grammar; see Section 2.1.1 [Declarations for rpcalc]|, page 8.)

A token type code of zero is returned if the end-of-file is encountered. (Zyacc recognizes any
nonpositive value as indicating the end of the input.)

Here is the code for the lexical analyzer:

/* Lexical analyzer returns a double floating point

* number in yylval and the token NUM_TOK, or the ASCII
* character read if not a number. Skips all blanks

* and tabs, returns 0 for EOF.

*/

#include <ctype.h>

int
yylex (void)
{

int c;

/* skip white space */
while ((c = getchar ()) == 7 || ¢ == ’\t’)
/* process numbers */
if (c ==.7 || isdigit (c)) {
ungetc(c, stdin);
scanf ("%41£f", &yylval);
return NUM_TOK;

}
/* return end-of-file */
if (¢ == EOF)

return O;
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/* return single chars */
return c;

}

2.1.4 The Controlling Function

In keeping with the spirit of this example, the controlling function is kept to the bare minimum.
The only requirement is that it call yyparse to start the process of parsing.
int
main()
{

return yyparse();

}

2.1.5 The Error Reporting Routine

When yyparse detects a syntax error, it calls the error reporting function yyerror to print
an error message (usually but not always "parse error"). It is up to the programmer to supply
yyerror (see Chapter 4 [Parser C-Language Interface], page 54), so here is the definition we will
use:

/* Called by yyparse on error */

void
yyerror (const char *s)
{

printf ("%s\n", s);
}

After yyerror returns, the Zyacc parser may recover from the error and continue parsing if
the grammar contains a suitable error rule (see Chapter 6 [Error Recovery], page 71). Otherwise,
yyparse returns nonzero. We have not written any error rules in this example, so any invalid input
will cause the calculator program to exit. This is not clean behavior for a real calculator, but it is
adequate in the first example.

2.1.6 Running Zyacc to Make the Parser

Before running Zyacc to produce a parser, we need to decide how to arrange all the source code
in one or more source files. For such a simple example, the easiest thing is to put everything in one
file. The definitions of yylex, yyerror and main go at the end, in the “additional C code” section
of the file (see Section 1.7 [The Overall Layout of a Zyacc Grammar|, page 7).

For a large project, you would probably have several source files, and use make to arrange to
recompile them.

With all the source in a single file, you use the following command to convert it into a parser
file:
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zyacc file_name.y

In this example the file was called ‘rpcalc.y’ (for “Reverse Polish CALCulator”). Zyacc produces
a file named ‘file_name.tab.c’, removing the ‘.y’ from the original file name. The file output by
Zyacc contains the source code for yyparse. The additional functions in the input file (yylex,
yyerror and main) are copied verbatim to the output.

2.1.7 Compiling the Parser File

Here is how to compile and run the parser file:

# List files in current directory.
% 1s
rpcalc.tab.c rpcalc.y

# Compile the Zyacc parser.
# ‘-1m’ tells compiler to search math library for pow.
% cc rpcalc.tab.c -1lm -o rpcalc

# List files again.
% 1s
rpcalc rpcalc.tab.c rpcalc.y

The file ‘rpcalc’ now contains the executable code. Here is an example session using rpcalc.

$ rpcalc
4 9 +
13
37+ 345 %+
-13
37+345 %+ -n Note the unary minus, ‘n’
13
56/ 4n+
-3.166666667
34°- Exponentiation
81
“D End-of-file indicator
$

On an error, rpcalc simply gives up after printing an error message as shown below:

$ rpcalc
12+ +
parse error
$ echo $7

1

$

The echo $7 makes the shell (the Bourne shell or Korn shell) print the exit code of the last
command (rpcalc) in this case. The value 1 is the value returned by the return yyparse()
statement in main().
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2.2 Infix Notation Calculator: calc

We now modify rpcalc to handle infix operators instead of postfix. Infix notation involves the
concept of operator precedence and the need for parentheses nested to arbitrary depth. Here is the
Zyacc code for ‘calc.y’, an infix desk-top calculator.

/* Infix notation calculator—calc */

YA
#include <math.h>
#include <stdio.h>

#define YYSTYPE double

int yylex(void) ;
void yyerror (const char *errMsg);

h}

/* zyacc declarations */

%token NUM_TOK

%left 1) 4

%left Y2 ) / )

Hleft NEG /* negation—unary minus */
%right >~ /* exponentiation */

/* Grammar follows */
Toth
input

: /* empty */

| input line

2

line

: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); %}
exp

: NUM_TOK

| exp ’+’ exp { $8= $1 + 83; }

| exp ’-’ exp { $8= $1 - 83; }

| exp ’*’ exp { $8= $1 * $3; }

| exp ’/’ exp { $%= 81 / $3; }

| ’-> exp Yprec NEG { $$= -$2; }

| exp ’°’ exp { $%= pow (81, $3); }

| 7 exp ’)’ { $$= $2; }

/YA
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The functions yylex, yyerror and main can be the same as before.
There are two important new features shown in this code.

In the second section (Zyacc declarations), %left declares token types and says they are left-
associative operators. The declarations %left and %right (right associativity) take the place of
%token which is used to declare a token type name without associativity. (These tokens are single-
character literals, which ordinarily don’t need to be declared. We declare them here to specify the
associativity.)

Operator precedence is determined by the line ordering of the declarations; the higher the
line number of the declaration (lower on the page or screen), the higher the precedence. Hence,
exponentiation has the highest precedence, unary minus (NEG) is next, followed by ‘*’ and ‘/’, and
so on. See Section 5.3 [Operator Precedence], page 64.

The other important new feature is the Jprec in the grammar section for the unary minus
operator. The %prec simply instructs Zyacc that the rule ‘| >-’ exp’ has the same precedence as
NEG—in this case the next-to-highest. See Section 5.4 [Context-Dependent Precedence], page 66.

Here is a sample run of ‘calc.y’

$ calc

4 + 4.5 - (34/(8%3+-3))
6.880952381

-56 + 2
-54

3" 2
9

2.3 Simple Error Recovery

Up to this point, this manual has not addressed the issue of error recovery—how to continue
parsing after the parser detects a syntax error. All we have handled is error reporting with yyerror.
Recall that by default yyparse returns after calling yyerror. This means that an erroneous input
line causes the calculator program to exit. Now we show how to rectify this deficiency.

The Zyacc language itself includes the reserved word error, which may be included in the
grammar rules. In the example below it has been added to one of the alternatives for line:

line
: \n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }
| error ’\n’ { yyerrok; }

This addition to the grammar allows for simple error recovery in the event of a parse error. If
an expression that cannot be evaluated is read, the error will be recognized by the third rule for
line, and parsing will continue. (The yyerror function is still called upon to print its message
as well.) The action executes the statement yyerrok, a macro defined automatically by Zyacc; its
meaning is that error recovery is complete (see Chapter 6 [Error Recovery|, page 71). Note the
difference between yyerrok and yyerror; neither one is a misprint.

This form of error recovery deals with syntax errors. There are other kinds of errors; for example,
division by zero, which raises an exception signal that is normally fatal. A real calculator program
must handle this signal and use longjmp to return to main and resume parsing input lines; it would
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also have to discard the rest of the current line of input. We won’t discuss this issue further because
it is not specific to Zyacc programs.

2.4 Multi-Function Calculator: mfcalc

Now that the basics of Zyacc have been discussed, it is time to move on to a more advanced
problem. The above calculators provided only five functions, ‘+’, ‘=’ ‘*’, ‘/” and ‘~’. It would be
nice to have a calculator that provides other mathematical functions such as sin, cos, etc.

It is easy to add new operators to the infix calculator as long as they are only single-character
literals. The lexical analyzer yylex passes back all non-number characters as tokens, so new
grammar rules suffice for adding a new operator. But we want something more flexible: built-in
functions whose syntax has this form:

function_name (argument)

At the same time, we will add memory to the calculator, by allowing you to create named variables,
store values in them, and use them later. Here is a sample session with the multi-function calculator:

$ mfcalc
pi = 3.141592653589
3.141592654
sin(pi)
7.932657935e-13
alpha = betal = 2.3

2.3
alpha
2.3
1n(alpha)
0.8329091229
exp(1n(betal))
2.3
$

Note that multiple assignment and nested function calls are permitted.

The implementation given below has the scanner first intern identifiers into a separate string-
space so that identifiers with the same spelling share the same string-space entry. The scanner
returns the intern’d representation of the identifier to the parser. The parser uses the intern’d
representation to access a symbol table which keeps track of the properties of the identifier (whether
it is a variable or function, the value associated with the identifier).

2.4.1 Declarations for mfcalc

The previous grammars had only a single semantic type: the double value associated with
NUM_TOKs and exps. However, now we will have identifiers used for variables and functions: they
will need a semantic type different from double. The C and Zyacc declarations given below for the
multi-function calculator use a couple of new Zyacc features to allow multiple semantic types (see
Section 3.5.2 [More Than One Value Type|, page 35).

hi
#include <ctype.h>
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#include <math.h>
#include <stdio.h>

int yylex(void) ;
void yyerror (const char *errMsg);

/* Typedef typical unary <math.h> function. */
typedef double (*MathFnP) (double input);

/* Interface to symbol table. */

static double getIDVal(const char *name);

static MathFnP getIDFn(const char *name) ;

static void setIDVal(const char *name, double val);
static void setIDFn(const char *name, MathFnP fnP);

h}
Junion {
double val; /* For returning numbers. */
const char *id; /* For returning identifiers. */
}

%token <val> NUM_TOK /* Double precision number */
%token <id> ID_TOK /* Identifiers. x/
Wtype <val> exp

hright =’

%left 1_ 4

%left Ik ) / )

%left NEG /* Negation—unary minus */
Jright °~° /* Exponentiation */

/* Grammar follows */

Tolh

The %union declaration specifies the entire list of possible types; this is instead of defining
YYSTYPE. The allowable types are now double-floats (for exp and NUM_TOK) and char * pointers for
the names of variables and functions. See Section 3.6.4 [The Collection of Value Types], page 48.

Since values can now have various types, it is necessary to associate a type with each grammar
symbol whose semantic value is used. These symbols are NUM_TOK, ID_TOK, and exp. Their decla-
rations are augmented with information about their data type (placed between angle brackets).

The Zyacc construct %type is used for declaring nonterminal symbols, just as Jtoken is used for
declaring token types. We have not used %type before because nonterminal symbols are normally
declared implicitly by the rules that define them. But exp must be declared explicitly so we can
specify its value type. See Section 3.6.5 [Nonterminal Symbols|, page 49.

The C declarations section above also declares the functions used to interface to the symbol
table. The symbol table is a mapping from identifiers to either double values (for identifiers which
are variables) or function pointers (for identifiers whicha re functions). The ‘get’ functions are used
to get the value associated with an identifier; the ‘set’ functions are used to change the value.
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2.4.2 Grammar Rules for mfcalc

The grammar rules for the multi-function calculator are identical to those for calc except for
three additional rules for exp shown below:
exp
: ID_TOK { $$= getIDVal($1); }
| ID_TOK ’=’ exp { setIDVal($1, $3); $$= $3; }
| ID_TOK > (’ exp ’)’ { $%$= (*(getIDFn($1)))($3); }

The above additional rules correspond to the cases when an expression is an identifier, an
assignment or a function application respectively.
e If an expression is an identifier, we merely lookup its value in the symbol table using
getIDVal().
e If an expression is an assignment statement, we use the symbol table interface to set the value
of the left-hand side identifier to the value of the right-hand side expression using setIDVal().
e If an expression is a function application, we lookup the function pointer associated with the
identifier in the symbol table using getIDFn and apply the corresponding function to the value
of the expression.

2.4.3 The mfcalc Symbol Table

The multi-function calculator requires a symbol table to keep track of the names and meanings
of variables and functions. This doesn’t affect the grammar rules (except for the actions) or the
Zyacc declarations, but it requires some additional C functions for support.

The symbol table itself consists of a linked list of records. It provides for either functions or
variables to be placed in the table. Its definition is as follows:

/* Symbol table ADT. */

/* Possible types for symbols. */
typedef enum { VAR_SYM, FN_SYM } SymType;

typedef struct Sym {

const char *name; /* Name of symbol. */
SymType type; /* Type of symbol. */
union {
double var; /* Value of a VAR_.SYM. */
MathFnP fn; /* Value of a FN_.SYM. */
} value;
struct Sym *succ; /* Link field. */
} Sym;

/* The symbol table: a chain of Sym’s.*/
static Sym *symTab;

The Sym type contains the name of the identifier and a type field which classifies the symbol as
either a variable (type == VAR_SYM) or function (type == FN_SYM). Depending on this type field,
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the symbol’s value is in the union field var for a variable or in fn for a function. The succ field
is used to chain all symbols together in a LIFO chain.

The heart of the symbol table module is the getSym() routine shown below:

/* Search symTab for name. If doCreate, then create an entry for
* it if it is not there. Return pointer to Sym entry.

*/

static Sym x*

getSym(const char *name, unsigned doCreate)

{
Sym *p;
for (p= symTab; p != NULL && p->name != name; p= p->succ) ;
if (p == NULL && doCreate) {
p= malloc (sizeof(Sym)) ;
p->name= name; p->succ= symTab; symTab= p;
}
return p;
}

getSym() searches the linear chain of Syms rooted in symTab for an identifier with a specified
name. If it finds one, it returns a pointer to the corresponding Sym; otherwise if doCreate is zero it
simply returns NULL; if doCreate is non-zero it creates a new entry for name and links it in at the
head of the symTab chain.

To get the value or function associated with an identifier, the symbol table interface routines
getIDVal() and getIDFn() shown below can be used:

/* Get value associated with name; signal error if not ok. */
static double
getIDVal (const char *name)
{
const Sym *p= getSym(name, 0);
double val= 1.0; /* A default value. */
if (!p) fprintf(stderr, "No value for %s.\n", name);
else if (p->type != VAR_SYM)
fprintf(stderr, "%s is not a variable.\n", name);
else val= p->value.var;
return val;

}

/* Get function associated with name; signal error if not ok. */
static MathFnP
getIDFn(const char *name)
{
const Sym *p= getSym(name, 0);
MathFnP fn= sin; /* A default value. */
if (!p) fprintf(stderr, "No value for %s.\n", name);
else if (p->type != FN_SYM)
fprintf(stderr, "%s is not a function.\n", name);
else fn= p->value.fn;
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return fn;

}

The routines take care of printing out a error message if the name is not found or is of an
inappropriate type.

Changing the values of a symbol is done in a straight-forward manner as shown below:

/* Unconditionally set name to a VAR_SYM with value val. */
static void
setIDVal (const char *name, double val)
{
Sym *p= getSym(name, 1);
p—>type= VAR_SYM; p->value.var= val;
}

/* Unconditionally set name to a FN_SYM with fn ptr fuP. *x/
static void
setIDFn(const char *name, MathFnP fnP)
{
Sym *p= getSym(name, 1);
p—>type= FN_SYM; p->value.fn= fnP;
}

It is necessary to preload the symbol table with the functions which will be provided by mfcalc.
This is done as shown below:

/* Initial functions. */

struct {
const char *name; /* Name of function. */
MathFnP fn; /* Corresponding <math.h> function. */

} initFns[1= {

{ "sin", sin 7},
{ "cos", cos },
{ "atan", atan 7},
{ "ln", lOg },
{ nexpn’ exp },
{ "sqrt", sqrt }
};
static void
initSyms (void)
{

const unsigned n= sizeof(initFns) /sizeof(initFns[0]);
unsigned 1i;
for (i= 0; i < nj; i++) {
setIDFn(getID(initFns[i] .name), initFns[i].fn);
}
}
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By simply editing the initialization list and adding the necessary include files, you can add
additional functions to the calculator.

The new version of main includes a call to initSyms, the function defined above which initializes
the symbol table:

int main()

{
initSyms();
return yyparse();

}

2.4.4 The mfcalc Scanner

The function yylex must now recognize numeric values, single-character arithmetic operators
and identifiers. The recognition of numeric values and single-character arithmetic operators is
exactly as before. In order to recognize identifiers, the following code fragment is added to yylex ()
after the code for recognizing numbers:

/* Char starts an identifier => read the name. */
if (isalpha(c)) {

ungetc(c, stdin);

yylval.id= readID();

return ID_TOK;
}

After checking if the current character is a letter, the code fragment calls readID() after pushing
back the current character. readID() reads the current character into a dynamically sized buffer
as shown below. After completing the read, readID() calls getID() routine which interfaces to
the string-space. getID() will return a unique char * pointer for the identifier. If the returned
char * pointer is not equal to the dynamically allocated buffer, then the identifier had been seen
previously and the dynamic buffer is freed.

/* Read alphanumerics from stdin into a buffer. Check
* if identical to previous ident: if so return pointer
* to previous, else return pointer to new buffer.

* Assumes char after ident is not an EOF.
*/

static const char *

readID (void)

{

enum { SIZE_INC= 40 };
unsigned size= SIZE_INC;
char *buf= malloc(size);
unsigned i= 0;

int c;

const char *ident;

do { /* Accumulate stdin into strSpace. */
c= getchar();
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if (i >= size) buf= realloc(buf, sizex= 2);
buf [i++]= c;
} while (isalnum(c));

ungetc(c, stdin); buf[i - 1]= ’\0’; /* Undo extra read. */
buf= realloc(buf, i); /* Resize buf to be only as big as needed. */

ident= getID(buf); /* Search string-space. */

if (ident !'= buf) free(buf); /* Previously existed. */
return ident;

2.4.5 The mfcalc String Space

The string-space is maintained as a linked list of Idents as shown below. The getID() function
does a linear search through the linked list for its name argument: if found it returns a pointer to
the previously entered name, if not found, it adds a new entry at the head of the list and returns
the name argument.

/* String space ADT to map identifiers into IDNums. */
typedef struct Ident {

const char *name; /* NUL-terminated chars of identifier. */
struct Ident *succ; /* Next entry in linear chain. */
} Ident;

/* The string space is a chain of Ident’s. */
static Ident *strSpace;

static const char *
getID(const char *name)

{
Ident *p;
for (p= strSpace; p != NULL; p= p->succ) {
if (strcmp(name, p->name) == 0) break;
}
if ('p) {

p= malloc (sizeof (Ident));

p->name= name;

p—>succ= strSpace; strSpace= p;
b

return p->name;
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2.4.6 Why a Separate String Space

It is possible to design mfcalc so that the scanner interns identifiers directly using the symbol
table, avoiding the need for a separate string space. Though that is adequate for mfcalc, such an
approach may be unwieldy for more complex applications because of the reasons outlined below.

A symbol table is a mapping from identifiers to objects like variables and functions; in many
applications (like programming languages with separate name-spaces or multiple scopes) this map-
ping is typically one-to-many. Hence maintaining a symbol table usually requires understanding
the context within which a identifier is used. If the scanner is solely responsible for maintaining
the symbol table, then it must keep track of the context within which an identifier is used — this
complicates the scanner. If other higher level modules like the parser share the maintenance of
the symbol table with the scanner, then the symbol table interface may become complex due to
order-dependencies and feedback between modules.

The separate string table avoids some of these complications. Though the implementation given
for mfcalc required two searches for each identifier (one within the string space, the other within
the symbol table), it is possible to get by with a single search.

2.5 The Multi Function Calculator Using a Sugared Syntax

One disadvantage of the $i syntax used for specifying the semantic attributes of grammar sym-
bols is that correctly specifying the i is often tedious, especially with long rules. More seriously,
if a rule changes then the i in a $i may also change: this can make maintaining such grammars
error-prone.

Another disadvantage is that the attributes of grammar symbols are declared in section 1 of
the grammar file (using %union, %type and other declarations), rather than near where they are
actually used in section 2. This conflicts with modern software engineering practice, where entities
are declared near or at the point of first use.

Zyacc permits syntactic sugar which overcomes these deficiencies. It allows named attribute
variables to refer to the semantic attributes, thus making it possible to refer to semantic attributes
without having to count grammar symbols. It also allows the semantic attributes of a nonterminal
to be declared on the left-hand side of rules for that nonterminal.

