Aardvark.Base


M33f

Constructors

ConstructorDescription
new(...)
Signature: (m00:float32 * m01:float32 * m02:float32 * m10:float32 * m11:float32 * m12:float32 * m20:float32 * m21:float32 * m22:float32) -> unit
new(a)
Signature: (a:float32 []) -> unit
new(a, start)
Signature: (a:float32 [] * start:int) -> unit

Instance members

Instance memberDescription
Adjoin()
Signature: unit -> M33f
Modifiers: abstract

Converts this matrix to its adjoint.

Adjoint
Signature: M33f
Modifiers: abstract

Returns adjoint of this matrix.

C0()
Signature: unit -> unit
C1()
Signature: unit -> unit
C2()
Signature: unit -> unit
Column(index)
Signature: index:int -> V3f
Modifiers: abstract

Returns index-th column of this matrix.

Columns
Signature: IEnumerable<V3f>
Copy(element_fun)
Signature: element_fun:Func<float32,int> -> M33i

Returns a copy with all elements transformed by the supplied function.

Copy(element_index0_index1_fun)
Signature: element_index0_index1_fun:Func<float32,int,int,int> -> M33i

Returns a copy with all elements transformed by the supplied function.

Copy(element_fun)
Signature: element_fun:Func<float32,int64> -> M33l

Returns a copy with all elements transformed by the supplied function.

Copy(element_index0_index1_fun)
Signature: element_index0_index1_fun:Func<float32,int,int,int64> -> M33l

Returns a copy with all elements transformed by the supplied function.

Copy(element_fun)
Signature: element_fun:Func<float32,float32> -> M33f

Returns a copy with all elements transformed by the supplied function.

Copy(element_index0_index1_fun)
Signature: element_index0_index1_fun:Func<float32,int,int,float32> -> M33f

Returns a copy with all elements transformed by the supplied function.

Copy(element_fun)
Signature: element_fun:Func<float32,float> -> M33d

Returns a copy with all elements transformed by the supplied function.

Copy(element_index0_index1_fun)
Signature: element_index0_index1_fun:Func<float32,int,int,float> -> M33d

Returns a copy with all elements transformed by the supplied function.

CopyTo(array, index)
Signature: (array:int [] * index:int64) -> unit
CopyTo(array, index)
Signature: (array:int64 [] * index:int64) -> unit
CopyTo(array, index)
Signature: (array:float32 [] * index:int64) -> unit
CopyTo(array, index)
Signature: (array:float [] * index:int64) -> unit
Det
Signature: float32
Modifiers: abstract

Gets the determinant of this matrix. The determinant is only defined for square matrices.

Determinant()
Signature: unit -> float32

Returns the determinant of this matrix. The determinant is only defined for square matrices.

Dim
Signature: V2l
Modifiers: abstract
Elements
Signature: IEnumerable<float32>
Equals(other)
Signature: other:obj -> bool
Modifiers: abstract
GetHashCode()
Signature: unit -> int
Modifiers: abstract
GetValue(x, y)
Signature: (x:int64 * y:int64) -> obj
Modifiers: abstract
GetValue(v)
Signature: v:V2l -> obj
Modifiers: abstract
Inverse
Signature: M33f
Modifiers: abstract

Returns the inverse of this matrix. If the matrix is not invertible M33f.Zero is returned.

Invert()
Signature: unit -> bool
Modifiers: abstract

Inverts the matrix in place. Returns true if the matrix was invertible, otherwise the matrix remains unchanged.

Invertible
Signature: bool
Modifiers: abstract

Returns whether this matrix is invertible. A matrix is invertible if its determinant is not zero.

InvTransformDir(v)
Signature: v:V2f -> V2f

Transforms direction vector v (p.w is presumed 0) with the inverse of this transform.

InvTransformPos(p)
Signature: p:V2f -> V2f

Transforms point p (p.w is presumed 1.0) with the inverse of this transform. No projective transform is performed.

InvTransformPosProj(p)
Signature: p:V2f -> V2f

Transforms point p (p.w is presumed 1.0) with the inverse of this transform. Projective transform is performed.

IsIdentity(epsilon)
Signature: epsilon:float32 -> bool

Returns if the matrix is the identity matrix I.

