Blei, D.M. (2012). Probabilistic topic models. Communications of the ACM, 55(4): 77-84.
Grimmer, J. and Stewart, B.M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3): 267-297.
Blei, D.M., and Lafferty, J. (2009). Topic models. Text Mining: Theory and Applications.
Roberts, M.E., Stewart, B.M., Tingley, D., & Airoldi, E. M. (2013). The structural topic model and applied social science. In Advances in Neural Information Processing Systems Workshop on Topic Models: Computation, Application, and Evaluation.
Dou, W. and Liu, S. (2016). Topic- and time-oriented visual text analysis. IEEE Computer Graphics and Applications, 36(4): 8-13.
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., and Harshman, R. H. (1990). Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6): 391-407.
Blei, D.M., Ng, A.Y., and Jordan, M.I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3: 993-1022.
Landauer, T., and Dumais, S. (1997). A Solution to Platos Problem: The Latent Semantic Analysis of Acquisition, Induction, and Representation of Knowledge. Psychological Review, 104(2): 211-240.
Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis, Machine Learning, 42(1): 177-196.
Schofield, A., & Mimno, D. (2016). Comparing Apples to Apple: The Effects of Stemmers on Topic Models. Transactions of the Association for Computational Linguistics, 4: 287-300.
Schofield, A., Thompson, L., and Mimno, D. (2017). Quantifying the Effects of Text Duplication on Semantic Models. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2727-2737.
Denny, M.J., and Spirling, A. (2017). Text Preprocessing for Unsupervised Learning: Why It Matters, When It Misleads, and What to Do about It. Available at SSRN: https://ssrn.com/abstract=2849145 or http://dx.doi.org/10.2139/ssrn.2849145
Schofield, A., Magnusson, M., and Mimno, D. (2017). Pulling Out the Stops: Rethinking Stopword Removal for Topic Models. EACL.
Schofield, A., Magnusson, M., Thompson, L., and Mimno, D. (2017). Understanding Text Pre-Processing for Latent Dirichlet Allocation. ACL Workshop for Women in NLP (WiNLP).
Chang, J., Boyd-Graber, J., Wang, C., Gerrish, S., and Blei, D.M. (2009). Reading tea leaves: How humans interpret topic models. Neural Information Processing Systems.
Wallach, H., Murray, I., Salakhutdinov, R., and Mimno, D. (2009). Evaluation methods for topic models. In Proc. of the 26th International Conference on Machine Learning.
Wallach, H., Mimno, D., and McCallum, A. (2009). Rethinking LDA: why priors matter. In Neural Informational Processing Systems.
Mimno, D., Wallach, H.M., Talley, E., Leenders, M., and McCallum, A. (2011). Optimizing semantic coherence in topic models. Proc. of the 2011 Conference on Empirical Methods in Natural Language Processing, 262-272.
Bischof, J., and Airoldi, E.M. (2012). Summarizing topical content with word frequency and exclusivity. In ICML, 201208.
Rosen-Zvi, M., Griffiths, T., Steyvers, M. and Smyth, P. (2004). The author-topic model for authors and documents. UAI ’04 Proc. of the 20th conference on Uncertainty in Artificial Intelligence: 487-494.
Blei, D.M., and Lafferty, J. (2006). Dynamic topic models. In Proc. of the 23rd International Conference on Machine Learning, ACM.
Blei, D.M., & Lafferty, J. D. (2007). A correlated topic model of science. The Annals of Applied Statistics, 17-35.
Mcauliffe, J. D., & Blei, D.M. (2008). Supervised topic models. In Advances in neural information processing systems (pp. 121-128).
Mimno, D., & McCallum, A. (2012). Topic models conditioned on arbitrary features with dirichlet-multinomial regression. arXiv preprint arXiv:1206.3278.
Roberts, M.E., Stewart, B.M., and Airoldi, E.M. (2016). A model of text for experimentation in the social sciences. Journal of the American Statistical Association, 111(515), 988-1003.
Roberts, M.E. Stewart, B.M., and Tingley, D. (2016). Navigating the Local Modes of Big Data: The Case of Topic Models. In Data Analytics in Social Science, Government, and Industry. New York: Cambridge University Press.
Fong, C.J., and Grimmer, J. (2016). Discovery of Treatments from Text Corpora, In Proceedings of the Annual Meeting of the Association for Computational Linguistics.
Egami, N., Fong, C.J., Grimmer, J., Roberts, M. E., & Stewart, B. M. (2017). How to Make Causal Inferences Using Texts.
Mikolov, T., Chai, K., Corrado, G.S., and Dean, J. (2013). Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781.
Pennington, J., Socher, R., and Manning, C.D. (2014). Glove: Global Vectors for Word Representation, In EMNLP, 14, 1532–1543.
Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic language model, In JMLR, 3, 1137–1155, 2003.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning, Nature, 521 (7553), 436–444.
McCallum, A. (2002). MALLET: A machine learning for language toolkit. http://mallet.cs.umass.edu.
Rehurek, R., and Sojka, P. (2010). Software framework for topic modelling with large corpora, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, 45-50. https://radimrehurek.com/gensim/
Roberts, M., Stewart, B., and Tingley, D. (2017). stm: R package for structural topic models. R package version 1.3.0. http://www.structuraltopicmodel.com/
Silge, J., and Robinson, D. (2017). Tidy Topic Modeling. https://cran.r-project.org/web/packages/tidytext/vignettes/topic_modeling.html.
Wesslen, R. (2017). Topic Modeling workshop with R. https://github.com/wesslen/Topic-Modeling-Workshop-with-R.
Social Science Applications
Quinn, K.M., Monroe, B.L., Colaresi, M., Crespin, M.H., and Radev, D.R. (2010). How to analyze political attention with minimal assumptions and costs. American Journal of Political Science, 54 (1): 209-228.
Grimmer, J (2010). A Bayesian hierarchical topic model for political texts: measuring expressed agenda in Senate press releases, Political Analysis, 18 (1).
Paul, M.J., and Dredze, M (2014). Discovering health topics in social media using topic models, PLoS ONE, 9(8), e103408.
Roberts, M.E., Stewart, B.M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S.K., Albertson, B., and Rand, D.G. (2014). Structural Topic Models for Open-Ended Survey Responses. American Journal of Political Science, 58(4), 1064-1082.
Lucas, C., Nielsen, R. A., Roberts, M. E., Stewart, B. M., Storer, A., & Tingley, D. (2015). Computer-assisted text analysis for comparative politics. Political Analysis, 23(2), 254-277.
Baumer, E.P., Mimno, D., Guha, S., Quan, E., & Gay, G.K. (2017). Comparing grounded theory and topic modeling: Extreme divergence or unlikely convergence?. Journal of the Association for Information Science and Technology, 68(6), 1397-1410.
Kobayashi, V.B., Mol, S.T., Berkers, H.A., Kismihók, G., Den Hartog, D.N. (2017). Text Mining in Organizational Science. Organizational Research Methods.