The syntax is illustrated by repeating the grammar for the mfcalc using the new syntax:

input
: /% empty */
| input line

2

line
)\n)
| exp($v) ’\n’ { printf ("\t%.10g\n", $v);
| error ’\n’ { yyerrok; }

2

exp (double $v)
: ID_TOK($id) { $v= getIDVal($id); }
| ID_TOK($id) ’=’ exp($v) { setIDVal($id, $v); }
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ID_TOK($id) ’(’ exp($vl) ’)’{ $v= (*(getIDFn($id))) ($vl); }
NUM_TOK ($v)

|

|

| exp($vl) ’+’ exp($v2) { $v= $v1 + $v2; }

| exp($vl) ’-’ exp($v2) { $v= $v1 - $v2; }

| exp($vl) ’*’ exp($v2) { $v= $v1 * $v2; }

| exp($vl) °/’ exp($v2) { $v= $v1 / $v2; }

| -’ exp($vl) Jprec NEG { $v= -$vi1; 3}

| exp($vl) ’"’ exp($v2) { $v= pow($vi, $v2); }
| 2 exp($vl) )’ { $v= $vi; }

2

/* End of grammar */

/YA

The semantic attributes of a grammar symbol are written within parentheses following the grammar
symbols using a positional notation similar to that of function application in C. The types of the
semantic attributes for a nonterminal are declared on the left-hand side of a rule using a syntax
similar to that for function prototype declarations in C.

In the above example, exp has a single semantic attribute which represents the value of the
expression; its value is computed on-the-fly as an exp is parsed. This attribute is named $v and is
declared to be of type double on the common left-hand side of the rules for exp. This declaration
is similar to that of a formal parameter in a function definition.

The attributes of right-hand side symbols detail the flow of semantic information among the
grammatical constructs constituting the rule. For example in the first rule for exp repeated below,
the terminal ID_TOK representing a variable has an attribute referred to $id within that rule. The
action for that rule computes the attribute $v for the left-hand side exp in terms of this $id using
the function getIDVal() which looks up the value of the variable using the current symbol table.

exp (double $v)
: ID_TOK($id) { $v= getIDVal($id); }
| ID_TOK($id) ’=’ exp($v) { setIDVal($id, $v); }

Similarly, in the second rule which describes an assignment expression, the $v for the left-hand side
exp is computed via the exp on the right-hand side: this is indicated by using the same name $v
for both occurrences.

The sugared syntax allows the attributes of a nonterminal to be declared when that nonterminal
occurs on the left-hand side of a rule. Since this can never happen for a terminal symbol, the
attributes of terminal symbols must still be declared in section 1 of the Zyacc file as follows:

%token <val>(double $v) NUM_TOK /* Double precision number */
Htoken <id>(const char *$id) ID_TOK /* ldentifiers. */

We have enhanced the <val> type tag previously used for a NUM_TOK by a parenthesized list con-
taining declarations for its semantic attributes, namely a single attribute named $v of type double.
Similarly an ID_TOK has a semantic type with type tag <id> with a single const char * semantic
attribute named $id.

If the sugared syntax is used for the entire grammar, then there is no need for a %union directive.
In fact, Zyacc generates one automatically; for the above grammar, it will generate something
similar to:



Chapter 2: Examples

typedef union {

struct { double v; } val; /* NUM_TOK x*/
struct { const char *id; } id; /* ID_TOK x/
} YYSTYPE;

The union has a separate struct field for each sugared %token declaration and for each nontermi-
nal.

The semantic attributes of a terminal are stored in the field in the union which has a name
identical to the <type> tag used in the %token declaration for that terminal. The fields in the
struct are identical to the attributes declared for that <type> tag in the token declaration, except
that the ‘$’s are removed. Hence the above %token declarations result in the fields val and id in
the union, with each of them being a struct containing the fields v and id repectively.

Since the programmer controls the names used in the fields in the union for terminals, the
programmer should use the same names when setting up semantic information for the terminals
in the scanner. For the above grammar, the only change necessary in the scanner is to change
assignments to yylval to access the appropriate fields in the union. Specifically, the code for
numbers and identifiers in yylex() is changed to:

/* Char starts a number => parse the number. */
if (c ==.7 || isdigit (c)) {

ungetc (c, stdin);

scanf ("%1f", &yylval.val.v);

return NUM_TOK;
}

/* Char starts an identifier => read the name. */
if (isalpha(c)) {

ungetc(c, stdin);

yylval.id.id= readID();

return ID_TOK;
}

The semantic attributes for each nonterminal are stored in a separate struct field within the
union. The types of the fields used within the struct for a nonterminal are identical to the types
declared for the attributes of that nonterminal. However, the names used for and within this field
are implementation defined; that should not be a problem, as there is no need for the programmer
to access them directly.

Using these named attributes overcomes the disadvantages mentioned earlier for the numeric $-
variables. However, the resulting grammars tend to be somewhat more verbose. The new notation
does not by itself add anything to the power of the grammars, which is why we refer to it as
syntactic sugar. However when used in conjunction with the features mentioned in the next couple
of sections, the named attribute variables do add to the power of the grammars.

2.6 A Multi Function Calculator Which Evaluates Polynomials

Consider enhancing our calculator with an evaluation operator @, which evaluates a polyno-
mial. This operator can be used as in x @ [6, 2, 3] to denote the polynomial 5*x~2 + 2xx + 3.
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The polynomial coefficients within the square brackets are allowed to be arbitrary expressions (in-
cluding nested polynomial evaluations). The @ operator should associate to the left and have the
highest precedence (greater than that of exponentiation). An example of the use of this polynomial
calculator is shown below:
$ polycalc
30[4, 5, 1]
52
2 * 30[4, 5, 1]
104
3e[4, 20[8, 4, 2, 1], 1]
292
$
It is easy enough to force the @ operator to have the required precedence by simply adding a
%left declaration after the declaration for the exponentiation operator as shown below.
Jright >~ /* Exponentiation */
hleft @’ /* Polynomial application */

Unfortunately, evaluating the polynomial is not that easy.

One solution to this problem is to not evaluate the polynomial as its coefficients are being parsed,
but to merely store its coefficient values in some data structure which will be the semantic attribute
for the coefficient list. Once the coefficient list has been parsed, the data structure containing the
coefficients and the value of the point at which evaluation is requested can be passed to some action
routine which evaluates the polynomial at that point. Assuming that the coefficients have been
evaluated into an (n+1)-element array coeffs[], a scheme like the following is typical for the action
routine:

/* Evaluate nth-degree polynomial
* coeffs[n]*point~n + coeffs[n-1]*point~(n-1) + ... + coeffs[0]
*/
double evalPoly(double point, double coeffs[], int n)
{
double sum= 0;
int i;
for (i= n; i >= 0; i--) sum= sum*point + coeffs[il;
return sum;

Unfortunately, this requires auxiliary storage and a non-trivial data structure to handle nested
polynomials. Fortunately in Zyacc, the computation represented by the above code can be per-
formed on-the-fly during parsing using a special type of semantic attributes known as inherited
attributes described below.

All the attributes seen in the previous examples are known as synthesized attributes. An at-
tribute for a construct is said to be a synthesized attribute if the value of that attribute directly
depends only on the semantic attributes of the constituents of that construct and not on the se-
mantic attributes of a surrounding construct. For example, the value of a exp is independent of
the larger exp within which it may appear.

A little reflection shows that synthesized attributes are not sufficient to evaluate polynomials
on-the-fly during parsing: the contribution made by each coefficient to the final value depends not
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only on the value of the coefficient but also on the point at which the polynomial is being evaluated
(the value of the expression before the @ operator), as well as the position of the coefficient in the
list of polynomial coefficients.

Inherited attributes allow us to get around this problem: they allow us to pass in information
about the surrounding context to a grammatical construct. Inherited attributes are declared using
the %in keyword as shown in the following extract of the polycalc grammar:

coeffs(%in double $sum, %in double $point, %out double $v)

: exp($vl) { $v= $sum*$point + $vi; }
| coeffs($sum, $point, $vi)
7,7 exp($v2) { $v= $vix$point + $v2; }

2

exp(double $v)
: exp($vl) '@’
’[? coeffs(0.0, $vi, $v) ’]1°

polycalc is derived from mfcalc. Besides adding an operator declaration for @ as described above,
these rules represent the only other addition needed to mfcalc. coeffs is a new nonterminal used
to represent a comma-separated list of polynomial coefficient expressions. It has three semantic
attributes: the first two are inherited attributes $sum and $point and correspond to the variables
with the same name used in the evalPoly C-function. The last attribute is a synthesized attribute
declared using %out (the %out is usually optional) which is the value of the entire polynomial at
point.

The first rule for coeffs

coeffs(%in double $sum, %in double $point, %out double $v)
: exp($vl) { $v= $sum*$point + $vi; }

deals with the situation where there is only a single polynomial coefficient which has not been
processed: in that case the value of the polynomial is the value of the polynomial so far ($sum)
multiplied by the value of the point ($point) plus the value of the coefficient ($v1).

The second rule

coeffs(%in double $sum, %in double $point, %out double $v)
: coeffs($sum, $point, $vi)
7,7 exp($v2) { $v= $vix$point + $v2; }

deals with the situation when there is more than one remaining coefficient. In that case, the
remaining coefficients can be decomposed into all but the last coefficient (described by the first
coeffs on the right-hand side) and the last coefficient (described by the ’,’ followed by exp). If
we assume that the value of the polynomial represented by all but the last coefficient is $v1, then
the value of the entire polynomial is $v1*$point + $v2 where $v2 is the value of the last coefficient.

Notice that the computation performed by the above rules is identical to the computation
performed within the for-loop of the evalPoly function. The initialization of sum to 0 is performed
in the rule for exp

exp(double $v)

: exp($vl) -
’[? coeffs(0.0, $vi, $v) ’]1°
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which passes in a value of 0.0 for the $sum inherited attribute of coeffs and the value of the point
($v1) for the $point inherited attribute. The synthesized attribute $v computed for coeffs is the
value of the left-hand side exp.

2.7 A Calculator Which Omits Some Parentheses

The previously developed multi-function calculator mfcalc requires its (single) function arg-
ments to be within parentheses. Consider enhancing it for lazy people who prefer not to type those
parentheses, as illustrated by the following interaction log:

$
lazycalc
exp 1n 7
7
pi = 3.141592653589
3.141592654
sin pi/4
0.7071067812
(sin pi/4)~2 + (cos pi/4)~2
1
$
A first attempt may be to simply declare a right-associative precedence level for function application
between that of binary addition and multiplication operators as shown below (without any semantic
attributes):

hright ’=’

%left 1 4

hright FN /* Prefix function application. */
%1eft )% )/)

hleft NEG /* Negation--unary minus */

hright *°° /* Exponentiation */

Tobh

exp

: ID_TOK exp %prec FN

Unfortunately, a little reflection shows that this is not enough. Given simply the token sequence
ID_TOK - ID_TOK, a human would not know whether the sequence represents a function (given by
the first ID_TOK) applied to a unary minus expression (- ID_TOK), or a subtraction of the variable
represented by the second ID_TOK from the variable represented by the first ID_TOK. If a human
being cannot distinguish between these two meanings purely on the basis of syntax, then there is
no way that Zyacc can do so.

The way a human would distinguish between the above two sequences would be to consider the
semantics for the first ID_TOK. If the first ID_TOK represents a function, then the sequence would
correspond to a function application, else to a subtraction expression. However, this means that
the way a token sequence is parsed depends on the semantics of the tokens in the sequence.
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Generic yacc does not allow any way for the semantics to affect a parse. However, Zyacc allows
arbitrary semantic predicates to affect a parse. A semantic predicate can be any arbitrary C
expression E written on the right-hand side of a rule as %test (E). If at parse time, the rule in
which a semantic predicate occurs is potentially applicable, then the predicate is evaluated: if the
predicate succeeds (returns non-zero), then the rule in which the %test is embedded wins out over
other rules. So for our lazycalc example, the rule for function application becomes

exp (double $v)
: ID_TOK($id) %test(isFn($id))
exp($vl) Yprec FN { $v= (*(getIDFn($id)))($vl);

isFn() is a trivial C function which interfaces to the symbol table, returning 1 iff its argument is
a function.
/* Return nonzero iff name is a function. */
static unsigned
isFn(const char *name)
{
Sym *p= getSym(name, 0);
return (p != NULL && p->type == FN_SYM);
}

Semantic predicates allow relatively clean solutions to problems which are otherwise rather
painful to solve. They should not be overused. In particular, they should not be used when simpler
mechanisms suffice as they make a Zyacc grammar harder to understand — to understand Zyacc'’s
parsing decisions when semantic predicates are used it is no longer sufficient to merely consider the
statically-defined grammar rules, but it is also necessary to consider the semantics defined at parse
time.

2.8 Exercises

These example programs are both powerful and flexible. You may easily add new functions, and
it is a simple job to modify this code to install predefined variables such as pi or e as well. The
following exercises suggest several simple enhancements.

1. Add some new functions from ‘math.h’ to the initialization list for mfcalc.

2. Modify mfcalc to add another array that contains constants and their values. Then modify
initSyms to add these constants to the symbol table. It will be easiest to give the constants
type VAR_SYM.

3. Modify your solution to the previous exercise, so that the values of constants cannot be mod-
ified. (Hint: introduce a new symbol type CONST_SYM).

4. Ts it possible to modify mfcalc so as to allow implicit multiplication: i.e. your calculator
should allow 2 + 3 x as equivalent to 2 + 3*x7

5. How would you modify mfcalc to add array variables such that an array is accessed using
arrayName (index) where arrayName is an ID_TOK representing the name of the array and
index is an exp representing the value used to index the array. Syntactically, an array access
is identical to a function application, and your answer should concentrate on how your parser
can distinguish between the two.
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3 Zyacc Grammar Files

Zyacc takes as input a context-free grammar specification and produces a C-language function
that recognizes correct instances of the grammar.

The Zyacc grammar input file conventionally has a name ending in ‘.y’.

3.1 Outline of a Zyacc Grammar

A Zyacc grammar file has four main sections, shown here with the appropriate delimiters:

Wi

C declarations

h}

Zyacc declarations

hoh
Grammar rules

Tolh

Additional C code

Comments enclosed in */* ... */’ may appear in any of the sections.

3.1.1 The C Declarations Section

The C declarations section contains macro definitions and declarations of functions and variables
that are used in the actions in the grammar rules. These are copied to the beginning of the parser
file so that they precede the definition of yyparse. You can use ‘#include’ to get the declarations
from a header file. If you don’t need any C declarations, you may omit the ‘%{’ and ‘/%}’ delimiters
that bracket this section.

3.1.2 The Zyacc Declarations Section

The Zyacc declarations section contains declarations that define terminal and nonterminal sym-
bols, specify precedence, and so on. In some simple grammars you may not need any declarations.
See Section 3.6 [Zyacc Declarations], page 46.

3.1.3 The Grammar Rules Section

The grammar rules section contains one or more Zyacc grammar rules, and nothing else. See
Section 3.3 [Syntax of Grammar Rules|, page 33.

There must always be at least one grammar rule, and the first ‘%%’ (which precedes the grammar
rules) may never be omitted even if it is the first thing in the file.
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3.1.4 The Additional C Code Section

The additional C code section is copied verbatim to the end of the parser file, just as the C
declarations section is copied to the beginning. This is the most convenient place to put anything
that you want to have in the parser file but which need not come before the definition of yyparse.
For example, the definitions of yylex and yyerror often go here. See Chapter 4 [Parser C-Language
Interface], page 54.

If the last section is empty, you may omit the ‘%%’ that separates it from the grammar rules.

The Zyacc parser itself contains many static variables whose names start with ‘yy’ and many
macros whose names start with ‘YY’. It is a good idea to avoid using any such names (except those
documented in this manual) in the additional C code section of the grammar file.

3.2 Symbols, Terminal and Nonterminal

Symbols in Zyacc grammars represent the grammatical classifications of the language.

A terminal symbol (also known as a token type) represents a class of syntactically equivalent
tokens. You use the symbol in grammar rules to mean that a token in that class is allowed. The
symbol is represented in the Zyacc parser by a numeric code, and the yylex function returns a
token type code to indicate what kind of token has been read. You don’t need to know what the
code value is; you can use the symbol to stand for it.

A nonterminal symbol stands for a class of syntactically equivalent groupings. The symbol name
is used in writing grammar rules. By convention, it should be all lower case.

Symbol names can contain letters, digits (not at the beginning), underscores and periods. Pe-
riods make sense only in nonterminals.

There are two ways of writing terminal symbols in the grammar:

e A named token type is written with an identifier, like an identifier in C. By convention, it
should be all upper case. Each such name must be defined with a Zyacc declaration such as
%token. See Section 3.6.1 [Token Type Names], page 47.

e A character token type (or literal token) is written in the grammar using the same syntax
used in C for character constants; for example, ’+’ is a character token type. A character
token type doesn’t need to be declared unless you need to specify its semantic value data type
(see Section 3.5.1 [Data Types of Semantic Values|, page 35), associativity, or precedence (see
Section 5.3 [Operator Precedence], page 64).

By convention, a character token type is used only to represent a token that consists of that
particular character. Thus, the token type ’+’ is used to represent the character ‘+’ as a token.
Nothing enforces this convention, but if you depart from it, your program will confuse other
readers.

All the usual escape sequences used in character literals in C can be used in Zyacc as well,
but you must not use the null character as a character literal because its ASCII code, zero,
is the code yylex returns for end-of-input (see Section 4.2.1 [Calling Convention for yylex],
page 54).

How you choose to write a terminal symbol has no effect on its grammatical meaning. That
depends only on where it appears in rules and on when the parser function returns that symbol.
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The value returned by yylex is always one of the terminal symbols (or 0 for end-of-input).
Whichever way you write the token type in the grammar rules, you write it the same way in the
definition of yylex. The numeric code for a character token type is simply the ASCII code for the
character, so yylex can use the identical character constant to generate the requisite code. Each
named token type becomes a C macro in the parser file, so yylex can use the name to stand for
the code. (This is why periods don’t make sense in terminal symbols.) See Section 4.2.1 [Calling
Convention for yylex]|, page 54.

If yylex is defined in a separate file, you need to arrange for the token-type macro definitions
to be available there. Use the ‘-d’ option when you run Zyacc, so that it will write these macro
definitions into a separate header file ‘name.tab.h’ which you can include in the other source files
that need it. See Chapter 9 [Invoking Zyacc|, page 86.

The symbol error is a terminal symbol reserved for error recovery (see Chapter 6 [Error Re-
covery|, page 71); you shouldn’t use it for any other purpose. In particular, yylex should never
return this value.

3.3 Syntax of Grammar Rules

A Zyacc grammar rule has the following general form:
result: components. ..
where result is the nonterminal symbol that this rule describes and components are various terminal
and nonterminal symbols that are put together by this rule (see Section 3.2 [Symbols|, page 32).
For example,
exp
: exp '+’ exp
says that two groupings of type exp, with a ‘+’ token in between, can be combined into a larger
grouping of type exp.
Whitespace in rules is significant only to separate symbols. You can add extra whitespace as
you wish.
Scattered among the components can be actions that determine the semantics of the rule. An
action looks like this:
{C statements}
Usually there is only one action and it follows the components. See Section 3.5.3 [Actions|, page 35.

Multiple rules for the same result can be written separately or can be joined with the vertical-bar
character ‘|’ as follows:
result
: rulel-components. ..
| rule2-components. ..

They are still considered distinct rules even when joined in this way.

If components in a rule is empty, it means that result can match the empty string. For example,
here is how to define a comma-separated sequence of zero or more exp groupings:
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expseq
: /* empty */
| expseql
expseql
! exp
| expseql ’,’ exp

It is customary to write a comment ‘/* empty */’ in each rule with no components.

3.4 Recursive Rules

A rule is called recursive when its result nonterminal appears also on its right hand side. Nearly
all Zyacc grammars need to use recursion, because that is the only way to define a sequence of any
number of somethings. Consider this recursive definition of a comma-separated sequence of one or
more expressions:

expseql
: exp
| expseql ’,’ exp
Since the recursive use of expseql is the leftmost symbol in the right hand side, we call this left
recursion. By contrast, here the same construct is defined using right recursion:
expseql
: exp
| exp ’,’ expseql
Any kind of sequence can be defined using either left recursion or right recursion, but you should
always use left recursion, because it can parse a sequence of any number of elements with bounded
stack space. Right recursion uses up space on the Zyacc stack in proportion to the number of
elements in the sequence, because all the elements must be shifted onto the stack before the rule
can be applied even once. See Chapter 5 [The Zyacc Parser Algorithm |, page 62, for further
explanation of this.

Indirect or mutual recursion occurs when the result of the rule does not appear directly on its
right hand side, but does appear in rules for other nonterminals which do appear on its right hand
side.