IsInvalid
Signature: bool
Modifiers: abstract
IsOrthogonal(epsilon)
Signature: epsilon:float32 -> bool

Returns if the matrix is orthogonal (i.e. all non-diagonal entries of M * M^t == 0)

IsOrthonormal(epsilon)
Signature: epsilon:float32 -> bool

Returns if the matrix is orthonormal (i.e. M * M^t == I)

IsValid
Signature: bool
Modifiers: abstract
[()]
Signature: unit -> int
[arg1]
Signature: int -> int
Modifiers: abstract
[arg1]
Signature: int64 -> int64
Modifiers: abstract

NOTE: this indexer has reversed order of coordinates with respect to the default indexer!!!

[()]
Signature: unit -> V2l
Modifiers: abstract

NOTE: this indexer has reversed order of coordinates with respect to the default indexer!!!

LuInverse()
Signature: unit -> M33f

Returns the inverse of the matrix using lu factorization. If the matrix is not invertible, M33f.Zero is returned.

LuInvert()
Signature: unit -> bool

Inverts the matrix using lu factorization in place. Returns true if the matrix was invertible, otherwise the matrix remains unchanged.

Norm(p)
Signature: p:float32 -> float32

Returns the p-norm of the matrix. This is calculated as (|M00|^p + |M01|^p + ... )^(1/p)

Norm1
Signature: float32

Returns the Manhattan (or 1-) norm of the matrix. This is calculated as |M00| + |M01| + ...

Norm2
Signature: float32

Returns the Euclidean (or 2-) norm of the matrix. This is calculated as Sqrt(M00 M00 + M01 M01 + ... )

NormMax
Signature: float32

Returns the infinite (or maximum) norm of the matrix. This is calculated as max(|M00|, |M01|, ...).

NormMin
Signature: float32

Returns the minimum norm of the matrix. This is calculated as min(|M00|, |M01|, ...).

R0()
Signature: unit -> unit
R1()
Signature: unit -> unit
R2()
Signature: unit -> unit
Row(index)
Signature: index:int -> V3f
Modifiers: abstract

Returns index-th row of this matrix.

Rows
Signature: IEnumerable<V3f>
SetValue(value, x, y)
Signature: (value:obj * x:int64 * y:int64) -> unit
Modifiers: abstract
SetValue(value, v)
Signature: (value:obj * v:V2l) -> unit
Modifiers: abstract
Singular
Signature: bool
Modifiers: abstract

Returns whether this matrix is singular. A matrix is singular if its determinant is zero.

ToArray()
Signature: unit -> float32 []
ToString()
Signature: unit -> string
Modifiers: abstract
ToString(format)
Signature: format:string -> string
ToString(format, fp)
Signature: (format:string * fp:IFormatProvider) -> string
ToString(...)
Signature: (format:string * fp:IFormatProvider * beginM:string * betweenM:string * endM:string * beginR:string * betweenR:string * endR:string) -> string

Outputs e.g. a 2x2-Matrix in the form "(beginM)(beginR)m00(betweenR)m01(endR)(betweenM)(beginR)m10(betweenR)m11(endR)(endM)".

Trace
Signature: float32
Modifiers: abstract

Returns the trace of this matrix. The trace is defined as the sum of the diagonal elements, and is only defined for square matrices.

Transform(v)
Signature: v:V3f -> V3f
Modifiers: abstract

Transforms vector v.

TransformDir(v)
Signature: v:V2f -> V2f
Modifiers: abstract

Transforms direction vector v (v.w is presumed 0.0) by this matrix.

TransformPos(p)
Signature: p:V2f -> V2f
Modifiers: abstract

Transforms point p (p.w is presumed 1.0) by this matrix. No projective transform is performed.

TransformPosProj(p)
Signature: p:V2f -> V2f
Modifiers: abstract

Transforms point p (p.w is presumed 1.0) by this matrix. Projective transform is performed. Perspective Division is performed.

TransformPosProjFull(p)
Signature: p:V2f -> V3f

Transforms point p (p.w is presumed 1.0) by this matrix. Projective transform is performed.

Transpose()
Signature: unit -> unit
Modifiers: abstract

Transposes this matrix (and returns this).

Transposed
Signature: M33f
Modifiers: abstract

Gets transpose of this matrix.

TransposedTransform(v)
Signature: v:V3f -> V3f

Transforms vector v by the transposed version of this.

TransposedTransformDir(v)
Signature: v:V2f -> V2f

Transforms direction vector v (v.w is presumed 0.0) by transposed version of this matrix.

TransposedTransformPos(p)
Signature: p:V2f -> V2f

Transforms point p (p.w is presumed 1.0) by transposed version of this matrix. No projective transform is performed.