For example:

expr
: primary
| primary ’+’ primary
primary
constant
| ) ( ) expr 7) b

defines two mutually-recursive nonterminals, since each refers to the other.
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3.5 Defining Language Semantics

The grammar rules for a language determine only the syntax. The semantics are determined by
the semantic values associated with various tokens and groupings, and by the actions taken when
various groupings are recognized.

For example, the calculator calculates properly because the value associated with each expression
is the proper number; it adds properly because the action for the grouping ‘x + y’ is to add the
numbers associated with x and y.

3.5.1 Data Types of Semantic Values

In a simple program it may be sufficient to use the same data type for the semantic values of
all language constructs. This was true in the RPN and infix calculator examples (see Section 2.1
[Reverse Polish Notation Calculator], page 8).

Zyacc’s default is to use type int for all semantic values. To specify some other type, define
YYSTYPE as a macro, like this:

#define YYSTYPE double

This macro definition must go in the C declarations section of the grammar file (see Section 3.1
[Outline of a Zyacc Grammar|, page 31).

Only types mentioned in a explicit %union declaration and types used for named attributes
(see Section 3.5.6 [Named Attributes|, page 39) for terminal symbols form part of YYSTYPE. Hence
if you use named attributes for nonterminals, then those associated types do not form part of
YYSTYPE. Since YYSTYPE is often used by a front-end component like a scanner, and the types used
for nonterminals are more back-end oriented, the fact that the nonterminal types are not part of
YYSTYPE, avoids an egregious coupling between front and back ends.

3.5.2 More Than One Value Type

In most programs, you will need different data types for different kinds of tokens and groupings.
For example, a numeric constant may need type int or long, while a string constant needs type
char *, and an identifier might need a pointer to an entry in the symbol table.

To use more than one data type for semantic values in one parser, Zyacc requires you to do two
things:
e Specify the entire collection of possible data types, with the %union Zyacc declaration (see
Section 3.6.4 [The Collection of Value Types], page 48).

e Choose one of those types for each symbol (terminal or nonterminal) for which semantic values
are used. This is done for tokens with the %token Zyacc declaration (see Section 3.6.1 [Token
Type Names|, page 47) and for groupings with the %type Zyacc declaration (see Section 3.6.5
[Nonterminal Symbols], page 49).

3.5.3 Actions

An action accompanies a syntactic rule and contains C code to be executed each time an instance
of that rule is recognized. The task of most actions is to compute a semantic value for the grouping
built by the rule from the semantic values associated with tokens or smaller groupings.
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An action consists of C statements surrounded by braces, much like a compound statement in
C. It can be placed at any position in the rule; it is executed at that position. Most rules have just
one action at the end of the rule, following all the components. Actions in the middle of a rule are
tricky and used only for special purposes (see Section 3.5.5 [Actions in Mid-Rule], page 37).

The C code in an action can refer to the semantic values of the components matched by the rule
with the construct $n, which stands for the value of the nth component. The semantic value for
the grouping being constructed is $$. (Zyacc translates both of these constructs into array element
references when it copies the actions into the parser file.)

Here is a typical example:

exp
: exp '+’ exp { $$ = $1 + $3; }

This rule constructs an exp from two smaller exp groupings connected by a plus-sign token. In

the action, $1 and $3 refer to the semantic values of the two component exp groupings, which are

the first and third symbols on the right hand side of the rule. The sum is stored into $$ so that it

becomes the semantic value of the addition-expression just recognized by the rule. If there were a

useful semantic value associated with the ‘+’ token, it could be referred to as $2.

If you don’t specify an action for a rule, Zyacc supplies a default: $$ = $1. Thus, the value of
the first symbol in the rule becomes the value of the whole rule. Of course, the default rule is valid
only if the two data types match. There is no meaningful default action for an empty rule; every
empty rule must have an explicit action unless the rule’s value does not matter.

$n with n zero or negative is allowed for reference to tokens and groupings on the stack before
those that match the current rule. This is a very risky practice, and to use it reliably you must be
certain of the context in which the rule is applied. Here is a case in which you can use this reliably:

foo
: expr bar ’+’ expr { ... }
| expr bar ’-’ expr { ... }
bar
: /* empty */

{ previous_expr = $0; }
As long as bar is used only in the fashion shown here, $0 always refers to the expr which
precedes bar in the definition of foo.

3.5.4 Data Types of Values in Actions

If you have chosen a single data type for semantic values, the $$ and $n constructs always have
that data type.

If you have used %union to specify a variety of data types, then you must declare a choice among
these types for each terminal or nonterminal symbol that can have a semantic value. Then each
time you use $$ or $n, its data type is determined by which symbol it refers to in the rule. In this
example,
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exp
: exp '+’ exp { $$ = $1 + $3; }

$1 and $3 refer to instances of exp, so they all have the data type declared for the nonterminal

symbol exp. If $2 were used, it would have the data type declared for the terminal symbol ’+°,

whatever that might be.

Alternatively, you can specify the data type when you refer to the value, by inserting ‘<type>’
after the ‘¢’ at the beginning of the reference. For example, if you have defined types as shown
here:

Junion {
int itype;
double dtype;
}
then you can write $<itype>1 to refer to the first subunit of the rule as an integer, or $<dtype>1
to refer to it as a double.

3.5.5 Actions in Mid-Rule

Occasionally it is useful to put an action in the middle of a rule. These actions are written just
like usual end-of-rule actions, but they are executed before the parser even recognizes the following
components.

A mid-rule action may refer to the components preceding it using $n, but it may not refer to
subsequent components because it is run before they are parsed.

The mid-rule action itself counts as one of the components of the rule. This makes a difference
when there is another action later in the same rule (and usually there is another at the end): you
have to count the actions along with the symbols when working out which number n to use in $n.

The mid-rule action can also have a semantic value. The action can set its value with an
assignment to $$, and actions later in the rule can refer to the value using $n. Since there is no
symbol to name the action, there is no way to declare a data type for the value in advance, so you
must use the ‘$<...>" construct to specify a data type each time you refer to this value.

There is no way to set the value of the entire rule with a mid-rule action, because assignments
to $$ do not have that effect. The only way to set the value for the entire rule is with an ordinary
action at the end of the rule.

Here is an example from a hypothetical compiler, handling a let statement that looks like ‘let
(variable) statement’ and serves to create a variable named variable temporarily for the duration
of statement. To parse this construct, we must put variable into the symbol table while statement
is parsed, then remove it afterward. Here is how it is done:

stmt
: LET °(’ var ’)’
{ $<context>$ = push_context (); declare_variable ($3); }
stmt

{ $$ = $6; pop_context ($<context>5); }
As soon as ‘let (variable)’ has been recognized, the first action is run. It saves a copy of the
current semantic context (the list of accessible variables) as its semantic value, using alternative
context in the data-type union. Then it calls declare_variable to add the new variable to that
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list. Once the first action is finished, the embedded statement stmt can be parsed. Note that the
mid-rule action is component number 5, so the ‘stmt’ is component number 6.

After the embedded statement is parsed, its semantic value becomes the value of the entire
let-statement. Then the semantic value from the earlier action is used to restore the prior list of
variables. This removes the temporary let-variable from the list so that it won’t appear to exist
while the rest of the program is parsed.

Taking action before a rule is completely recognized often leads to conflicts since the parser must
commit to a parse in order to execute the action. For example, the following two rules, without
mid-rule actions, can coexist in a working parser because the parser can shift the open-brace token
and look at what follows before deciding whether there is a declaration or not:

compound
’{’> declarations statements ’}’
| ’{’ statements ’}’
But when we add a mid-rule action as follows, the rules become nonfunctional:
compound
{ prepare_for_local_variables (); }
’{’> declarations statements ’}’
| ’{’ statements ’}’
Now the parser is forced to decide whether to run the mid-rule action when it has read no farther
than the open-brace. In other words, it must commit to using one rule or the other, without
sufficient information to do it correctly. (The open-brace token is what is called the look-ahead
token at this time, since the parser is still deciding what to do about it. See Section 5.1 [Look-Ahead
Tokens|, page 62.)

You might think that you could correct the problem by putting identical actions into the two
rules, like this:
compound
{ prepare_for_local_variables (); }
’{’ declarations statements ’}’
| { prepare_for_local_variables (); }
’{’ statements ’}’
But this does not help, because Zyacc does not realize that the two actions are identical. (Zyacc
never tries to understand the C code in an action.)

If the grammar is such that a declaration can be distinguished from a statement by the first token
(which is true in C), then one solution which does work is to put the action after the open-brace,
like this:

compound
) { )
{ prepare_for_local_variables (); }
declarations statements ’}’
| ’{’ statements ’}’
Now the first token of the following declaration or statement, which would in any case tell Zyacc
which rule to use, can still do so.
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Another solution is to bury the action inside a nonterminal symbol which serves as a subroutine:

subroutine
: /* empty */
{ prepare_for_local_variables (); }

compound
: subroutine ’{’ declarations statements ’}’
| subroutine ’{’ statements ’}’
Now Zyacc can execute the action in the rule for subroutine without deciding which rule for
compound it will eventually use. Note that the action is now at the end of its rule. Any mid-rule
action can be converted to an end-of-rule action in this way, and this is what Zyacc actually does
to implement mid-rule actions.

3.5.6 Named Attributes

In addition to the $i numbered attribute notation discussed previously, Zyacc allows the at-
tributes of grammar symbols to be referred to using named attributes. The first character in
a attribute name must be '$’ and the remaining characters can consist of alphanumerics or the
underscore character ’_’. The syntax for using named attributes is similar to that for function

parameters in C.

Declarations for named attributes result in automatic additions of fields to the %union declara-
tion (see Section 3.5.2 [Multiple Types], page 35). In fact, there is no need for a %union declaration
if the grammar contains only named attributes without any numbered attributes being used at all.

An example of the use of named attributes in contained in the nmcalc program discussed in the
tutorial section (see Section 2.5 [MfCalc with Sugared Syntax|, page 24).

3.5.6.1 Named Terminal Attributes

The named attributes for terminal symbols must be declared in a parenthesized list following
the <type> tag in a itoken, %left, right or %nonassoc declaration. Here are some examples of
terminal attribute declarations:

htoken <id>(const char *$id, unsigned $lineNum) ID_TOK
hleft  <addOp>(unsigned $lineNum) T4 0=

The first example declares that the terminal ID_TOK has its semantic attributes packaged together
with type tag <id>. Each such <id> package contains two attributes: an attribute named $id
of type const char * and an attribute named $lineNum of type unsigned. Similarly, the second
example declares that the tokens ’+’ and ’-’ are left-associative with their attributes packaged
together in packages of type tag <addOp>. Each such package contains a single unsigned attribute
named $1ineNum.

Each occurrence of <type>(Typel $al, ..., TypeM $aM) results in the field struct {Typel
al; ...; TypeM aM ;} type; being added to the %union declaration (see Section 3.5.2 [Multiple
Types], page 35). For instance, the above two examples would add the following fields to the
Junion:
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struct { const char *id; unsigned lineNum; } id;
struct { unsigned lineNum; } addOp;

The above fields would be used within the scanner to ensure that the correct semantic value is
passed via yylval (see Section 4.2.2 [Token Values|, page 55). For the above examples, appropriate
assignments may be

yylval.id.id= ...; yylval.id.lineNum= ...;

yylval.addOp.lineNum= ...;

3.5.6.2 Named Nonterminal Attributes

When a nonterminal is used on the left-hand side of a rule, its semantic attributes should be
declared within a parenthesized list following that nonterminal. For example, a comma-separated
list of identifiers (represented by ID_TOKs) may have two attributes consisting of a list of the
identifiers and the length of the list respectively:

idList(List *$idList, unsigned $len)
: ID_TOK($id)
{ $idList= appendToList (NULL, $id); $len= 1; }
| idList($idListl, $lenl) ID_TOK($id)
{ $idList= appendToList($idListl, $id); $len= $lenl + 1; }

where appendToList () appends its second argument to the list represented by its first argument.

If the same nonterminal is used on the left-hand side of several rules, then though the attributes
may have different names, their types must be identical, modulo spelling of whitespace. Hence the
above rules could be written as:

idList(List *$idList, unsigned $len)
: ID_TOK($id)
{ $idList= appendToList (NULL, $id); $len= 1; }

idList(List *$idList2, unsigned $len2)
: idList($idListl, $lenl) ID_TOK($id)
{ $idList2= appendToList($idListl, $id); $len2= $lenl + 1; }
However
idList(List *$idList, unsigned $len)
: ID_TOK($id)
{ $idList= appendToList(NULL, $id); $len= 1; }

idList(List*$idList2, unsigned $len2)
: idList($idListl, $lenl) ID_TOK($id)
{ $idList2= appendToList($idListl, $id); $len2= $lenl + 1; }
would be illegal as the second declaration has no whitespace after the ‘List*’.
The types using named attributes for nonterminal symbols are not added to the YYSTYPE decla-
ration, but are merely maintained internally within the generated parser. This has the advantage
that the scanner need not know about types used only for nonterminal attributes.
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3.5.7 Inherited Attributes

The numeric $i variables in a generic yacc are a form of synthesized attributes — they allow
a grammatical construct to pass information up to its surrounding context. Inherited attributes
allow a construct to inherit information from its surrounding context. Unfortunately, yacc supports
inherited attributes only in a very limited and dangerous way: the programmer uses $i variables
with i <= 0 (see Section 3.5.3 [Actions], page 35).

Hence using yacc is like using a programming language where procedures are not allowed to
have input parameters. The only method of passing information into such procedures is by using
global variables — the exact method used by many yacc programs.

3.5.7.1 Inherited Attributes Notation

Zyacc supports a form of inherited attributes which can be evaluated during LR parsing —
grammars with such attributes are called LR-attributed grammars. LR-attributed grammars are a
subset of the L-attributed grammars (where all attributes can be evaluated in a single left-to-right
pass). On the other hand, they are a superset of the S-attributed grammars (those supported by
yacc) which permit only synthesized attributes.

An inherited attribute is declared by starting the declaration with the %in keyword as in:

idList(%in int $type, unsigned $len)
: idList($type, $lenl)
ID_TOK($id)
{ addIDToSymTab($id, $type); $len= $lenl + 1; }
| /* empty */
{ $len= 0; }
where $type is an inherited attribute defining the type for all the identifiers (ID_TOKs) in a list of
identifiers (idList), $1len is a synthesized attribute giving the number of identifiers in the list and
addIDToSymTab (id, type) adds identifier id with type type to the symbol table.

This rule could represent a list of identifiers within a declaration, with their type being inherited
from the context established by the declaration. That type is represented by the inherited attribute
$type. The synthesized attribute $len computes the number of identifiers in the list. $type is
passed down unchanged through the recursive nonterminal IDList, being used to install the type
of an identifier into the symbol table at every stage of the recursion. $len is initialized to 0 for the
empty identifier list and then incremented for every identifier in the list. This pattern of attribute
passing is similar to the pattern of parameter passing in any applicative programming language.

A synthesized attribute is declared by starting a declaration with the %out keyword. An attribute
declaration must have a %in or %out keyword only if the declaration is the first declaration for a
left-hand side nonterminal and the previous rule was not terminated by a ;’. If a declaration does
not have a %in or %out keyword, then the omitted keyword defaults to %out.

Terminal symbols can only have synthesized attributes.

3.5.7.2 Attribute Flow Restrictions

Since the attributes in a Zyacc grammar are intended to be evaluated completely during a
left-to-right parse, there are certain restrictions on the information flow among the attributes. To
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understand these restrictions, one first needs to understand which attribute occurrences define
attribute values and which attribute occurrences apply a value.

The defining attribute positions in a rule are the positions on the left-hand side whose attributes
have been declared %in and the positions on the right-hand side whose attributes have been declared
%out. The values of the corresponding attributes are computed outside the rule.

The applied attribute positions in a rule are the positions on the left-hand side whose attributes
have been declared %out and the positions on the right-hand side whose attributes have been
declared %in. The values of the corresponding attributes are computed within the rule.

We now describe some (fairly natural) restrictions on the pattern of attributes in a rule.

e On the left-hand side of a rule, we are only allowed to have distinct attribute declarations for
the attributes of the rule nonterminal.

e On the right-hand side of a rule, we are allowed to have attribute expressions (any C-expression
involving some (or possibly no) named attributes subject to the following restrictions.

1. An attribute expression occurring in a %out attribute position of a right-hand side gram-
mar symbol (a defining position) can only consist of a single attribute variable. Fur-
thermore, this must be the first occurrence of that attribute variable on the right-hand
side.

2. An attribute expression occurring in a %in attribute position of a right-hand side grammar
symbol (a applied position) can only contain attribute variables which have occurred
earlier in defining positions of the rule (earlier %out positions in the right-hand side or
%in position on the left-hand side).

3. A particular attribute variable can only occur once in a defining attribute position.

4. The final terminating action (if any) of a rule can only contain attribute variables which
have occurred earlier in the rule.

5. If a mid-rule action (see Section 3.5.5 [Mid-Rule Actions|, page 37) contains the first
occurrence of an attribute variable (this would make it a %out attribute for the newly
created nonterminal), then that attribute variable must occur as the attribute expression
for some later nonterminal on the right-hand side.

Rules 1 and 2 express the left-to-right attribute flow. Rule 3 ensures that all attributes are
well-defined: i.e. each attribute only receives a single value within a rule. Rule 4 expresses the fact
that it would not make any sense to compute an attribute in the final terminating action without
being able to pass the value somewhere. Rule 5 allows zyacc to infer a type for the %out attribute
variable of the newly created nonterminal.

By having both attribute declarations and the above rules, there is some redundancy. In fact,
zyacc uses the above rules to infer the %in/%out specifier for an attribute and checks for consistency
with the declaration.

The above rules preclude the possibility of ensuring that the attribute values computed at two
defining positions are the same by merely using the same attribute variable at those positions.
Consider the rule

exp(%out Type $type)
: exp($type) operator($type) term($type)
where the single attribute of operator is declared %out. The intent here is that the type of the
operator must be identical to the types of its two operands. Unfortunately, since all positions on
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the right-hand side are defining positions, the above rule violates rule 3. We can rewrite the above
rule as

exp (%hout Type $type)
: exp($typel) operator($type) term($type2)
{ if ($typel !'= $type || $type2 != $type) error(); }

2

or use semantic tests (see Section 3.5.8 [Semantic Tests], page 43).

3.5.7.3 Attribute Conflicts

Zyacc evaluates the values of inherited attributes during parsing. If the value of an inherited
attribute cannot be evaluated unambiguously, then Zyacc signals an attribute conflict.

Consider rules like the following:
s(%in int $a)

: a($a + 1)
| a($a + 2)

When the parser is in a state where it is looking for a s, it is clearly also in a state where it is
looking for a a. It needs to evaluate the inherited attribute for a, but without knowing which rule is
going to succeed (which may require unbounded lookahead), it does not know whether to evaluate
it as $a + 1 or $a + 2. This attribute value conflict is reported as an error by zyacc.

In the limited experience obtained so far with Zyacc, attribute conflicts are usually not much of
a problem to work around. A common situation is the following:

s
:a(l)
| a(1)

Here there is really no conflict because equal attribute values are being passed to both uses of a.

However, since Zyacc does not understand any C it does not know that the two values are equal
and signals a attribute conflict. A simple workaround is to use:

S
cal ...
| al ...

al
: a(l)

This workaround is similar to the workaround needed in yacc when a reduce-reduce conflict arises
because identical internal actions in same rules are reduced in the same state (see Section 5.6
[Reduce/Reduce], page 67).

3.5.8 Semantic Tests

It is often necessary to make a parsing decision based on the semantics of what is being parsed.
Though generic yacc does not allow the semantics to affect the parse, Zyacc does provide a method
by which the outcome of runtime semantic tests can affect parsing decisions.
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We first present a prototypical example where semantic tests are useful in making a parsing
decision. We then present the details of how semantic tests operate. Finally, we present another
example where semantic tests can be used to implement dynamically defined operator precedences
and associativity. Another example of the use of semantic tests can be found in the lazycalc
program in the tutorial section (see Section 2.7 [Lazy Calc], page 29).

3.5.8.1 A Prototypical Example

Consider a language which uses an expression like identifier (arguments) to express both a
function call and indexing of a array. Consider writing a 1-pass compiler for this language using
a on-the-fly code-generation strategy (the parser emits the code as it parses). Since different code
would need to be emitted for indexing an array versus passing arguments to a function, the parser
would need to distinguish between the two situations before the arguments are parsed. However,
since both situations are syntactically identical, the parser would require semantic information to
disambiguate between them. Within the limited facilities of yacc, the programmer typically resorts
to a time-honored lexical hack: if the scanner is about to deliver an identifier, it looks ahead to
see if the next token is a left parenthesis; if so, it looks up the symbol table and deliver either a
FUNCTION_ID_TOK or ARRAY_ID_TOK depending on the kind of the identifier. In contrast, zyacc can
use the following schema, to solve this problem:

exp
: fnID ’(’ indexExplList ’)’
| arrayID ’(’ fnArgList ’)’

fnID
: ID_TOK($id) %test(idKind($id) == FN_KIND)
arrayID
: ID_TOK($id) %test(idKind($id) =

2

ARRAY_KIND)

In the above we have assumed that the terminal ID_TOK has a single %out attribute containing
the identifier, and idKind () which returns the current kind of an identifier is part of the interface
to the symbol-table. The symbol table lookup has been shifted into the parser and any required
lookahead analysis is handled by the parser generator.

Similar syntactic ambiguities occur in many languages. One of the more notorious is the typedef
problem in C, where a typedef identifier is redefined within an inner scope (see Section 7.1 [Se-
mantic Tokens], page 73). Lexical hacks for that situation are rather complex and/or incorrect. It
is possible that the above %test facility could provide a relatively clean solution.

3.5.8.2 Semantic Test Detalils

Syntactically, each occurrence of a %test (E) can be regarded as a unique empty nonterminal.

The expression E within the %test (E) can be any C-expression. If the value of the test ex-
pression is 0, then the test fails, otherwise it succeeds. If the test expression contains attribute
variables, then those attribute variables are required to have had a previous defining occurrence
in the rule (this restriction may be lifted in the future to allow the programmer to write tests like
htest (($result= expensiveLookup()) == SOME_VALUE)).
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When the parser enters a particular state, all the applicable %tests for that state are executed
sequentially in the order of their occurrence in the source program. If any of these %tests succeed,
then the parser changes state as though it had succeeded in parsing the nonterminal corresponding
to the succeeding %test. If all the %tests fail, then the parser takes whatever action it would have
taken if rules with the applicable %tests had been deleted from that state.

When executing %tests, zyacc guarantees that its lookahead yychar is well-defined. This makes
it possible to let the semantic actions in a %test refer to the lookahead.

3.5.8.3 Semantic Test Example

The fact that the lookahead token yychar is well-defined whenever a %test is evaluated makes
possible the following overkill for the classic arithmetic expression grammar:

1 /* Test for %tests. Resolve operator priorities using %tests. */
%token <val>(int $v) DIGIT

h{
#include <ctype.h>
#include <stdio.h>

XN O WN

©

static unsigned char pri[128];
10 void yyerror();
11 int yylex();

12

13 enum { ADD_P= 1, MULT_P, UMINUS_P };
14

15 %}

16

17 Wh

18 Lines

19 : Lines Exp($v) ’\n’ { printf("%d\n", $v); }
20 | error ’\n’

21 | /* empty */

22 ;

23 Exp(int $v)

24 Exp($vl) ’+’ Exp($v2) Ytest(pri[’+’] >= prilyychar])
25 { $v= $v1 + $v2; }

26 | Exp($vl) ’-’ Exp($v2) Ytest(pri[’-’] >= prilyychar])
27 { $v= $v1 - $v2; }

28 | Exp($vl) ’x’ Exp($v2) Ytest(pri[’*’] >= prilyychar])
29 { $v= $v1 * $v2; 7}

30 | Exp($vl) ’/’ Exp($v2) Ytest(pri[’/’] >= prilyychar])
31 { $v= 8v1 / $v2; }

32 | >-’ Exp($vl) %test(UMINUS_P >= prilyychar])

33 { $v= -8vi; }

34 | ’+’ Exp($vl) %test (UMINUS_P >= prilyychar])

35 { $v= $vi; }

36 | DIGIT($v)
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37 | 7 Exp($v) ’)’

38 ;

39

40 %k

41

42 int yylex() {

43  int c= getchar();

44  while (isspace(c) && c != ’\n’) c= getchar();
45 if (¢ == EOF) return O;

46  else if isdigit(c) { yylval.val.v= ¢ - ’0’; return DIGIT; }
47  else return c;

48 }

49

50 void yyerror(const char *s) {
51  printf("%s\n", s);

52 }

53

54 int main() {

55 pri[’+’]= pri[’-’]= ADD_P;
56 pri[’*’]= pri[’/’]= MULT_P;
57 return yyparse(Q);

58 }

The code above examines the lookahead to instruct the parser whether to shift or to reduce
(see Chapter 5 [Algorithm], page 62). The rules for the operators on lines 23 through 36 decide to
reduce if the operator involved in the rule has priority greater than or equal to the priority of the
incoming symbol in yychar. Otherwise the lookahead is shifted.

The usual method for parsing arithmetic expressions is to either use multiple levels of nonter-
minals like exp, term, factor to specify the precedence levels, or to specify static disambiguating
priorities for the operators using yacc’s %left, %right and %nonassoc declarations (see Section 2.2
[Infix Calc], page 15). The method in the example is similar to the second alternative but disam-
biguates dynamically using the operator priorities at parse time. This makes it possible to write
parsers for languages whose syntax can vary during parsing. The Prolog parser distributed with
this package uses the ideas outlined by the above example.

3.6 Zyacc Declarations

The Zyacc declarations section of a Zyacc grammar defines the symbols used in formulating the
grammar and the data types of semantic values. See Section 3.2 [Symbols|, page 32. Additionally,
a %look directive is allowed within each grammar rule to declare the lookahead properties of the
grammar rule (see Section 3.6.11 [Specifying the Lookahead], page 52).

All token type names (but not single-character literal tokens such as ’+’ and ’#*’) must be
declared. Nonterminal symbols must be declared if you need to specify which data type to use
for the semantic value (see Section 3.5.2 [More Than One Value Type], page 35) from a explicit
%union declaration; you should not declare the types of a non-terminal if it uses named attributes
(see Section 3.5.6 [Named Attributes], page 39).
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The first rule in the file also specifies the start symbol, by default. If you want some other symbol
to be the start symbol, you must declare it explicitly (see Section 1.1 [Languages and Context-Free
Grammars|, page 3).

3.6.1 Token Type Names

The basic way to declare a token type name (terminal symbol) is as follows:
#token name
Zyacc will convert this into a #define directive in the parser, so that the function yylex (if it
is in this file) can use the name name to stand for this token type’s code.
Alternatively, you can use %left, %right, or %nonassoc instead of % token, if you wish to specify
precedence. See Section 3.6.2 [Operator Precedence], page 47.
You can explicitly specify the numeric code for a token type by appending an integer value in
the field immediately following the token name:
%token NUM_TOK 300
It is generally best, however, to let Zyacc choose the numeric codes for all token types. Zyacc will
automatically select codes that don’t conflict with each other or with ASCII characters.

In the event that the stack type is a union, you must augment the %token or other token
declaration to include the data type alternative delimited by angle-brackets (see Section 3.5.2
[More Than One Value Type], page 35).

For example:

hunion { /* define stack type */
double val;
symrec *tptr;
}
htoken <val> NUM_TOK /* define token NUM_TOK and its type */

3.6.2 Operator Precedence

Use the %left, %right or %nonassoc declaration to declare a token and specify its precedence
and associativity, all at once. These are called precedence declarations. See Section 5.3 [Operator
Precedence], page 64, for general information on operator precedence.

The syntax of a precedence declaration is the same as that of %token: either

%left symbols...
or
hleft <type> symbols...

And indeed any of these declarations serves the purposes of %token. Like %token, they also allow
alternate names for a token so that a token can be referred to using a multi-character literal name
within the grammar file. But in addition, they specify the associativity and relative precedence for
all the symbols:

e The associativity of an operator op determines how repeated uses of the operator nest: whether
‘x op y op 7z’ is parsed by grouping x with y first or by grouping y with z first. %left specifies
left-associativity (grouping x with y first) and %right specifies right-associativity (grouping y
with z first). %nonassoc specifies no associativity, which means that ‘x op y op 7z’ is considered
a syntax error.
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e The precedence of an operator determines how it nests with other operators. All the tokens
declared in a single precedence declaration have equal precedence and nest together according
to their associativity. When two tokens declared in different precedence declarations associate,
the one declared later has the higher precedence and is grouped first.

3.6.3 Multi-Character Literal Tokens

Zyacc allows you to specify both a literal name for a token as well as an identifier (as above).
Zyacc consistently uses single quotes to delimit literal names (as opposed to Bison’s use of single
quotes for single character literals and double quotes for multi-character literals). Within the
declaration, the two alternate names for a token may occur in either order, separated by a ‘=’. This
allows you to refer to a token internally within the grammar file using the possibly more readable
literal name, while using the identifier name to refer to the token in other files. For example, in

hleft ’<<=? = LSH_ASSGN RSH_ASSGN = ’>>=’ 300

%token <lineNum> ’for’ = FOR_TOK
the first declaration defines two tokens. The first token has two alternate names ’><<=’ and LSH_
ASSGN; since a value has not been specified for it, Zyacc will choose a value. The second token has
two alternate names RSH_ASSGN and ’>>=’. Its value has been specified as 300.

The second declaration illustrates the fact that the alternate names can even be used with
declarations which involve a <type> tag.

With the above declarations the grammar can contain rules like:

stmt
’for’ ’(’ exp ’;’ exp ’;’ exp ’)’ stmt
exp
: exp <<=’ exp
| exp ’>>=’ exp
Whether the above is more readable than the alternative using LSH_ASSGN, RSH_ASSGN and FOR_TOK
is a matter of personal preference.

3.6.4 The Collection of Value Types

The %union declaration specifies the entire collection of possible data types for semantic values.
The keyword %union is followed by a pair of braces containing the same thing that goes inside a
union in C.

For example:

J%union {
double val;
symrec *tptr;
}
This says that the two alternative types are double and symrec *. They are given names val and
tptr; these names are used in the %token and %type declarations to pick one of the types for a
terminal or nonterminal symbol (see Section 3.6.5 [Nonterminal Symbols], page 49).

Note that, unlike making a union declaration in C, you do not write a semicolon after the closing

brace.
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3.6.5 Nonterminal Symbols

When you use %union to specify multiple value types, you must declare the value type of each
nonterminal symbol for which values are used. This is done with a %type declaration, like this:

htype <type> nonterminal. ..

Here nonterminal is the name of a nonterminal symbol, and type is the name given in the union
to the alternative that you want (see Section 3.6.4 [The Collection of Value Types|, page 48). You
can give any number of nonterminal symbols in the same %type declaration, if they have the same
value type. Use spaces to separate the symbol names.

3.6.6 Suppressing Conflict Warnings

Zyacc normally warns if there are any conflicts in the grammar (see Section 5.2 [Shift/Reduce
Conflicts], page 63), but most real grammars have harmless shift /reduce conflicts which are resolved
in a predictable way and would be difficult to eliminate. It is desirable to suppress the warning
about these conflicts unless the number of conflicts changes. You can do this with the %expect
declaration.

The declaration looks like this:
hexpect n
Here n is a decimal integer. The declaration says there should be no warning if there are n

shift /reduce conflicts and no reduce/reduce conflicts. The usual warning is given if there are either
more or fewer conflicts, or if there are any reduce/reduce conflicts.

In general, using %expect involves these steps:

e Compile your grammar without %expect. Use the ‘-v’ option to get a verbose list of where

the conflicts occur. Zyacc will also print the number of conflicts.

e Check each of the conflicts to make sure that Zyacc’s default resolution is what you really
want. If not, rewrite the grammar and go back to the beginning.

e Add an %expect declaration, copying the number n from the number which Zyacc printed.

Now Zyacc will stop annoying you about the conflicts you have checked, but it will warn you
again if changes in the grammar result in additional conflicts.

3.6.7 The Start-Symbol

Zyacc assumes by default that the start symbol for the grammar is the first nonterminal specified
in the grammar specification section. The programmer may override this restriction with the Jstart
declaration as follows:

hstart symbol

3.6.8 Multiple Start Symbols

Unlike other yaccs, Zyacc allows the user to declare more than one start nonterminal. If the user
does so, then #define statements are added to the generated parser for each start nonterminal and
the programmer can call the generated parser function (see Section 4.1 [Parser Function], page 54)
with its first parameter set to the desired start nonterminal. If a pure parser has also been requested
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using the pure_parser directive (see Section 4.2.4 [Pure Calling], page 57), then the additional
arguments for the pure parser follow the start nonterminal in the argument list for the parsing
function.

The following example uses this feature to parse a line as either a prefix, infix or suffix arithmetic
expression depending on the first character in the line. It accepts lines like the following:
i(1+2)*3+4
s12+3*4+
p+*+1234
The grammar uses the %1look directive (see Section 3.6.11 [Specifying the Lookahead], page 52)
to ensure that the lookahead is clear after each call to the parsing function. Here it is:

hstart infix, prefix, suffix

D
infix
: iExp ’\n’ %look(0) { return $1; }
iExp
: iExp ’+’ iTerm { $$= $1 + $3; }
| iTerm
iTerm
: iTerm ’*’ iFactor { $$= $1 * $3; }
| iFactor
iFactor
: digit
| >C iExp ’)’ { $%$= $2; }

digit

0’ { $%=0; }
I 21 { $8=1; }
I 22> { $8= 2; }
| >3 { $%=3; }
| °4> { $%=4; }
| 5> { $%$=5; }
| >6” { $%$=6; }
I 27 { 88=17; %
| 8> { $$= 8; }
I 79> { $8= 9; }

prefix

: pExp ’\n’ %look(0) { return $1; }
PExp
>+’ pExp pExp { $$= $2 + $3; }
| ’x’ pExp pExp { $$= $2 * $3; }
| digit
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2

suffix

: sExp ’\n’ %look(0) { return $1; }
sExp

: sExp sExp ’+’ { $%= $1 + $2; }

| sExp sExp ’**’ { $$= $1 * $2; }

| digit

2

The scanner function simply returns the next non-blank input character. The parser driver
shown below decides on which start nonterminal to use depending on the first character of each
input line:

int main()
/* Call infix grammar if line starts with ’i’; suffix grammar if line
* starts with a ’s’; prefix grammar if line starts with a 'p’.

*/
{
int c;
while ((c= getchar()) !'= EOF) {
int z= yyparse(c == ’i’ 7 infix : (c == ’s’ 7 suffix : prefix));
printf ("%d\n", z);
}
return O;
}

3.6.9 A Pure (Reentrant) Parser

A reentrant program is one which does not alter in the course of execution; in other words,
it consists entirely of pure (read-only) code. Reentrancy is important whenever asynchronous
execution is possible; for example, a nonreentrant program may not be safe to call from a signal
handler. In systems with multiple threads of control, a nonreentrant program must be called only
within interlocks.

The Zyacc parser is not normally a reentrant program, because it uses statically allocated
variables for communication with yylex. These variables include yylval and yylloc.

The Zyacc declaration jpure_parser says that you want the parser to be reentrant. It looks
like this:

Jipure_parser

The effect is that the two communication variables become local variables in yyparse, and
a different calling convention is used for the lexical analyzer function yylex. See Section 4.2.4
[Calling Conventions for Pure Parsers|, page 57, for the details of this. The variable yynerrs also
becomes local in yyparse (see Section 4.3 [The Error Reporting Function yyerror]|, page 59). The
convention for calling yyparse itself is unchanged.



Chapter 3: Zyacc Grammar Files

3.6.10 Option Declaration

The Zyacc declarations section can contain %option directives followed by command-line options
using only the form with long option names (see Chapter 9 [Invoking Zyacc|, page 86), with any
option value specified within the same word as the option name. The options actually specified
on the command-line override the options specified in the source file using this directive. %option
directives must precede all other directives.

3.6.11 Specifying the Lookahead

When a Zyacc grammar rule is reduced, the parser may or may not require a lookahead token
from the scanner before it can make the reduction decision. This can make a difference is situations
where the scanner and parser are very tightly coupled, as when they are both accessing the same
file. Typically, one needs to look at the generated parser description file(s) to check the relative
states of the parser and scanner. Zyacc provides the %look directive to automate this process.

Unlike other declarations, %1look declarations occur within the rules in section 2 of the source
file. If the body of a rule contains the declaration %1look(0), then that specifies that the rule is
always reduced in a context which does not require a lookahead token from the scanner. If the body
of a rule contains the declaration %1look (1), then that specifies that the rule is always reduced in a
context which does require a lookahead token from the scanner. If these specifications are violated,
then Zyacc outputs a warning message at parser generation time.

The advantage of these declarations is that it makes grammars more maintainable. Rather than
having to manually redo an involved analysis regarding lookahead decisions each time a grammar
is modified, Zyacc does the analysis whenever it processes the grammar and reports any violations.

An example of the use of the %1ook(0) directive to ensure that the lookahead is clear before
the parsing function returns can be found in Section 3.6.8 [Multiple Start Symbols], page 49.

3.6.12 Zyacc Declaration Summary

Here is a summary of all Zyacc declarations:

Junion Declare the collection of data types that semantic values may have (see Section 3.6.4
[The Collection of Value Types], page 48).

htoken Declare a terminal symbol (token type name) with no precedence or associativity spec-
ified (see Section 3.6.1 [Token Type Names], page 47).

Jright Declare a terminal symbol (token type name) that is right-associative (see Section 3.6.2
[Operator Precedence], page 47).

hleft Declare a terminal symbol (token type name) that is left-associative (see Section 3.6.2
[Operator Precedence], page 47).

Jnonassoc
Declare a terminal symbol (token type name) that is nonassociative (using it in a way
that would be associative is a syntax error) (see Section 3.6.2 [Operator Precedence],
page 47).

htype Declare the type of semantic values for a nonterminal symbol (see Section 3.6.5 [Non-
terminal Symbols], page 49).
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hstart Specify the grammar’s start symbol (see Section 3.6.7 [The Start-Symbol], page 49).

hexpect  Declare the expected number of shift-reduce conflicts (see Section 3.6.6 [Suppressing
Conflict Warnings|, page 49).

Jipure_parser
Request a pure (reentrant) parser program (see Section 3.6.9 [A Pure (Reentrant)
Parser], page 51).

hoption  Specify a command-line option from within the grammar file (see Section 3.6.10 [Option
Decl], page 52).

3.7 Multiple Parsers in the Same Program

Most programs that use Zyacc parse only one language and therefore contain only one Zyacc
parser. But what if you want to parse more than one language with the same program? Then you
need to avoid a name conflict between different definitions of yyparse, yylval, and so on.

The easy way to do this is to use the option ‘~p prefix’ (see Chapter 9 [Invoking Zyacc], page 86).
This renames the interface functions and variables of the Zyacc parser to start with prefix instead
of ‘yy’. You can use this to give each parser distinct names that do not conflict.

The precise list of symbols renamed is yyparse, yylex, yyerror, yynerrs, yylval, yychar and
yydebug. For example, if you use ‘-p c’, the names become cparse, clex, and so on.

All the other variables and macros associated with Zyacc are not renamed. These others are not
global; there is no conflict if the same name is used in different parsers. For example, YYSTYPE is not
renamed, but defining this in different ways in different parsers causes no trouble (see Section 3.5.1
[Data Types of Semantic Values], page 35).
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4 Parser C-Language Interface

The Zyacc parser is actually a C function named yyparse. Here we describe the interface
conventions of yyparse and the other functions that it needs to use.

Keep in mind that the parser uses many C identifiers starting with ‘yy’ and ‘YY’ for internal
purposes. If you use such an identifier (aside from those in this manual) in an action or in additional
C code in the grammar file, you are likely to run into trouble.

4.1 The Parser Function yyparse

You call the function yyparse to cause parsing to occur. This function reads tokens, executes
actions, and ultimately returns when it encounters end-of-input or an unrecoverable syntax error.
You can also write an action which directs yyparse to return immediately without reading further.

The value returned by yyparse is 0 if parsing was successful (return is due to end-of-input).
The value is 1 if parsing failed (return is due to a syntax error).

In an action, you can cause immediate return from yyparse by using these macros:
YYACCEPT Return immediately with value 0 (to report success).
YYABORT  Return immediately with value 1 (to report failure).