UpperLeftM22()
Signature: unit -> M22f

Returns a copy of the upper left sub matrix.

Static members

Static memberDescription
Add(a, b)
Signature: (a:M33f * b:M33f) -> M33f
Add(m, s)
Signature: (m:M33f * s:float32) -> M33f
Add(s, m)
Signature: (s:float32 * m:M33f) -> M33f
Add(a, b)
Signature: (a:M33f * b:M33d) -> M33d
Add(m, s)
Signature: (m:M33f * s:float) -> M33d
Add(s, m)
Signature: (s:float * m:M33f) -> M33d
ApproximatelyEquals(a, b, epsilon)
Signature: (a:M33f * b:M33f * epsilon:float32) -> bool

Returns if all entries in the matrix a are approximately equal to the respective entries in matrix b.

CrossMatrix(v)
Signature: v:V3f -> M33f

Returns the skew-symmetric "cross" matrix (A^T = -A) of the vector v.

Distance(a, b, p)
Signature: (a:M33f * b:M33f * p:float32) -> float32

Returns the p-distance between two matrices.

Distance1(a, b)
Signature: (a:M33f * b:M33f) -> float32

Returns the Manhatten (or 1-) distance between two matrices.

Distance2(a, b)
Signature: (a:M33f * b:M33f) -> float32

Returns the Euclidean (or 2-) distance between two matrices.

DistanceMax(a, b)
Signature: (a:M33f * b:M33f) -> float32

Returns the maximal absolute distance between the components of the two matrices.

DistanceMin(a, b)
Signature: (a:M33f * b:M33f) -> float32

Returns the minimal absolute distance between the components of the two matrices.

Divide(a, b)
Signature: (a:M33f * b:M33f) -> M33f
Divide(m, s)
Signature: (m:M33f * s:float32) -> M33f
Divide(s, m)
Signature: (s:float32 * m:M33f) -> M33f
Divide(a, b)
Signature: (a:M33f * b:M33d) -> M33d
Divide(m, s)
Signature: (m:M33f * s:float) -> M33d
Divide(s, m)
Signature: (s:float * m:M33f) -> M33d
Enlarge(m)
Signature: m:M33f -> M44f
FromCols(col0, col1, col2)
Signature: (col0:V3f * col1:V3f * col2:V3f) -> M33f
FromRows(row0, row1, row2)
Signature: (row0:V3f * row1:V3f * row2:V3f) -> M33f
Modulo(a, b)
Signature: (a:M33f * b:M33f) -> M33f
Modulo(m, s)
Signature: (m:M33f * s:float32) -> M33f
Modulo(s, m)
Signature: (s:float32 * m:M33f) -> M33f
Modulo(a, b)
Signature: (a:M33f * b:M33d) -> M33d
Modulo(m, s)
Signature: (m:M33f * s:float) -> M33d
Modulo(s, m)
Signature: (s:float * m:M33f) -> M33d
Multiply(m, s)
Signature: (m:M33f * s:Scale3f) -> M33f
Multiply(m, t)
Signature: (m:M33f * t:Shift3f) -> M34f
Multiply(m, s)
Signature: (m:M33f * s:float32) -> M33f
Multiply(s, m)
Signature: (s:float32 * m:M33f) -> M33f
Multiply(m, s)
Signature: (m:M33f * s:float) -> M33d
Multiply(s, m)
Signature: (s:float * m:M33f) -> M33d
Multiply(m, v)
Signature: (m:M33f * v:V3f) -> V3f
Multiply(a, b)
Signature: (a:M33f * b:M33f) -> M33f
NormalFrameLocal2Global(normal)
Signature: normal:V3f -> M33f

Computes from a normal the transformation matrix from the local coordinate system where the normal is the z-axis to the global coordinate system.