4.2 The Lexical Analyzer Function yylex

The lexical analyzer function, yylex, recognizes tokens from the input stream and returns them
to the parser. Zyacc does not create this function automatically; you must write it so that yyparse
can call it. The function is sometimes referred to as a lexical scanner.

In simple programs, yylex is often defined at the end of the Zyacc grammar file. If yylex is
defined in a separate source file, you need to arrange for the token-type macro definitions to be
available there. To do this, use the ‘-d’ option when you run Zyacc, so that it will write these macro
definitions into a separate header file ‘name.tab.h’ which you can include in the other source files
that need it. See Chapter 9 [Invoking Zyacc|, page 86.

4.2.1 Calling Convention for yylex

The value that yylex returns must be the numeric code for the type of token it has just found,
or 0 for end-of-input.

When a token is referred to in the grammar rules by a name, that name in the parser file becomes
a C macro whose definition is the proper numeric code for that token type. So yylex can use the
name to indicate that type. See Section 3.2 [Symbols|, page 32.

When a token is referred to in the grammar rules by a character literal, the numeric code for
that character is also the code for the token type. So yylex can simply return that character code.
The null character must not be used this way, because its code is zero and that is what signifies
end-of-input.

Here is an example showing these things:



Chapter 4: Parser C-Language Interface

yylex ()
{
if (c == EOF) /* Detect end of file. */
return O;
if (¢ ==+’ || c == *=?)
return c; /* Assume token type for ‘+’ is ’+’. x/
return INT; /* Return the type of the token. */
}

This interface has been designed so that the output from the 1lex utility can be used without change
as the definition of yylex.

This interface changes if the %pure directive is used to generate a pure_parser parser (see Sec-
tion 4.2.4 [Pure Calling], page 57).

4.2.2 Semantic Values of Tokens

In an ordinary (nonreentrant) parser, the semantic value of the token must be stored into the
global variable yylval. When you are using just one data type for semantic values, yylval has
that type. Thus, if the type is int (the default), you might write this in yylex:

yylval = value; /* Put value onto Zyacc stack. */
return INT; /* Return the type of the token. */

When you are using multiple data types, yylval’s type is a union made from the junion
declaration (see Section 3.6.4 [The Collection of Value Types], page 48). So when you store a
token’s value, you must use the proper member of the union. If the %union declaration looks like
this:

J%union {
int intval;
double val;
symrec *tptr;
}
then the code in yylex might look like this:

yylval.intval = value; /* Put value onto Zyacc stack. */
return INT; /* Return the type of the token. */

4.2.3 Textual Positions of Tokens

If you are using the ‘@n’-feature (see Section 4.4 [Special Features for Use in Actions], page 59)
in actions to keep track of the textual locations of tokens and groupings, then you must provide
this information in yylex. The function yyparse expects to find the textual location of a token
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just parsed in the global variable yylloc. So yylex must store the proper data in that variable.
The value of yylloc is a structure and you need only initialize the members that are going to be
used by the actions. The four members are called first_line, first_column, last_line and
last_column. Note that the use of this feature makes the parser noticeably slower. This feature
has not currently been tested.

The data type of yylloc has the name YYLTYPE.

Here is a simple example to illustrate the use of this feature. The following grammar accepts
lists consisting of only balanced parentheses. For each top-level list, it prints out its starting and
ending coordinates. For example, for the inputs:

cC))

¢ )
¢ )
)

it would print out

(1, 2) -- (1, 9
(3, 0) -- (5, 2)
Here is the program:
o
s
: s list
{ printf("(%d, %d) -—- (4d, %d)\n", @2.first_line, @2.first_column,
@2.last_line, 02.last_column);
}
| /* empty */
| error
list
?(? listSeq ’)’
| )() ’)’

listSeq
: listSeq list
| list

/YA

static void yyerror(s)
const char *s;
{
printf ("%s\n", s);
}

static int lineN= 1;
static int colN= 0;
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int
yylex() {
int c;
while (isspace(c= getchar())) {
if (¢ == ’\n’) {
lineN++; collN= O;
}
else {
COLN++;
+
+
if (¢ == EOF) return O;
yylloc.first_line= yylloc.last_line= lineN;
yylloc.first_column= colN; yylloc.last_column= ++colN;
return c;

int
main() {
return yyparse();

}

4.2.4 Calling Conventions for Pure Parsers

When you use the Zyacc declaration jpure_parser to request a pure, reentrant parser, the
global communication variables yylval and yylloc cannot be used. (See Section 3.6.9 [A Pure
(Reentrant) Parser], page 51.) In such parsers the two global variables are replaced by pointers
passed as arguments to yylex. You must declare them as shown here, and pass the information
back by storing it through those pointers.

yylex (1lvalp, llocp)
YYSTYPE *lvalp;
YYLTYPE *1locp;

xlvalp = value; /* Put value onto Zyacc stack. */
return INT; /* Return the type of the token. */

}...

If the grammar file does not use the ‘@ constructs to refer to textual positions, then the type
YYLTYPE will not be defined. In this case, omit the second argument; yylex will be called with only
one argument.

?

You can pass parameter information to a reentrant parser in a reentrant way. Define the macro
YYPARSE_PARAM as a variable name. The resulting yyparse function then accepts one argument, of
type void *, with that name.
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When you call yyparse, pass the address of an object, casting the address to void *. The
grammar actions can refer to the contents of the object by casting the pointer value back to its
proper type and then dereferencing it. Here’s an example. Write this in the parser:

YAl
struct parser_control
{

int nastiness;

int randomness;

};

#define YYPARSE_PARAM parm
h}
Then call the parser like this:

struct parser_control

{
int nastiness;
int randomness;
s
{
struct parser_control foo;
/* Store proper data in foo. */
value = yyparse ((void *) &foo);
}

In the grammar actions, use expressions like this to refer to the data:
((struct parser_control *) parm)->randomness

If you wish to pass the additional parameter data to yylex, define the macro YYLEX_PARAM just
like YYPARSE_PARAM, as shown here:

A
struct parser_control
{

int nastiness;

int randomness;

};

#define YYPARSE_PARAM parm
#define YYLEX_PARAM parm
h}

You should then define yylex to accept one additional argument—the value of parm. (This
makes either two or three arguments in total, depending on whether an argument of type YYLTYPE
is passed.) You can declare the argument as a pointer to the proper object type, or you can declare
it as void * and access the contents as shown above.
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4.3 The Error Reporting Function yyerror

The Zyacc parser detects a parse error or syntax error whenever it reads a token which cannot
satisfy any syntax rule. A action in the grammar can also explicitly proclaim an error, using the
macro YYERROR (see Section 4.4 [Special Features for Use in Actions], page 59).

The Zyacc parser expects to report the error by calling an error reporting function named
yyerror, which you must supply. It is called by yyparse whenever a syntax error is found, and it
receives one argument. For a parse error, the string is normally "parse error".

If you define the macro YYERROR_VERBOSE in the Zyacc declarations section (see Section 3.1.2
[The Zyacc Declarations Section], page 31), then Zyacc provides a more verbose and specific error
message string instead of just plain "parse error". It doesn’t matter what definition you use for
YYERROR_VERBOSE, just whether you define it. YYERROR_VERBOSE is not currently implemented;
possibly a more general version of it will be implemented in a future version of Zyacc.

The parser can detect one other kind of error: stack overflow. This happens when the input con-
tains constructions that are very deeply nested. It isn’t likely you will encounter this, since the Zyacc
parser extends its stack automatically up to a very large limit. But if overflow happens, yyparse
calls yyerror in the usual fashion, except that the argument string is "parser stack overflow".

The following definition suffices in simple programs:

yyerror (s)
char *s;
{
fprintf (stderr, "%s\n", s);
}
After yyerror returns to yyparse, the latter will attempt error recovery if you have written

suitable error recovery grammar rules (see Chapter 6 [Error Recovery], page 71). If recovery is
impossible, yyparse will immediately return 1.

The variable yynerrs contains the number of syntax errors encountered so far. Normally this
variable is global; but if you request a pure parser (see Section 3.6.9 [A Pure (Reentrant) Parser],
page 51) then it is a local variable which only the actions can access.

4.4 Special Features for Use in Actions

Here is a table of Zyacc constructs, variables and macros that are useful in actions.

‘% Acts like a variable that contains the semantic value for the grouping made by the
current rule. See Section 3.5.3 [Actions], page 35.

‘$n’ Acts like a variable that contains the semantic value for the nth component of the
current rule. See Section 3.5.3 [Actions], page 35.

‘$<typealt>$’
Like $$ but specifies alternative typealt in the union specified by the %union declara-
tion. See Section 3.5.4 [Data Types of Values in Actions|, page 36.

‘$<typealt>n’
Like $n but specifies alternative typealt in the union specified by the %union declara-
tion. See Section 3.5.4 [Data Types of Values in Actions|, page 36.
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‘YYABORT;’

‘YYACCEPT;’

‘YYBACKUP (

‘YYEMPTY’

‘YYERROR;’

Return immediately from yyparse, indicating failure. See Section 4.1 [The Parser
Function yyparse|, page 54.

Return immediately from yyparse, indicating success. See Section 4.1 [The Parser
Function yyparse], page 54.

token, value) ;’

Unshift a token. This macro is allowed only for rules that reduce a single value, and
only when there is no look-ahead token. It installs a look-ahead token with token type
token and semantic value value; then it discards the value that was going to be reduced
by this rule.

If the macro is used when it is not valid, such as when there is a look-ahead token
already, then it reports a syntax error with a message ‘cannot back up’ and performs
ordinary error recovery.

In either case, the rest of the action is not executed.

Value stored in yychar when there is no look-ahead token.

Cause an immediate syntax error. This statement initiates error recovery just as if the
parser itself had detected an error; however, it does not call yyerror, and does not
print any message. If you want to print an error message, call yyerror explicitly before
the ‘YYERROR;’ statement. See Chapter 6 [Error Recovery|, page 71.

‘YYRECOVERING’

‘yychar’

This macro stands for an expression that has the value 1 when the parser is recovering
from a syntax error, and 0 the rest of the time. See Chapter 6 [Error Recovery], page 71.

Variable containing the current look-ahead token. (In a pure parser, this is actually a
local variable within yyparse.) When there is no look-ahead token, the value YYEMPTY
is stored in the variable. See Section 5.1 [Look-Ahead Tokens], page 62.

‘yyclearin;’

‘yyerrok;’

4@117

Discard the current look-ahead token. This is useful primarily in error rules. See
Chapter 6 [Error Recovery]|, page 71.

Resume generating error messages immediately for subsequent syntax errors. This is
useful primarily in error rules. See Chapter 6 [Error Recovery], page 71.

Acts like a structure variable containing information on the line numbers and column
numbers of the nth component of the current rule. The structure has four members,
like this:
struct {
int first_line, last_line;
int first_column, last_column;
};

Thus, to get the starting line number of the third component, use ‘@3.first_line’.
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In order for the members of this structure to contain valid information, you must make
yylex supply this information about each token. If you need only certain members,
then yylex need only fill in those members.

The use of this feature makes the parser noticeably slower.
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5 The Zyacc Parser Algorithm

As Zyacc reads tokens, it pushes them onto a stack along with their semantic values. The stack
is called the parser stack. Pushing a token is traditionally called shifting.

For example, suppose the infix calculator has read ‘1 + 5 *¥’, with a ‘3’ to come. The stack will
have four elements, one for each token that was shifted.

But the stack does not always have an element for each token read. When the last n tokens
and groupings shifted match the components of a grammar rule, they can be combined according
to that rule. This is called reduction. Those tokens and groupings are replaced on the stack by a
single grouping whose symbol is the result (left hand side) of that rule. Running the rule’s action is
part of the process of reduction, because this is what computes the semantic value of the resulting
grouping.

For example, if the infix calculator’s parser stack contains this:
1+5 %3

and the next input token is a newline character, then the last three elements can be reduced to 15
via the rule:

expr: expr ’*’ expr;
Then the stack contains just these three elements:
1+ 15

At this point, another reduction can be made, resulting in the single value 16. Then the newline
token can be shifted.

The parser tries, by shifts and reductions, to reduce the entire input down to a single group-
ing whose symbol is the grammar’s start-symbol (see Section 1.1 [Languages and Context-Free
Grammars|, page 3).

This kind of parser is known in the literature as a bottom-up parser.

5.1 Look-Ahead Tokens

The Zyacc parser does not always reduce immediately as soon as the last n tokens and groupings
match a rule. This is because such a simple strategy is inadequate to handle most languages.
Instead, when a reduction is possible, the parser sometimes “looks ahead” at the next token in
order to decide what to do.

When a token is read, it is not immediately shifted; first it becomes the look-ahead token, which
is not on the stack. Now the parser can perform one or more reductions of tokens and groupings
on the stack, while the look-ahead token remains off to the side. When no more reductions should
take place, the look-ahead token is shifted onto the stack. This does not mean that all possible
reductions have been done; depending on the token type of the look-ahead token, some rules may
choose to delay their application.

Here is a simple case where look-ahead is needed. These three rules define expressions which
contain binary addition operators and postfix unary factorial operators (‘!’), and allow parentheses
for grouping.
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expr

: term ’+’ expr

| term

term
) ( ) expr ’) )
| term ’!°
| NUMBER
Suppose that the tokens ‘1 + 2’ have been read and shifted; what should be done? If the following

token is ‘)7, then the first three tokens must be reduced to form an expr. This is the only valid
course, because shifting the ‘)’ would produce a sequence of symbols term ?)’, and no rule allows
this.

If the following token is ‘!’, then it must be shifted immediately so that ‘2 !’ can be reduced to
make a term. If instead the parser were to reduce before shifting, ‘1 + 2’ would become an expr. It
would then be impossible to shift the ‘!’ because doing so would produce on the stack the sequence
of symbols expr ’!’. No rule allows that sequence.

The current look-ahead token is stored in the variable yychar. See Section 4.4 [Special Features
for Use in Actions|, page 59.

5.2 Shift /Reduce Conflicts

Suppose we are parsing a language which has if-then and if-then-else statements, with a pair of
rules like this:
if_stmt
: IF expr THEN stmt
| IF expr THEN stmt ELSE stmt

Here we assume that IF, THEN and ELSE are terminal symbols for specific keyword tokens.
When the ELSE token is read and becomes the look-ahead token, the contents of the stack

(assuming the input is valid) are just right for reduction by the first rule. But it is also legitimate
to shift the ELSE, because that would lead to eventual reduction by the second rule.

This situation, where either a shift or a reduction would be valid, is called a shift/reduce conflict.
Zyacc is designed to resolve these conflicts by choosing to shift, unless otherwise directed by operator
precedence declarations. To see the reason for this, let’s contrast it with the other alternative.

Since the parser prefers to shift the ELSE, the result is to attach the else-clause to the innermost
if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;

if x then do; if y then win (); else lose; end;

But if the parser chose to reduce when possible rather than shift, the result would be to attach
the else-clause to the outermost if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;
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if x then do; if y then win (); end; else lose;

The conflict exists because the grammar as written is ambiguous: either parsing of the simple
nested if-statement is legitimate. The established convention is that these ambiguities are resolved
by attaching the else-clause to the innermost if-statement; this is what Zyacc accomplishes by
choosing to shift rather than reduce. (It would ideally be cleaner to write an unambiguous grammar,
but that is very hard to do in this case.) This particular ambiguity was first encountered in the
specifications of Algol 60 and is called the “dangling else” ambiguity.

To avoid warnings from Zyacc about predictable, legitimate shift/reduce conflicts, use the
hexpect n declaration. There will be no warning as long as the number of shift/reduce conflicts is
exactly n. See Section 3.6.6 [Suppressing Conflict Warnings|, page 49.

The definition of if_stmt above is solely to blame for the conflict, but the conflict does not
actually appear without additional rules. Here is a complete Zyacc input file that actually manifests
the conflict:

stoken IF THEN ELSE variable
hte
stmt
! expr
| if_stmt
if_stmt
: IF expr THEN stmt
| IF expr THEN stmt ELSE stmt

expr: variable

5.3 Operator Precedence

Another situation where shift/reduce conflicts appear is in arithmetic expressions. Here shifting
is not always the preferred resolution; the Zyacc declarations for operator precedence allow you to
specify when to shift and when to reduce.

5.3.1 When Precedence is Needed

Consider the following ambiguous grammar fragment (ambiguous because the input ‘1 - 2 * 3’
can be parsed in two different ways):
expr
expr ’-’ expr
| expr ’x*’ expr
| expr ’<’ expr
| b ( b expr 7) )

Suppose the parser has seen the tokens ‘1’, ‘=’ and ‘2’; should it reduce them via the rule for the
addition operator? It depends on the next token. Of course, if the next token is ‘)’, we must
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reduce; shifting is invalid because no single rule can reduce the token sequence ‘- 2 )’ or anything
starting with that. But if the next token is ‘*’ or ‘<’; we have a choice: either shifting or reduction
would allow the parse to complete, but with different results.

To decide which one Zyacc should do, we must consider the results. If the next operator token
op is shifted, then it must be reduced first in order to permit another opportunity to reduce the
sum. The result is (in effect) ‘1 - (2 op 3)’. On the other hand, if the subtraction is reduced before
shifting op, the result is ‘(1 - 2) op 3’. Clearly, then, the choice of shift or reduce should depend
on the relative precedence of the operators ‘=’ and op: ‘*’ should be shifted first, but not ‘<’.

What about input such as ‘1 = 2 = 57; should this be ‘(1 - 2) - 5’ or should it be ‘1 - (2 - 5)’7
For most operators we prefer the former, which is called left association. The latter alternative,
right association, is desirable for assignment operators. The choice of left or right association is
a matter of whether the parser chooses to shift or reduce when the stack contains ‘1 - 2’ and the
look-ahead token is ‘~": shifting makes right-associativity.

5.3.2 Specifying Operator Precedence

Zyacc allows you to specify these choices with the operator precedence declarations %left and
hright. Each such declaration contains a list of tokens, which are operators whose precedence and
associativity is being declared. The %left declaration makes all those operators left-associative
and the %right declaration makes them right-associative. A third alternative is %nonassoc, which
declares that it is a syntax error to find the same operator twice “in a row”.

The relative precedence of different operators is controlled by the order in which they are de-
clared. The first %left or Jright declaration in the file declares the operators whose precedence
is lowest, the next such declaration declares the operators whose precedence is a little higher, and
SO on.

5.3.3 Precedence Examples

In our example, we would want the following declarations:
hleft <’
hleft ’-2
hleft ’x’
In a more complete example, which supports other operators as well, we would declare them in
groups of equal precedence. For example, ’+’ is declared with >-’:
hleft ’<> °>’ ’=> NE LE GE
hleft 47 =7
%left I x? 7/7
(Here NE and so on stand for the operators for “not equal” and so on. We assume that these tokens
are more than one character long and therefore are represented by names, not character literals.)

5.3.4 How Precedence Works

The first effect of the precedence declarations is to assign precedence levels to the terminal
symbols declared. The second effect is to assign precedence levels to certain rules: each rule gets
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its precedence from the last terminal symbol mentioned in the components. (You can also specify
explicitly the precedence of a rule. See Section 5.4 [Context-Dependent Precedence], page 66.)

Finally, the resolution of conflicts works by comparing the precedence of the rule being considered
with that of the look-ahead token. If the token’s precedence is higher, the choice is to shift. If
the rule’s precedence is higher, the choice is to reduce. If they have equal precedence, the choice
is made based on the associativity of that precedence level. The verbose output file made by ‘-v’
(see Chapter 9 [Invoking Zyacc|, page 86) says how each conflict was resolved.

Not all rules and not all tokens have precedence. If either the rule or the look-ahead token has
no precedence, then the default is to shift.

5.4 Context-Dependent Precedence

Often the precedence of an operator depends on the context. This sounds outlandish at first,
but it is really very common. For example, a minus sign typically has a very high precedence as a
unary operator, and a somewhat lower precedence (lower than multiplication) as a binary operator.

The Zyacc precedence declarations, %left, %right and %nonassoc, can only be used once for
a given token; so a token has only one precedence declared in this way. For context-dependent
precedence, you need to use an additional mechanism: the %prec modifier for rules.

The %prec modifier declares the precedence of a particular rule by specifying a terminal symbol
whose precedence should be used for that rule. It’s not necessary for that symbol to appear
otherwise in the rule. The modifier’s syntax is:

hprec terminal-symbol
and it is written after the components of the rule. Its effect is to assign the rule the precedence of
terminal-symbol, overriding the precedence that would be deduced for it in the ordinary way. The
altered rule precedence then affects how conflicts involving that rule are resolved (see Section 5.3
[Operator Precedence], page 64).

Here is how %prec solves the problem of unary minus. First, declare a precedence for a fictitious
terminal symbol named UMINUS. There are no tokens of this type, but the symbol serves to stand
for its precedence:

%left 2+ 2=
%left ’*’
%left UMINUS

Now the precedence of UMINUS can be used in specific rules:

exp
| exp -’ exp

| -’ exp %prec UMINUS

5.5 Parser States

The function yyparse is implemented using a finite-state machine. The values pushed on the
parser stack are not simply token type codes; they represent the entire sequence of terminal and
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nonterminal symbols at or near the top of the stack. The current state collects all the information
about previous input which is relevant to deciding what to do next.

Each time a look-ahead token is read, the current parser state together with the type of look-
ahead token are looked up in a table. This table entry can say, “Shift the look-ahead token.” In
this case, it also specifies the new parser state, which is pushed onto the top of the parser stack. Or
it can say, “Reduce using rule number n.” This means that a certain number of tokens or groupings
are taken off the top of the stack, and replaced by one grouping. In other words, that number of
states are popped from the stack, and one new state is pushed.

There is one other alternative: the table can say that the look-ahead token is erroneous in the
current state. This causes error processing to begin (see Chapter 6 [Error Recovery|, page 71).

5.6 Reduce/Reduce Conflicts

A reduce/reduce conflict occurs if there are two or more rules that apply to the same sequence
of input. This usually indicates a serious error in the grammar.

For example, here is an erroneous attempt to define a sequence of zero or more word groupings.

sequence
: /* empty */
{ printf ("empty sequence\n"); }
| maybeword
| sequence word
{ printf ("added word %s\n", $2); }

2

maybeword
. /* empty */
{ printf ("empty maybeword\n"); }
| word
{ printf ("single word %s\n", $1); }
The error is an ambiguity: there is more than one way to parse a single word into a sequence.
It could be reduced to a maybeword and then into a sequence via the second rule. Alternatively,
nothing-at-all could be reduced into a sequence via the first rule, and this could be combined with
the word using the third rule for sequence.

There is also more than one way to reduce nothing-at-all into a sequence. This can be done
directly via the first rule, or indirectly via maybeword and then the second rule.

You might think that this is a distinction without a difference, because it does not change
whether any particular input is valid or not. But it does affect which actions are run. One parsing
order runs the second rule’s action; the other runs the first rule’s action and the third rule’s action.
In this example, the output of the program changes.

Zyacc resolves a reduce/reduce conflict by choosing to use the rule that appears first in the

grammar, but it is very risky to rely on this. Every reduce/reduce conflict must be studied and
usually eliminated. Here is the proper way to define sequence:

sequence
: /* empty */
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{ printf ("empty sequence\n"); }
| sequence word
{ printf ("added word %s\n", $2); }
Here is another common error that yields a reduce/reduce conflict:
sequence
: /* empty */
| sequence words
| sequence redirects

2

words
: /* empty */
| words word

2

redirects
: /* empty */
| redirects redirect
The intention here is to define a sequence which can contain either word or redirect groupings.
The individual definitions of sequence, words and redirects are error-free, but the three together
make a subtle ambiguity: even an empty input can be parsed in infinitely many ways!

Counsider: nothing-at-all could be a words. Or it could be two words in a row, or three, or any
number. It could equally well be a redirects, or two, or any number. Or it could be a words
followed by three redirects and another words. And so on.

Here are two ways to correct these rules. First, to make it a single level of sequence:

sequence
: /* empty */
| sequence word
| sequence redirect
Second, to prevent either a words or a redirects from being empty:
sequence
. /* empty */
| sequence words
| sequence redirects

2

words
: word
| words word

2

redirects
: redirect
| redirects redirect
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5.7 Mysterious Reduce/Reduce Conflicts

Sometimes reduce/reduce conflicts can occur that don’t look warranted. Here is an example:
Jitoken ID

e
def
: param_spec return_spec ’,’
param_spec
! type
| name_list ’:’ type
return_spec
! type
| name ’:’ type
type
: ID
name
: ID
name_list
: name
| name ’,’ name_list
It would seem that this grammar can be parsed with only a single token of look-ahead: when
a param_spec is being read, an ID is a name if a comma or colon follows, or a type if another ID
follows. In other words, this grammar is LR(1).

However, Zyacc, like most parser generators, cannot actually handle all LR(1) grammars. In
this grammar, two contexts, that after an ID at the beginning of a param_spec and likewise at
the beginning of a return_spec, are similar enough that Zyacc assumes they are the same. They
appear similar because the same set of rules would be active—the rule for reducing to a name and
that for reducing to a type. Zyacc is unable to determine at that stage of processing that the rules
would require different look-ahead tokens in the two contexts, so it makes a single parser state
for them both. Combining the two contexts causes a conflict later. In parser terminology, this
occurrence means that the grammar is not LALR(1).

In general, it is better to fix deficiencies than to document them. But this particular deficiency
is intrinsically hard to fix; parser generators that can handle LR(1) grammars are hard to write
and tend to produce parsers that are very large. In practice, Zyacc is more useful as it is now.

When the problem arises, you can often fix it by identifying the two parser states that are being
confused, and adding something to make them look distinct. In the above example, adding one
rule to return_spec as follows makes the problem go away:
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%token BOGUS
hohh

return_spec

: type
| name ’:’ type

/* This rule is never used. */
I ID BOGUS

This corrects the problem because it introduces the possibility of an additional active rule in the
context after the ID at the beginning of return_spec. This rule is not active in the corresponding
context in a param_spec, so the two contexts receive distinct parser states. As long as the token
BOGUS is never generated by yylex, the added rule cannot alter the way actual input is parsed.

In this particular example, there is another way to solve the problem: rewrite the rule for
return_spec to use ID directly instead of via name. This also causes the two confusing contexts to
have different sets of active rules, because the one for return_spec activates the altered rule for
return_spec rather than the one for name.

param_spec

: type

| name_list ’:’ type
return_spec

: type

| ID ’:’ type

2

5.8 Stack Overflow, and How to Avoid It

The Zyacc parser stack can overflow if too many tokens are shifted and not reduced. When
this happens, the parser function yyparse returns a nonzero value, pausing only to call yyerror
to report the overflow.

By defining the macro YYMAXDEPTH, you can control how deep the parser stack can become
before a stack overflow occurs. Define the macro with a value that is an integer. This value is the
maximum number of tokens that can be shifted (and not reduced) before overflow. It must be a
constant expression whose value is known at compile time.

The stack space allowed is not necessarily allocated. If you specify a large value for YYMAXDEPTH,
the parser actually allocates a small stack at first, and then makes it bigger by stages as needed.
This increasing allocation happens automatically and silently. Therefore, you do not need to make
YYMAXDEPTH painfully small merely to save space for ordinary inputs that do not need much stack.

The default value of YYMAXDEPTH, if you do not define it, is 10000.

You can control how much stack is allocated initially by defining the macro YYINITDEPTH. This
value too must be a compile-time constant integer. The default is 200.
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6 Error Recovery

It is not usually acceptable to have a program terminate on a parse error. For example, a
compiler should recover sufficiently to parse the rest of the input file and check it for errors; a
calculator should accept another expression.

In a simple interactive command parser where each input is one line, it may be sufficient to
allow yyparse to return 1 on error and have the caller ignore the rest of the input line when that
happens (and then call yyparse again). But this is inadequate for a compiler, because it forgets all
the syntactic context leading up to the error. A syntax error deep within a function in the compiler
input should not cause the compiler to treat the following line like the beginning of a source file.

You can define how to recover from a syntax error by writing rules to recognize the special token
error. This is a terminal symbol that is always defined (you need not declare it) and reserved for
error handling. The Zyacc parser generates an error token whenever a syntax error happens; if
you have provided a rule to recognize this token in the current context, the parse can continue.

For example:

stmnts
: /* empty string */
| stmnts ’\n’
| stmnts exp ’\n’
| stmnts error ’\n’

The fourth rule in this example says that an error followed by a newline makes a valid addition

to any stmnts.

What happens if a syntax error occurs in the middle of an exp? The error recovery rule,
interpreted strictly, applies to the precise sequence of a stmnts, an error and a newline. If an error
occurs in the middle of an exp, there will probably be some additional tokens and subexpressions
on the stack after the last stmnts, and there will be tokens to read before the next newline. So the
rule is not applicable in the ordinary way.

But Zyacc can force the situation to fit the rule, by discarding part of the semantic context
and part of the input. First it discards states and objects from the stack until it gets back to a
state in which the error token is acceptable. (This means that the subexpressions already parsed
are discarded, back to the last complete stmnts.) At this point the error token can be shifted.
Then, if the old look-ahead token is not acceptable to be shifted next, the parser reads tokens and
discards them until it finds a token which is acceptable. In this example, Zyacc reads and discards
input until the next newline so that the fourth rule can apply.

The choice of error rules in the grammar is a choice of strategies for error recovery. A simple
and useful strategy is simply to skip the rest of the current input line or current statement if an
error is detected:

stmnt
: error ’;’ /% on error, skip until ’;’ is read */

It is also useful to recover to the matching close-delimiter of an opening-delimiter that has
already been parsed. Otherwise the close-delimiter will probably appear to be unmatched, and
generate another, spurious error message:

primary
1 (0 expr 1)
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| >’ error ’)’

Error recovery strategies are necessarily guesses. When they guess wrong, one syntax error often
leads to another. In the above example, the error recovery rule guesses that an error is due to bad
input within one stmnt. Suppose that instead a spurious semicolon is inserted in the middle of a
valid stmnt. After the error recovery rule recovers from the first error, another syntax error will
be found straightaway, since the text following the spurious semicolon is also an invalid stmnt.

To prevent an outpouring of error messages, the parser will output no error message for another
syntax error that happens shortly after the first; only after three consecutive input tokens have
been successfully shifted will error messages resume.

Note that rules which accept the error token may have actions, just as any other rules can.

You can make error messages resume immediately by using the macro yyerrok in an action. If
you do this in the error rule’s action, no error messages will be suppressed. This macro requires no
arguments; ‘yyerrok;’ is a valid C statement.

The previous look-ahead token is reanalyzed immediately after an error. If this is unacceptable,
then the macro yyclearin may be used to clear this token. Write the statement ‘yyclearin;’ in
the error rule’s action.

For example, suppose that on a parse error, an error handling routine is called that advances the
input stream to some point where parsing should once again commence. The next symbol returned
by the lexical scanner is probably correct. The previous look-ahead token ought to be discarded
with ‘yyclearin;’.

The macro YYRECOVERING stands for an expression that has the value 1 when the parser is
recovering from a syntax error, and 0 the rest of the time. A value of 1 indicates that error
messages are currently suppressed for new syntax errors.
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7 Handling Context Dependencies

The Zyacc paradigm is to parse tokens first, then group them into larger syntactic units. In
many languages, the meaning of a token is affected by its context. Although this violates the basic
Zyacc paradigm, a relatively clean way to handle context dependencies is by using semantic tests
(see Section 3.5.8 [Semantic Tests], page 43). This section documents other techniques (known as
kludges) which may enable you to write Zyacc parsers for such languages.

(Actually, “kludge” means any technique that gets its job done but is neither clean nor robust.)

7.1 Semantic Info in Token Types

The C language has a context dependency: the way an identifier is used depends on what its
current meaning is. For example, consider this:

foo (x);

This looks like a function call statement, but if foo is a typedef name, then this is actually a
declaration of x. How can a Zyacc parser for C decide how to parse this input?

The method used in GNU C is to have two different token types, IDENTIFIER and TYPENAME.
When yylex finds an identifier, it looks up the current declaration of the identifier in order to
decide which token type to return: TYPENAME if the identifier is declared as a typedef, IDENTIFIER
otherwise.

The grammar rules can then express the context dependency by the choice of token type to
recognize. IDENTIFIER is accepted as an expression, but TYPENAME is not. TYPENAME can start
a declaration, but IDENTIFIER cannot. In contexts where the meaning of the identifier is not
significant, such as in declarations that can shadow a typedef name, either TYPENAME or IDENTIFIER
is accepted—there is one rule for each of the two token types.

This technique is simple to use if the decision of which kinds of identifiers to allow is made at a
place close to where the identifier is parsed. But in C this is not always so: C allows a declaration
to redeclare a typedef name provided an explicit type has been specified earlier:

typedef int foo, bar, lose;

static foo (bar); /* redeclare bar as static variable */
static int foo (lose); /* redeclare foo as function */

Unfortunately, the name being declared is separated from the declaration construct itself by a
complicated syntactic structure—the “declarator”.

As a result, the part of Zyacc parser for C needs to be duplicated, with all the nonterminal
names changed: once for parsing a declaration in which a typedef name can be redefined, and once
for parsing a declaration in which that can’t be done. Here is a part of the duplication, with actions
omitted for brevity:

initdcl
: declarator maybeasm ’=’ init
| declarator maybeasm

2

notype_initdcl
: notype_declarator maybeasm ’=’ init
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| notype_declarator maybeasm

2

Here initdcl can redeclare a typedef name, but notype_initdcl cannot. The distinction between
declarator and notype_declarator is the same sort of thing.

There is some similarity between this technique and a lexical tie-in (described next), in that
information which alters the lexical analysis is changed during parsing by other parts of the program.
The difference is here the information is global, and is used for other purposes in the program. A
true lexical tie-in has a special-purpose flag controlled by the syntactic context.

7.2 Lexical Tie-ins

One way to handle context-dependency is the lexical tie-in: a flag which is set by Zyacc actions,
whose purpose is to alter the way tokens are parsed.

For example, suppose we have a language vaguely like C, but with a special construct ‘hex
(hex-expr)’. After the keyword hex comes an expression in parentheses in which all integers are
hexadecimal. In particular, the token ‘alb’ must be treated as an integer rather than as an identifier
if it appears in that context. Here is how you can do it:

hi
int hexflag;
h}
Tobh
expr
: IDENTIFIER
| constant
| HEX °(°
{ hexflag = 1; }
expr ’)’
{ hexflag = 0; $$ = $4; }
| expr ’+’ expr
{ $$ = make_sum ($1, $3); }

H
constant

: INTEGER
| STRING

Here we assume that yylex looks at the value of hexflag; when it is nonzero, all integers are parsed
in hexadecimal, and tokens starting with letters are parsed as integers if possible.

The declaration of hexflag shown in the C declarations section of the parser file is needed to
make it accessible to the actions (see Section 3.1.1 [The C Declarations Section], page 31). You
must also write the code in yylex to obey the flag.



Chapter 7: Handling Context Dependencies

7.3 Lexical Tie-ins and Error Recovery

Lexical tie-ins make strict demands on any error recovery rules you have. See Chapter 6 [Error
Recovery], page 71.

The reason for this is that the purpose of an error recovery rule is to abort the parsing of one
construct and resume in some larger construct. For example, in C-like languages, a typical error
recovery rule is to skip tokens until the next semicolon, and then start a new statement, like this:

stmt
: expr ’;°
| IF >(’ expr ’)’ stmt { ... }

| error ’;’ { hexflag = 0; }

If there is a syntax error in the middle of a ‘hex (expr)’ construct, this error rule will apply, and
then the action for the completed ‘hex (expr)’ will never run. So hexflag would remain set for
the entire rest of the input, or until the next hex keyword, causing identifiers to be misinterpreted
as integers.

To avoid this problem the error recovery rule itself clears hexflag.

There may also be an error recovery rule that works within expressions. For example, there
could be a rule which applies within parentheses and skips to the close-parenthesis:

expr

| 2C expr )’ { $% = $2; )

| >’ error )’

If this rule acts within the hex construct, it is not going to abort that construct (since it applies
to an inner level of parentheses within the construct). Therefore, it should not clear the flag: the
rest of the hex construct should be parsed with the flag still in effect.

What if there is an error recovery rule which might abort out of the hex construct or might
not, depending on circumstances? There is no way you can write the action to determine whether
a hex counstruct is being aborted or not. So if you are using a lexical tie-in, you had better make
sure your error recovery rules are not of this kind. Each rule must be such that you can be sure
that it always will, or always won’t, have to clear the flag.
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8 Debugging Your Parser

Zyacc provides facilities to get a debugger compiled into your program. The resulting program
can be debugged in several different ways:

1. You can interact with the program using a command-line interface and control it using simple
single letter debugging commands. This approach has the disadvantage that debugger I/0 is
interspersed with the I/O of your program.

2. As in (1) above, but separate processes are used to run your program and the debugger
interface. These processes communicate using a socket-based interface. Hence the program
being debugged can be on a computer different from the one on which you are doing the
debugging, or it could be on the same one (the usual case). When debugging and running
your program on the same computer, you can run your program in one window and debug it
from another window. This avoids the problem in (1) where debugger and program I/O are
interspersed.

3. Asin (2) above, but the interaction uses a GUI java-based application, rather than a command-
line interface. Most of the facilities of the command-line interface are available via the GUIL

4. By specifying certain environmental variables when you run your program, you can get it to
generate HTML files which can then be accessed using any Web browser. The GUI used in
(3) is then run as a java applet by accessing the generated HTML files using your favorite
Web browser. This approach has the advantage that the GUI can automatically use your Web
browser to display the current state of the parser in the HTML files generated using the —-HTML
option (see Chapter 9 [Invoking Zyacc], page 86).

8.1 Building Debugging Parsers

To build a parser which can be debugged, it is necessary to define a C preprocessor symbol when
compiling the generated parser and to link your program with the Zyacc library. Optionally, if you
would like token semantics to be printed out, then you need to define an auxiliary function.

8.1.1 Compiling Debugging Parsers

To enable compilation of debugging facilities, you must define the C preprocessor macro YY_
ZYACC_DEBUG to be nonzero when you compile the parser. This can be done in any of the following
ways:

1. You can define the YY_ZYACC_DEBUG macro in the C-declarations section of section 1 of your
Zyacc source file.

2. You can use the -t or --debug option when you run Zyacc (see Chapter 9 [Invoking Zyacc],
page 86). This results in a definition of YY_ZYACC_DEBUG automatically being added to the
generated parser.

3. You can define the YY_ZYACC_DEBUG macro on the compiler command line when you compile

the generated parser. For most compilers, this can typically be done by specifying the option
-DYY_ZYACC_DEBUG.

The third approach is the recommended approach as it defers the debugging decision to the
latest possible point in the build process.
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For compatibility with other parser generators, the macro YYDEBUG can be used instead of YY_
ZYACC_DEBUG. Zyacc provides YY_ZYACC_DEBUG in addition to YYDEBUG for the following reason:
YYDEBUG is also used to turn on debugging in lex-based scanner generators; if a project uses both
lex and yacc, and its compilation is controlled by a Makefile then it can sometimes be inconvenient
to turn on debugging in the parser but not in the scanner, or vice-versa.

8.1.2 Linking Debugging Parsers

A debugging parser must be linked with the Zyacc library. Depending on your system, you
may also need to link it with the networking library — typically you need to specify -1socket and
-1nsl on the link command-line. For most compilers, this is typically done using the -L option (for
specifying the library path) and the -1 option (for specifying the library name). For example, if
your project consists of a parser with object file parse.o and some helper functions in helpers.o
and the Zyacc library is installed in the 1ib subdirectory of your home directory, then a typical
link command line is:

cc parse.o helpers.o -L$HOME/lib -lzyacc -lsocket -lnsl -o my_prj

It is usually necessary that the -L and -1 options occur after the object files.

8.1.3 Printing Token Semantics

If you would like to have the debugger print out tokens using their semantics (rather than the
token names), then you need to define a function to print them out. If your function is semFn,
then it should have the prototype

void semFn(FILE *out, int tokNum, void *yylvalP);

and should print in FILE out, the semantics associated with the token whose token number is
tokNum and whose yylval semantic value (see Section 4.2.2 [Token Values|, page 55) is pointed to
by yylvalP.

You may call this function whatever you like. You should communicate the name of the function
to Zyacc by defining (in the C declarations section of the source file) the C preprocessor macro
YY_SEM_FN to the chosen name.

If you are only using the textual interface, then this function may print anything you wish.
However, if you wish to use the GUI, then it is imperative that the function not print any newlines.

If you are using the GUI, then you may also want to define the C macro YY_SEM_MAX to specify
the maximum number of characters your semantic function will print. If you do not define this
macro, then a default value is used.