op_Addition(a, b)
Signature: (a:M33f * b:M33f) -> M33f
op_Addition(m, s)
Signature: (m:M33f * s:float32) -> M33f
op_Addition(s, m)
Signature: (s:float32 * m:M33f) -> M33f
op_Addition(a, b)
Signature: (a:M33f * b:M33d) -> M33d
op_Addition(m, s)
Signature: (m:M33f * s:float) -> M33d
op_Addition(s, m)
Signature: (s:float * m:M33f) -> M33d
op_Division(a, b)
Signature: (a:M33f * b:M33f) -> M33f
op_Division(m, s)
Signature: (m:M33f * s:float32) -> M33f
op_Division(s, m)
Signature: (s:float32 * m:M33f) -> M33f
op_Division(a, b)
Signature: (a:M33f * b:M33d) -> M33d
op_Division(m, s)
Signature: (m:M33f * s:float) -> M33d
op_Division(s, m)
Signature: (s:float * m:M33f) -> M33d
op_Equality(a, b)
Signature: (a:M33f * b:M33f) -> bool
op_Equality(a, s)
Signature: (a:M33f * s:float32) -> bool
op_Equality(s, a)
Signature: (s:float32 * a:M33f) -> bool
op_Explicit(m)
Signature: m:M22i -> M33f
op_Explicit(m)
Signature: m:M23i -> M33f
op_Explicit(m)
Signature: m:M33i -> M33f
op_Explicit(m)
Signature: m:M34i -> M33f
op_Explicit(m)
Signature: m:M44i -> M33f
op_Explicit(m)
Signature: m:M22l -> M33f
op_Explicit(m)
Signature: m:M23l -> M33f
op_Explicit(m)
Signature: m:M33l -> M33f
op_Explicit(m)
Signature: m:M34l -> M33f
op_Explicit(m)
Signature: m:M44l -> M33f
op_Explicit(m)
Signature: m:M22f -> M33f
op_Explicit(m)
Signature: m:M23f -> M33f
op_Explicit(m)
Signature: m:M34f -> M33f
op_Explicit(m)
Signature: m:M44f -> M33f
op_Explicit(m)
Signature: m:M22d -> M33f
op_Explicit(m)
Signature: m:M23d -> M33f
op_Explicit(m)
Signature: m:M33d -> M33f
op_Explicit(m)
Signature: m:M34d -> M33f
op_Explicit(m)
Signature: m:M44d -> M33f
op_Explicit(a)
Signature: (a:int []) -> M33f
op_Explicit(a)
Signature: (a:int [,]) -> M33f
op_Explicit(m)
Signature: m:M33f -> int []
op_Explicit(m)
Signature: m:M33f -> int [,]
op_Explicit(a)
Signature: (a:int64 []) -> M33f
op_Explicit(a)
Signature: (a:int64 [,]) -> M33f
op_Explicit(m)
Signature: m:M33f -> int64 []
op_Explicit(m)
Signature: m:M33f -> int64 [,]
op_Explicit(a)
Signature: (a:float32 []) -> M33f
op_Explicit(a)
Signature: (a:float32 [,]) -> M33f
op_Explicit(m)
Signature: m:M33f -> float32 []
op_Explicit(m)
Signature: m:M33f -> float32 [,]
op_Explicit(a)
Signature: (a:float []) -> M33f
op_Explicit(a)
Signature: (a:float [,]) -> M33f
op_Explicit(m)
Signature: m:M33f -> float []
op_Explicit(m)
Signature: m:M33f -> float [,]
op_GreaterThan(a, b)
Signature: (a:M33f * b:M33f) -> bool
op_GreaterThan(a, s)
Signature: (a:M33f * s:float32) -> bool
op_GreaterThan(s, a)
Signature: (s:float32 * a:M33f) -> bool
op_GreaterThanOrEqual(a, b)
Signature: (a:M33f * b:M33f) -> bool
op_GreaterThanOrEqual(a, s)
Signature: (a:M33f * s:float32) -> bool
op_GreaterThanOrEqual(s, a)
Signature: (s:float32 * a:M33f) -> bool
op_Inequality(a, b)
Signature: (a:M33f * b:M33f) -> bool
op_Inequality(m, s)
Signature: (m:M33f * s:float32) -> bool
op_Inequality(s, m)
Signature: (s:float32 * m:M33f) -> bool
op_LessThan(a, b)
Signature: (a:M33f * b:M33f) -> bool
op_LessThan(a, s)
Signature: (a:M33f * s:float32) -> bool
op_LessThan(s, a)
Signature: (s:float32 * a:M33f) -> bool
op_LessThanOrEqual(a, b)
Signature: (a:M33f * b:M33f) -> bool
op_LessThanOrEqual(a, s)
Signature: (a:M33f * s:float32) -> bool
op_LessThanOrEqual(s, a)
Signature: (s:float32 * a:M33f) -> bool
op_Modulus(a, b)
Signature: (a:M33f * b:M33f) -> M33f
op_Modulus(m, s)
Signature: (m:M33f * s:float32) -> M33f
op_Modulus(s, m)
Signature: (s:float32 * m:M33f) -> M33f
op_Modulus(a, b)
Signature: (a:M33f * b:M33d) -> M33d
op_Modulus(m, s)
Signature: (m:M33f * s:float) -> M33d
op_Modulus(s, m)
Signature: (s:float * m:M33f) -> M33d
op_Multiply(m, s)
Signature: (m:M33f * s:Scale3f) -> M33f
op_Multiply(m, t)
Signature: (m:M33f * t:Shift3f) -> M34f
op_Multiply(m, s)
Signature: (m:M33f * s:float32) -> M33f
op_Multiply(s, m)
Signature: (s:float32 * m:M33f) -> M33f
op_Multiply(m, s)
Signature: (m:M33f * s:float) -> M33d
op_Multiply(s, m)
Signature: (s:float * m:M33f) -> M33d
op_Multiply(m, v)
Signature: (m:M33f * v:V3f) -> V3f
op_Multiply(a, b)
Signature: (a:M33f * b:M33f) -> M33f
op_Subtraction(a, b)
Signature: (a:M33f * b:M33f) -> M33f
op_Subtraction(m, s)
Signature: (m:M33f * s:float32) -> M33f
op_Subtraction(s, m)
Signature: (s:float32 * m:M33f) -> M33f
op_Subtraction(a, b)
Signature: (a:M33f * b:M33d) -> M33d
op_Subtraction(m, s)
Signature: (m:M33f * s:float) -> M33d
op_Subtraction(s, m)
Signature: (s:float * m:M33f) -> M33d
OuterProduct(v1, v2)
Signature: (v1:V3f * v2:V3f) -> M33f