8.2 Environmental Variables

Since the program being run is your program and Zyacc has no control over the arguments
accepted by your program from the command-line, all arguments to the debugger are provided via
environmental variables.

If your shell is derived from the C-shell (csh, tcsh, etc), then you can specify an environmental
variable using the setenv command. For example,
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setenv ZYDEBUG_PORT 1

If your shell is derived from the Bourne-shell (sh, ksh, bash, etc), then you can specify an
environmental variable using the export command. For example,

export ZYDEBUG_PORT=1
If you prefer to avoid cluttering up your environment with gratuitous definitions, then the
sh-based derivatives provide a neat alternative. You can simply type the variable definitions im-
mediately before the name of your program, as illustrated by the following example:
ZYDEBUG_PORT=1 my_prg my_argl my_arg?2
The environmental variables used by the Zyacc debugger are listed below. They are discussed
in more detail later.

ZYDEBUG_APPLET
Specifies the name of a applet to be generated by the debugger.

ZYDEBUG_CODEBASE
Specifies the relative path to the java-based GUI debugger.

ZYDEBUG_HTMLBASE
Specifies the relative path to the HTML files describing your parser.

ZYDEBUG_PORT
Suggests a socket port to be used by the debugger.

ZYDEBUG_SRCBASE
Specifies the relative path to the source file for your parser.

8.3 Debugging Parsers Using a Textual Interface

Parsers can be debugged using a textual interface with a single process for both your program
and the debugging interface, or by using a separate process for your program and a separate process
for the debugger interface. The single process alternative is fine as long as your program does not
generate any terminal I/O. If your program does generate terminal I/O, then sorting out your
program’s I/O from the debugger’s I/O could get messy and multi-process debugging is to be
preferred.

In a networked environment, the multi-process debugger also allows remote debugging, with the
program being debugged running on one computer and the debugging interface running on another
computer. For this to work, your network environment must support BSD-style sockets, — this is
usually the case for most modern systems.

8.3.1 Starting a Single Process Textual Debugger

To debug your program using a single process textual interface you must first compile and link
your program as outlined in Section 8.1 [Building Debugging Parsers|, page 76. Then you should
start your program the way your normally do specifying any command-line arguments required.
You should not specify any environmental variables. Your program starts up as normal and when
the parsing function yyparse is first entered, the debugger takes control and allows you to interact
with it using the debugger commands (see Section 8.3.3 [Textual Debugger Commands]|, page 79).
(As mentioned earlier, if your program does any terminal I/O, then the debugger interaction will
be interspersed with the interaction with your program).
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8.3.2 Starting a Multiple Process Textual Debugger

To debug your program using a textual interface with multiple processes you must first compile
and link your program as outlined in Section 8.1 [Building Debugging Parsers], page 76. To start
your program, you should define the environmental variables described below and then start your
program the way your normally do specifying any command-line arguments required. To make the
debugger start in multiple-process mode, the environmental variable (see Section 8.2 [Environmental
Variables|, page 77) ZYDEBUG_PORT must be defined when the program is started. The value specified
for ZYDEBUG_PORT should be a suggested socket port number to use: Zyacc merely uses it as a
starting point in its search for a free socket and it is usually best to specify it simply as 1. Once it
finds a free port, it outputs its number to the terminal as follows:

zydebug port: 6001
Given the port number, you can start that portion of the debugger which communicates with
your program. To do this, you should run the zydebug program (which should have been installed
along with Zyacc) giving it the above socket number:
zydebug 6001

If you want to run zydebug on a computer different from the one where your program is running
then simply type:
zydebug HOST PORT

where HOS'T is the network address (hostname or dotted IP address) of the computer on which
your program is running, and PORT is the port number output when you started your program.
For example, if I started the program above on host alpha.romeo.com, I would use:

zydebug alpha.romeo.com 6001

8.3.3 Textual Debugger Commands

Irrespective of the manner in which you start the debugger, the commands it accepts are al-
ways the same: a single letter followed by an optional argument. These commands allow you to
specify breakpoints and displaypoints. When the parser encounters a breakpoint the debugger
suspends execution of the parser and allows you to interact with it. When the parser encounters
a displaypoint, the debugger displays information about the state of the parse. The concepts of
displaypoints and breakpoints are orthogonal — i.e. it is possible to display information at a point
in the parse without suspending parser execution at that point, or vice-versa.

The commands which are relevant to human users are the following;:
b [breakSpec]
Set or list breakpoint(s) as specified by breakSpec.

At a breakpoint, the parser stops and the user can type in commands (it may or may
not display its current state, depending on whether or not a displaypoint is set too). If
breakSpec is omitted then list all breakpoints. breakSpec can have one of the following
forms with the specified meaning;:

TERM Terminal with name TERM is about to be shifted.

NONTERM
Any rule with LHS nonterminal named NON_TERM is about to be re-
duced.
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RULE'NUM
Rule number RULE_NUM is about to be reduced.
hn Reduce action on any nonterminal.
ht Shift action on any terminal.
* Both shift and reduce actions.

B [breakSpec]
Clear breakpoint(s) as specified by breakSpec.

At a breakpoint, the parser stops and the user can type in commands (it may or may
not display its current state, depending on whether or not a displaypoint is set too).
If breakSpec is omitted then clear all breakpoints. breakSpec is as specified for the b
command.

¢ [temporaryBreakSpec]
Continue execution until a breakpoint is entered.

If temporaryBreakSpec is specified, then it specifies a temporary break point which is
automatically cleared whenever the next breakpoint is entered. temporaryBreakSpec
can have the same form as breakSpec for the b command.

d [displaySpec]
Set or list displaypoint(s) as specified by displaySpec.
At a displaypoint, the parser displays its current state (it may or may not stop to let
the user interact with it, depending on whether or not a breakpoint is set too). If
displaySpec is omitted then list all displaypoints. displaySpec can have the same form
as breakSpec for the b command.

D [displaySpec]
Clear displaypoint(s) as specified by displaySpec.
At a displaypoint, the parser displays its current state (it may or may not stop to let
the user interact with it, depending on whether or not a breakpoint is set too). If

displaySpec is omitted then clear all displaypoints. displaySpec can have the same
form as breakSpec for the b command.

h [cmd]  Print help on single-letter command c¢md. If cmd is omitted, give help on all commands.

1 [listSpec]
List terminals, non-terminals or rules as specified by listSpec.

If listSpec is omitted, then all rules are listed. Otherwise listSpec can be one of the

following;:

hn List all non-terminal symbols.
ht List all terminal symbols.
RULE'NUM

List rule with number RULE_NUM.

m [depth] Set maximum depth printed for the stack.
If depth is 0 or omitted, then entire stack is printed.
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n Execute parser till next shift action.

Equivalent to ¢ %t.

P Print current parser state.
q Quit debugger and run parser without debugging.
S

<blank line>
Single-step parser to next shift or reduce action.

Equivalent to ¢ *.

8.4 Debugging Parsers Using a Graphical User Interface

It is also possible to use a java-based GUI to debug parsers generated by Zyacc. This can be
done in two ways:

1. The GUI can be used as a standalone java application. To do this, you should have a java
runtime system installed on your computer.

2. The GUI can be used as an applet from within a web browser which supports java.

8.4.1 Starting a GUI Debugger as a Java Application

To debug your program using a GUI java application you must first compile and link your
program as outlined in Section 8.1 [Building Debugging Parsers|, page 76. To use the GUI as a
standalone application, you should first start your program the way your normally do, specifying
any command-line arguments required. The following environmental variables (see Section 8.2
[Environmental Variables|, page 77) are used by your program to control the setup of the debugger.

ZYDEBUG_PORT
This is required. As discussed earlier (see Section 8.3.2 [Starting a Multiple Process
Textual Debugger|, page 79), it’s value is best specified simply as 1.

ZYDEBUG_SRCBASE

This should be the relative path to the parser source file (the *.y’ file) from the directory
which is current when the parsing function yyparse is first entered. (The directory
in which yyparse is entered is usually the same directory in which your program
executable resides, assuming that your program has not performed any chdir () calls
and that you started the program in the directory in which it resides). If it not specified,
it is assumed that your parser source file lives in the directory the parsing function was
in when it was first entered.

When your program starts it will output the port number of the socket it has connected to; for
example:
zydebug port: 6001
This port number will be used to connect the GUI to your executing program.

To start the GUI, you must run the java runtime system on your machine, telling it where to
find the java classfiles referenced by zdu.zydebug.ZYDebug which form the GUI and providing it
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with arguments telling it how to connect to your executing program. The exact procedures may
be different on your machine, but as of this writing, the most common setup is as follows:

Java is started by simply using the command java. For the java command to work it must
be in your PATH (see Section 8.2 [Environmental Variables|, page 77) or you should specify the
full path name. For java to find the java classfiles for the debugger, those files must be in your
CLASSPATH (see Section 8.2 [Environmental Variables], page 77). Finally, you must specify the port
number output by your program, (optionally preceeded by the hostname or dotted IP address of
the computer on which your program is running, if it is different from the one on which you are
running the GUI).

The following example shows the starting a debugger GUI under a csh or derivatives.

% setenv CLASSPATH /usr/local/share/classes
% java zdu.zydebug.ZYDebug 6001 &

Under sh or derivatives, the following command can be used to connect to a program running
on a different machine:

$ CLASSPATH=/usr/local/share/classes java zdu.zydebug.ZYDebug pear 6001 &
where pear is the name of the machine on which the program is running.

8.4.2 Starting a GUI Debugger as a Java Applet

A java applet can only be run by being embedded within an HTML file which provides the
environment in which the applet lives. Among other things, the HTML file provides the arguments
to the applet.

The debugging applet talks to the program being debugged using a socket referred to by a port
number. Since this port number can vary for different executions of the program being debugged, it
has to be provided as an argument to the applet. As an applet gets its argument from its associated
HTML file, and this particular port number argument can be different for different executions of the
program being debugged, the HTML file associated with the debugging applet has to be generated
dynamically.

The HTML file is generated by your enhanced program when it is started (actually a second
HTML file is generated as well). Using environmental variables (see Section 8.2 [Environmental
Variables], page 77) you can specify the names of the HTML files, as well as paths to various other
resources required by the applet.

To debug your program using a GUI java applet you must first compile and link your program
as outlined in Section 8.1 [Building Debugging Parsers], page 76. You should then start your
program the way your normally do, specifying any command-line arguments required. The following
environmental variables (see Section 8.2 [Environmental Variables], page 77) are used by your
program to control the setup of the debugger.

ZYDEBUG_APPLET
This is required. It specifies the root name used for the generated HTML documents
which are used to access the debugging applet.

ZYDEBUG_CODEBASE
This should provide the path to the debugger’s java classfiles relative to the directory
where the generated HTML documents live (relative to the DOCBASE directory in java
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terminology). If not specified, then it is assumed that the java classfiles reside in the
same directory as the generated HTML documents.

ZYDEBUG_HTMLBASE
This should provide the path to the parser’s HI'ML description files generated using
the -—HTML option see Chapter 9 [Invoking Zyacc]|, page 86), relative to the directory
where the generated HTML documents live (relative to the DOCBASE directory in java
terminology). If not specified, then it is assumed that the HTML description files reside
in the same directory as the generated HI'ML documents.

ZYDEBUG_PORT
This is not required. As discussed earlier See Section 8.3.2 [Starting a Multiple Process
Textual Debugger|, page 79, it’s value is best specified simply as 1.

ZYDEBUG_SRCBASE
This is exactly as for the standalone GUI application. It should be the relative path
to the parser source file (the ‘.y’ file) from the directory which is current when the
parsing function yyparse is first entered. (The directory in which yyparse is entered
is usually the same directory in which your program executable resides, assuming that
your program has not performed any chdir() calls and that you started the program
in the directory in which it resides). If it not specified, it is assumed that your parser
source file lives in the directory the parsing function was in when it was first entered.

Usually, the parser source file and the HTML description files are in the same directory as the
program executable and all you need to specify are ZYDEBUG_APPLET and ZYDEBUG_CODEBASE.

Consider the following more complicated situation:
e You would like to put the generated HTML files in $HOME/tmp with the name XXX.
e The java classfiles reside in /usr/local/share/classes.

e The HTML files describing the parser and the source file reside in the parent directory of the
directory in which you start the program.

e Your enhanced executable program is called foo and takes a single argument bar.

Under csh and derivatives, you can use the following sequence of commands:

setenv ZYDEBUG_APPLET $HOME/tmp/XXX
setenv CODEBASE /usr/local/share/classes
setenv HTMLBASE ‘pwd‘/..

setenv SRCBASE ‘pwd‘/..

./foo bar

Under sh and derivatives, the following command suffices:

ZYDEBUG_APPLET=$HOME/tmp/XXX CODEBASE=/usr/local/share/classes \
HTMLBASE=‘pwd‘/.. SRCBASE=‘pwd‘/.. \
./foo bar

Having generated the HTML files, you can now use a browser to start the debugger’s GUI and
debug your parser. There are two methods of doing this available in most browsers:

e View the generated HTML file using the local file access option provided by most browsers.
This will work only if you are using the browser on the same machine as the one on which your
program is executing.
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e View the generated HTML file as a regular remote URL. For this to work, all the files required
by the applet (the java classfiles, the parser source file, and the HTML description files) must
be accessible by the HI'TP daemon on the remote machine. This usually requires that they
be within a public html area.

8.4.3 Using the Debugger GUI

As the applet is talking to your compiled program which has not been modified in any way, it is
not possible to have the applet restart your program once it has completed its parse. Instead you
will have to restart the parser and the debugger’s GUI applet.

The applet has four main windows. Clockwise from the top-left they are the following:

Parse Forest Window
Shows the current parse-forest. The nodes on top are the nodes currently on the stack.
Terminal nodes are in red, non-terminal nodes are in green and error nodes are in
pink. The last active node is highlighted in yellow. Each node contains text of the
form S/Sym, where S is the state at which that node was created and Sym is the
grammar symbol or token semantics corresponding to the node. The nodes in the top
row correspond to nodes currently on the parse stack.

Each non-leaf node in the forest is clickable. Clicking on such a node hides all its
subtrees; clicking again on that node displays the subtrees again. This can be useful
as the parse tree typically gets pretty large for practical parsers.

Trace Window
Shows the parse stack in gray (each entry is in the same format as a parse tree node),
the current lookahead in red and the following action in blue.

Breakpoint Window
This allows you to set/clear breakpoints on all or selected nonterminals and termi-
nals. Clicking a line in the window sets a breakpoint on the symbol displayed on that
line; clicking it again clears the breakpoint. The currently selected breakpoints are
highlighted.

Source Window
Shows the parser source file. During a reduction, the line corresponding to the reduction
is highlighted.

The debugger is controlled by the following controls:

Shadows Checkbox
This checkbox controls whether or not the parser shows crude shadows while displaying
the parse forest. It is useful to avoid having shadows cluttering up the display of large
forests.

Update Checkbox
Selecting this checkbox results in the parser displaying the current state in the LR(0)
machine in a browser frame. For this to work, the parser should have been generated
using the —-HTML option (see Chapter 9 [Invocation|, page 86), and the environmental
variable ZYDEBUG_HTMLBASE should have been specified when the parser was started.
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Step Button
Steps the parser by a single step.

Next Button
Steps the parser to the next shift action.

Continue Button
Steps the parser till the next breakpoint. If no breakpoints are set, then the parser
runs to completion. As mentioned above, it is not possible to restart the parser.

8.5 Tradeoffs between Debugging Approaches

The popular adage "a picture is worth a thousand words" may be true in the real world, but
with the primitive visualization techniques used by the GUI debugger, it may not hold for the
GUI debugger. For practical parsers, the parse forest displayed by the debugger rapidly becomes
unmanageable, even after hiding many large subtrees. If the large amount of screen real estate
taken up by the parse forest was occupied instead by words more information might be conveyed.

It is probably best to use the GUI debugger only under the following conditions:

e Only a limited amount of text is being parsed — this prevents inordinate growth of the dis-
played parse forest.

e To explain and understand the operation of parsers in general and LALR(1) parsers in partic-
ular.

e You are a novice and don’t feel like climbing the learning curve hillock represented by the
textual commands.

Another problem with GUI debugging is that it can be quite slow as the java GUI has to build
up the parse forest, trace output, etc. I have not had a chance to analyze its performance, but I
would not be surprised if it is spending a fair amount of time merely collecting garbage.

For debugging most practical parsers, I would recommend the textual interface.
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9 Invoking Zyacc

The command line needed to invoke Zyacc has the format:

zyacc [Options List] yacc-file [yacc-file. . .]

Here yacc-file specifies the name(s) of the grammar file, usually ending in ‘.y’. Unless the
--output or —--yacc options are specified, the name of the generated parser file is created by
replacing the ‘.y” with ‘.tab.c’. Thus, the ‘zyacc foo.y’ filename yields ‘foo.tab.c’, and the
‘zyacc hack/foo.y’ filename yields ‘hack/foo.tab.c’.

e If no yacc-files are specified on the command line, then a help message is printed on the
standard output.

e If multiple yacc-filess are specified, then their concatenation is treated as a single logical file.
e A yacc-file specified by the single character ‘-’ stands for the standard input.

9.1 Option Conventions

A word which constitutes a command-line argument has two possible types: it is a option word
if it begin with a ‘=" or ‘==’ (with certain exceptions noted below), or if it follows an option word
which requires an argument. Otherwise it is a non-option word. An option word specifies the value

of a Zyacc option; a non-option word specifies a file name.
e Options with short single character names must begin with a single ‘-,

e Options with long multiple-character names must begin with ‘--’. The name can consists of
any alphanumeric characters along with ‘=’ and ‘_’ characters.

e When a option is specified using a long name, it is sufficient to specify an unambiguous prefix
of its name.

e If an option has a value which must be one of several prespecified values, then it is sufficient
to specify an unambiguous prefix of the value, in a manner similar to long option names.

e It is possible to specify an option value in the same word as the option name. For short option
names, there should not be any intervening characters between the short name and the value.
For long option names, the long name should be separated from the value using a single ‘=’
character.

e If an option has an optional value, then the value must be provided in the same word as the
option name, as outlined above.

e If an option has a required value, then the value may be provided in the same word as the
option name as outlined above, or it may be provided in the next word. In the latter case, the

entire next word is taken to be the value (even if it looks like an option starting with ‘=’ or

C__?)‘

e Short names for multiple options which are not allowed to have any values may be combined
into a single word. For example, if Zyacc had options ‘~1” and ‘-7’ which were not allowed to
have any values (it does not), then instead of specifying them using two words as ‘-1 -7, they
can be specified using a single word ‘-17".

e Ifan option is given two incompatible values, then the option which is specified later dominates.

e If the option consisting simply of the two characters ‘—=’ is specified, then all the remaining

words on the command line will not be treated as options irrespective of whether they start
with ‘=7 or *~=’. This makes it possible to specify file names starting with a ‘-’
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e Option words and non-option words may be arbitrarily interspersed.

e Command-line options always override the options specified elsewhere (see Section 9.2 [Option
Sources], page 87).

9.2 Option Sources

Besides the command-line, Zyacc can read its options from several different sources. In order of
increasing priority these sources are the following:

e The file ‘zyacc.opt’. The file should contain only option names and values separated by
whitespace (newline counts as whitespace). In addition it may contain comments enclosed
within ‘/*” and ‘*/’. The file is searched for using Zyacc’s search list (see Section 9.4 [Data
Search List], page 89).

The use of this file for setting defaults, makes it possible for a site to setup default options for
Zyacc different from its builtin defaults. It also makes it easy to drop Zyacc into a GUI toolset
where options are set using a graphical user interface.

e The environment variable ZYACC_OPTIONS. If this variable is set, then its value should contain
only options and option values separated by whitespace as on the command-line. The procedure
for setting environment variables depends on the system you are using: under the UNIX shell
csh the setenv command can be used, under the MS-DOS command-interpreter the set
command can be used; under the UNIX shell sh or ksh the export command can be used.

e It is also possible to specify options directly within the Zyacc source file using the %option
directives (see Section 3.1.2 [Zyacc Declarations], page 31).

Options specified by the environment variable ZYACC_OPTIONS overrides the options specified
in the ‘zyacc.opt’ file. Options specified in the Zyacc source file override options specified in
the ‘zyacc.opt’ file or ZLEX_0PTIONS environment variable. Finally, command-line options always
override options specified by all other sources.