Returns the outer product (tensor-product) of v1 * v2^T as a 3x3 Matrix.

Parse(s)
Signature: s:string -> M33f
Rotation(angleInRadians)
Signature: angleInRadians:float32 -> M33f

Creates rotation matrix from axis and angle.

Rotation(r)
Signature: r:Rot2f -> M33f

Creates rotational matrix from quaternion.

Scale(s)
Signature: s:float32 -> M33f

Creates new Identity with scalar value for uniform-scaling.

Scale(sx, sy)
Signature: (sx:float32 * sy:float32) -> M33f

Creates new Identity with 3 scalar values for scaling.

Scale(v)
Signature: v:V2f -> M33f

Creates new Identity with V3f for scaling.

Subtract(a, b)
Signature: (a:M33f * b:M33f) -> M33f
Subtract(m, s)
Signature: (m:M33f * s:float32) -> M33f
Subtract(s, m)
Signature: (s:float32 * m:M33f) -> M33f
Subtract(a, b)
Signature: (a:M33f * b:M33d) -> M33d
Subtract(m, s)
Signature: (m:M33f * s:float) -> M33d
Subtract(s, m)
Signature: (s:float * m:M33f) -> M33d
Transform(m, v)
Signature: (m:M33f * v:V3f) -> V3f
TransformDir(m, v)
Signature: (m:M33f * v:V2f) -> V2f

Transforms direction vector v (v.w is presumed 0.0) by matrix m.

TransformPos(m, p)
Signature: (m:M33f * p:V2f) -> V2f

Transforms point p (v.w is presumed 1.0) by matrix m. No projective transform is performed.

TransformPosProj(m, p)
Signature: (m:M33f * p:V2f) -> V2f

Transforms point p (p.w is presumed 1.0) by matrix m. Projective transform is performed. Perspective Division is performed.

TransformPosProjFull(m, p)
Signature: (m:M33f * p:V2f) -> V3f

Transforms point p (p.w is presumed 1.0) by matrix m. Projective transform is performed.

Translation(dx, dy)
Signature: (dx:float32 * dy:float32) -> M33f

Creates new Identity with 2 float values for translation.

Translation(v)
Signature: v:V2f -> M33f

Creates new Identity with V3f vector for translation.

TransposedMultiply(v, m)
Signature: (v:V3f * m:M33f) -> V3f
TransposedTransform(m, v)
Signature: (m:M33f * v:V3f) -> V3f
TransposedTransformDir(m, v)
Signature: (m:M33f * v:V2f) -> V2f

Transforms direction vector v (v.w is presumed 0.0) by transposed version of matrix m.

TransposedTransformPos(m, p)
Signature: (m:M33f * p:V2f) -> V2f

Transforms point p (v.w is presumed 1.0) by transposed version of matrix m. No projective transform is performed.

Fork me on GitHub