9.3 Zyacc Options

A list of the available options follows:

--build-display
Display the parameters used to build zyacc and exit.
--debug[=1]0]

-t[11]0] Output a definition of the macro YYDEBUG into the parser file, so that the debugging
facilities are compiled. See Chapter 8 [Debugging Your Parser|, page 76.

--defines[=1]0]

-d[1]0] Output a .h definitions file containing the semantic value type YYSTYPE and C prepro-
cessor macro definitions for all the token type names defined in the grammar (default:
0).
If the parser output file is named ‘name.c’ then this file is named ‘name.h’.

This output file is essential if you wish to put the definition of yylex in a separate
source file, because yylex needs to be able to refer to token type codes and the variable
yylval. See Section 4.2.2 [Semantic Values of Tokens|, page 55.
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--file-prefix prefix
-b prefix  Specify a prefix to use for all Zyacc output file names. The names are chosen as if the
input file were named ‘prefix.c’.

—--grammar [=1]0]
-g[110]  Output a reference grammar file to <stdout> and exit (default: 0).

--help
-h Print summary of options and exit.

--HTML[=1]0]

-H[1]0] Write a HTML parser description in .html file. This is similar to the --verbose
option, but you can use any WWW browser like Netscape or Lynx to browse the
parser description file and follow hot links within the file (default: 0).

--lines  Output #line directives in generated parser file (default: 1). If Zyacc puts these
directives in the parser file then the C compiler and debuggers can associate errors
with your source file, the grammar file. If this option is specified as 0, then errors will
be associated with the parser file, treating it an independent source file in its own right.

--longer-rule-prefer[=1]0]
When resolving a reduce-reduce conflict prefer the longer rule (default: 0). If this
option is specified as 0, then the reduce-reduce conflicts are resolved in favor of the
rule which occurs earlier in the source file.

--output-file outFile
-o outFile Specify the name outFile for the parser file. The other output files’ names are con-
structed from outfile as described under the --defines and --verbose switches.

--name-prefix prefix

-p prefix  Specify prefix to be used for all external symbols. Rename the external symbols used
in the parser so that they start with prefix instead of ‘yy’. The precise list of symbols
renamed is yychar, yydebug, yyerror, yylex, yynerrs, yylval and yyparse.

For example, if you use ‘~p ¢’, the names become cchar, cdebug, and so on.
See Section 3.7 [Multiple Parsers in the Same Program]|, page 53.

--term-prefix suffix
Specify suffix string to be appended to all external terminal names (default ""). For
example, if you specify --term-prefix _TOK, then the string _TOK will be appended
to all terminal names exported from the grammar; if you use ID as a terminal name
within your grammar, its external name will be ID_TOK.

--verbose[=1]0]

-v[1]0]  Write verbose parser description in .output file (default: 0). The extra output file
contains descriptions of the parser states and what is done for each type of look-ahead
token in that state.

This file also describes all the conflicts, both those resolved by operator precedence and
the unresolved ones.

The file’s name is made by removing ‘.tab.c’ or ‘.c’ from the parser output file name,
and adding ‘.output’ instead.

Therefore, if the input file is ‘foo.y’, then the parser file is called ‘foo.tab.c’ by
default. As a consequence, the verbose output file is called ‘foo.output’.



Chapter 9: Invoking Zyacc

--version
-V Print version number and exit.

--yacc[=1]0]

-y[11]0] Name output files like YACC (default: 0) Equivalent to ‘-0 y.tab.c’; the parser output
file is called ‘y.tab.c’, and the other outputs are called ‘y.output’ and ‘y.tab.h’.
The purpose of this switch is to imitate Yacc’s output file name conventions. Thus,
the following shell script can substitute for Yacc:

zyacc -y $x*

9.4 Data Search List

When Zyacc is run, it looks for certain data files (a skeleton file ‘zyaccskl.c’ and an options
file ‘zyacc.opt’ (see Section 9.2 [Option Sources|, page 87)) in certain standard directories (the
skeleton file must exist, but the option file need not exist). The search list specifying these standard
directories is fixed when Zyacc is installed; it can be printed out using Zyacc’s ‘-=help’ option (see
Section 9.3 [Zyacc Options], page 87).

The search list consists of a list of colon-separated directory names (the directory names may
or may not have terminating slashes) or environment variables (starting with a ‘$’). If a directory
name starts with a ‘¢’, then the first (only the first) ‘¢’ must be repeated. An empty component
in the search list specifies the current directory. Typically the search list contains the current
directory. Also typically, the environment variable ZYACC_SEARCH_PATH is present in the search list
— this causes Zyacc to check if the variable is set in the environment. If it is, then Zyacc expects
it to specify a search list which it recursively searches.

Typically, the search list compiled into Zyacc looks something like the following;:
$ZYACC_SEARCH_PATH: . : $HOME: /usr/local/share/zyacc
Since the search list will typically contain an environment variable like ZYACC_SEARCH_PATH it
is possible to change the set of standard directories searched by Zyacc even after installation by

specifying a value for the variable. For example, if with the above search list, ZYACC_SEARCH_PATH
is set to /usr/lib:/usr/opt/lib, then the effective search list becomes:

/usr/1ib:/usr/opt/1ib: . :$HOME: /usr/local/share/zyacc
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10 Known Incompatibilities with Bison

The following lists Bison features which are not available or work differently in Zyacc:

¢ In Bison multi-character literals are enclosed within double-quotes, whereas Zyacc uses single-
quotes for both single and multi-character literals. The Bison approach is more consistent with
C; the Zyacc approach avoids making another character special (the Zyacc approach predates
the public release of this feature in Bison).

e Zyacc does not have any public interface to retrieve a token number given its name, similar to
Bison’s yytname table.

e Zyacc does not support Bison’s YYBACKUP () macro.

e Bison allows the use of Jtype declarations to declare the types of terminal symbols, even
though the manual seems to imply that %type can be used only for declaring the types of
nonterminals. This feature appears useful.

e Zyacc’s debugging facilities are quite different from Bison’s trace facility.
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11 Bugs and Deficiencies

Internal versions of the Zyacc parser generator have been used by me since 1995. It has been
used by about 45 students in compiler construction courses. There have been some major rewrites.

11.1 Suspicions

Normally, when a program has been completed, one has a reasonable idea where bugs might
still lurk. On that basis, for what they are worth, I present my current suspicions:

The Parser Generator
I feel fairly good about the code which actually generates parsers. Under normal error-
free operation, the weakest areas may be the code which does the LALR computation
and the graph coloring for packing inherited attributes (since most states of most
parsers can get by with SLR lookahead and most programs I've written didn’t make
very heavy use of inherited attributes, the code has just not been exercised enough).

The bugs most likely to manifest themselves will probably be assertion failures caused
by an erroneous Zyacc source file. In that case, you can simply correct the error in the
Zyacc source file and continue on with reasonable confidence (after submitting a bug
report, of course).

The Runtime System
The runtime system has been fairly stable for a while. The weakest area may be error
processing.

11.2 Bug Reports

First you will need to be sure that you have found a Zyacc bug:

e If when running Zyacc, it bombs with a assertion failure or a core dump, you can be sure
that you have uncovered a bug. However, even though you have uncovered a Zyacc bug, the
problem may have been caused by an error in your source file; you can fix the error and continue
working.

e If when running a Zyacc generated parser, it bombs or does not do what you intended it to do,
it is much more difficult to be sure whether the problem is within the Zyacc runtime system
or in your code. If it bombs within the main parser function, make sure that it is not within
your actions.

If you are sure that you have uncovered a bug, try to distil it down to a test program which is
as short as possible while still exhibiting the bug. Record a log which exhibits the bug. Make sure
that you mention the version of Zyacc you are using in your bug report.

Bug reports can be mailed to:
zduQacm.org
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Appendix A Zyacc Symbols

error A token name reserved for error recovery. This token may be used in grammar rules so
as to allow the Zyacc parser to recognize an error in the grammar without halting the
process. In effect, a sentence containing an error may be recognized as valid. On a parse
error, the token error becomes the current look-ahead token. Actions corresponding to
error are then executed, and the look-ahead token is reset to the token that originally
caused the violation. See Chapter 6 [Error Recovery], page 71.

YYABORT  Macro to pretend that an unrecoverable syntax error has occurred, by making yyparse
return 1 immediately. The error reporting function yyerror is not called. See Sec-
tion 4.1 [The Parser Function yyparse], page 54.

YYACCEPT Macro to pretend that a complete utterance of the language has been read, by making
yyparse return 0 immediately. See Section 4.1 [The Parser Function yyparse], page 54.

YYBACKUP Macro to discard a value from the parser stack and fake a look-ahead token. See
Section 4.4 [Special Features for Use in Actions|, page 59.

YYERROR  Macro to pretend that a syntax error has just been detected: call yyerror and then
perform normal error recovery if possible (see Chapter 6 [Error Recovery], page 71),
or (if recovery is impossible) make yyparse return 1. See Chapter 6 [Error Recovery],
page 71.

YYERROR_VERBOSE
Macro that you define with #define in the Zyacc declarations section to request ver-
bose, specific error message strings when yyerror is called.

YYINITDEPTH
Macro for specifying the initial size of the parser stack. See Section 5.8 [Stack Overflow],
page 70.

YYLEX_PARAM
Macro for specifying an extra argument (or list of extra arguments) for yyparse to
pass to yylex. See Section 4.2.4 [Calling Conventions for Pure Parsers], page 57.

YYLTYPE Macro for the data type of yylloc; a structure with four members. See Section 4.2.3
[Textual Positions of Tokens|, page 55.

YYMAXDEPTH
Macro for specifying the maximum size of the parser stack. See Section 5.8 [Stack
Overflow], page 70.

YYPARSE_PARAM
Macro for specifying the name of a parameter that yyparse should accept. See Sec-
tion 4.2.4 [Calling Conventions for Pure Parsers], page 57.

YYRECOVERING
Macro whose value indicates whether the parser is recovering from a syntax error. See
Section 4.4 [Special Features for Use in Actions], page 59.

YYSTYPE  Macro for the data type of semantic values; int by default. See Section 3.5.1 [Data
Types of Semantic Values], page 35.
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yychar

yyclearin

yydebug

yyerrok

yyerror

yylex

yylval

yylloc

yynerrs

yyparse

%left

J%nonassoc

hprec

External integer variable that contains the integer value of the current look-ahead
token. (In a pure parser, it is a local variable within yyparse.) Error-recovery rule
actions may examine this variable. See Section 4.4 [Special Features for Use in Actions],
page 59.

Macro used in error-recovery rule actions. It clears the previous look-ahead token. See
Chapter 6 [Error Recovery], page 71.

External integer variable set to zero by default. If yydebug is given a nonzero value,
the parser will output information on input symbols and parser action. See Chapter 8
[Debugging Your Parser|, page 76.

Macro to cause parser to recover immediately to its normal mode after a parse error.
See Chapter 6 [Error Recovery|, page 71.

User-supplied function to be called by yyparse on error. The function receives one
argument, a pointer to a character string containing an error message. See Section 4.3
[The Error Reporting Function yyerror|, page 59.

User-supplied lexical analyzer function, called with no arguments to get the next token.
See Section 4.2 [The Lexical Analyzer Function yylex|, page 54.

External variable in which yylex should place the semantic value associated with a
token. (In a pure parser, it is a local variable within yyparse, and its address is passed
to yylex.) See Section 4.2.2 [Semantic Values of Tokens], page 55.

External variable in which yylex should place the line and column numbers associated
with a token. (In a pure parser, it is a local variable within yyparse, and its address
is passed to yylex.) You can ignore this variable if you don’t use the ‘@’ feature in the
grammar actions. See Section 4.2.3 [Textual Positions of Tokens|, page 55.

Global variable which Zyacc increments each time there is a parse error. (In a pure
parser, it is a local variable within yyparse.) See Section 4.3 [The Error Reporting
Function yyerror|, page 59.

The parser function produced by Zyacc; call this function to start parsing. See Sec-
tion 4.1 [The Parser Function yyparse], page 54.

Zyacc declaration to assign left associativity to token(s). See Section 3.6.2 [Operator
Precedence], page 47.

Zyacc declaration to assign nonassociativity to token(s). See Section 3.6.2 [Operator
Precedence], page 47.

Zyacc declaration to assign a precedence to a specific rule. See Section 5.4 [Context-
Dependent Precedence], page 66.

hpure_parser

hright

Zyacc declaration to request a pure (reentrant) parser. See Section 3.6.9 [A Pure
(Reentrant) Parser|, page 51.

Zyacc declaration to assign right associativity to token(s). See Section 3.6.2 [Operator
Precedence], page 47.
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%start

%token

htype

%union

Zyacc declaration to specify the start symbol. See Section 3.6.7 [The Start-Symbol],
page 49.

Zyacc declaration to declare token(s) without specifying precedence. See Section 3.6.1
[Token Type Names], page 47.

Zyacc declaration to declare nonterminals. See Section 3.6.5 [Nonterminal Symbols],
page 49.

Zyacc declaration to specify several possible data types for semantic values. See Sec-
tion 3.6.4 [The Collection of Value Types|, page 48.

These are the punctuation and delimiters used in Zyacc input:

C%%?

B hY

Delimiter used to separate the grammar rule section from the Zyacc declarations section
or the additional C code section. See Section 1.7 [The Overall Layout of a Zyacc
Grammar|, page 7.

All code listed between ‘%{’ and ‘%}’ is copied directly to the output file uninterpreted.
Such code forms the “C declarations” section of the input file. See Section 3.1 [Outline
of a Zyacc Grammar], page 31.

Comment delimiters, as in C.

Separates a rule’s result from its components. See Section 3.3 [Syntax of Grammar
Rules], page 33.

Terminates a rule. See Section 3.3 [Syntax of Grammar Rules], page 33.

Separates alternate rules for the same result nonterminal. See Section 3.3 [Syntax of
Grammar Rules], page 33.
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Appendix B Glossary

Backus-Naur Form (BNF)
Formal method of specifying context-free grammars. BNF was first used in the ALGOL-
60 report, 1963. See Section 1.1 [Languages and Context-Free Grammars], page 3.

Context-free grammars
Grammars specified as rules that can be applied regardless of context. Thus, if there
is a rule which says that an integer can be used as an expression, integers are allowed
anywhere an expression is permitted. See Section 1.1 [Languages and Context-Free
Grammars|, page 3.

Dynamic allocation
Allocation of memory that occurs during execution, rather than at compile time or on
entry to a function.

Empty string
Analogous to the empty set in set theory, the empty string is a character string of
length zero.

Finite-state stack machine
A “machine” that has discrete states in which it is said to exist at each instant in
time. As input to the machine is processed, the machine moves from state to state as
specified by the logic of the machine. In the case of the parser, the input is the language
being parsed, and the states correspond to various stages in the grammar rules. See
Chapter 5 [The Zyacc Parser Algorithm ], page 62.

Grouping A language construct that is (in general) grammatically divisible; for example, ‘expres-
sion’ or ‘declaration’ in C. See Section 1.1 [Languages and Context-Free Grammars],
page 3.

Infix operator
An arithmetic operator that is placed between the operands on which it performs some
operation.

Input stream
A continuous flow of data between devices or programs.

Language construct
One of the typical usage schemas of the language. For example, one of the constructs
of the C language is the if statement. See Section 1.1 [Languages and Context-Free
Grammars|, page 3.

Left associativity
Operators having left associativity are analyzed from left to right: ‘a+b+c’ first com-
putes ‘a+b’ and then combines with ‘c’. See Section 5.3 [Operator Precedence], page 64.

Left recursion
A rule whose result symbol is also its first component symbol; for example, ‘expseql
: expseql ’,’ exp;’. See Section 3.4 [Recursive Rules|, page 34.

Left-to-right parsing
Parsing a sentence of a language by analyzing it token by token from left to right. See
Chapter 5 [The Zyacc Parser Algorithm |, page 62.
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Lexical analyzer (scanner)
A function that reads an input stream and returns tokens one by one. See Section 4.2
[The Lexical Analyzer Function yylex], page 54.

Lexical tie-in
A flag, set by actions in the grammar rules, which alters the way tokens are parsed.
See Section 7.2 [Lexical Tie-ins|, page 74.

Look-ahead token
A token already read but not yet shifted. See Section 5.1 [Look-Ahead Tokens], page 62.

LALR(1) The class of context-free grammars that Zyacc (like most other parser generators) can
handle; a subset of LR(1). See Section 5.7 [Mysterious Reduce/Reduce Conflicts],
page 69.

LR(1) The class of context-free grammars in which at most one token of look-ahead is needed
to disambiguate the parsing of any piece of input.

Nonterminal symbol
A grammar symbol standing for a grammatical construct that can be expressed through
rules in terms of smaller constructs; in other words, a construct that is not a token.
See Section 3.2 [Symbols|, page 32.

Parse error
An error encountered during parsing of an input stream due to invalid syntax. See
Chapter 6 [Error Recovery]|, page 71.

Parser A function that recognizes valid sentences of a language by analyzing the syntax struc-
ture of a set of tokens passed to it from a lexical analyzer.

Postfix operator
An arithmetic operator that is placed after the operands upon which it performs some
operation.

Reduction Replacing a string of nonterminals and/or terminals with a single nonterminal, accord-
ing to a grammar rule. See Chapter 5 [The Zyacc Parser Algorithm |, page 62.

Reentrant A reentrant subprogram is a subprogram which can be in invoked any number of times
in parallel, without interference between the various invocations. See Section 3.6.9 [A
Pure (Reentrant) Parser|, page 51.

Reverse polish notation
A language in which all operators are postfix operators.

Right recursion
A rule whose result symbol is also its last component symbol; for example, ‘expseql:
exp ’,’ expseql;’. See Section 3.4 [Recursive Rules], page 34.

Semantics In computer languages, the semantics are specified by the actions taken for each in-
stance of the language, i.e., the meaning of each statement. See Section 3.5 [Defining
Language Semantics], page 35.

Shift A parser is said to shift when it makes the choice of analyzing further input from the
stream rather than reducing immediately some already-recognized rule. See Chapter 5
[The Zyacc Parser Algorithm |, page 62.
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Single-character literal
A single character that is recognized and interpreted as is. See Section 1.2 [From Formal
Rules to Zyacc Input], page 4.

Start symbol
The nonterminal symbol that stands for a complete valid utterance in the language
being parsed. The start symbol is usually listed as the first nonterminal symbol in a
language specification. See Section 3.6.7 [The Start-Symbol], page 49.

Symbol table
A data structure where symbol names and associated data are stored during parsing
to allow for recognition and use of existing information in repeated uses of a symbol.
See Section 2.4 [Multi-function Calc], page 17.

Token A basic, grammatically indivisible unit of a language. The symbol that describes a
token in the grammar is a terminal symbol. The input of the Zyacc parser is a stream
of tokens which comes from the lexical analyzer. See Section 3.2 [Symbols], page 32.

Terminal symbol
A grammar symbol that has no rules in the grammar and therefore is grammatically
indivisible. The piece of text it represents is a token. See Section 1.1 [Languages and
Context-Free Grammars|, page 3.
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Appendix C Conditions

The conditions for using Zyacc are identical to the conditions for using Bison shown below.

C.1 Conditions for Using Bison

As of Bison version 1.24, we have changed the distribution terms for yyparse to permit using
Bison’s output in non-free programs. Formerly, Bison parsers could be used only in programs that
were free software.

The other GNU programming tools, such as the GNU C compiler, have never had such a
requirement. They could always be used for non-free software. The reason Bison was different was
not due to a special policy decision; it resulted from applying the usual General Public License to
all of the Bison source code.

The output of the Bison utility—the Bison parser file—contains a verbatim copy of a sizable
piece of Bison, which is the code for the yyparse function. (The actions from your grammar are
inserted into this function at one point, but the rest of the function is not changed.) When we
applied the GPL terms to the code for yyparse, the effect was to restrict the use of Bison output
to free software.

We didn’t change the terms because of sympathy for people who want to make software pro-
prietary. Software should be free. But we concluded that limiting Bison’s use to free software was
doing little to encourage people to make other software free. So we decided to make the practical
conditions for using Bison match the practical conditions for using the other GNU tools.

C.2 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.
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To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you
if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed
for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and a “work based on the Pro-
gram” means either the Program or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.
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b. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an
announcement. )

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following;:

a. Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.
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If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-
gram is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
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that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “ASIS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than ‘show
w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.
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