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Abstract

Ranking problems are omnipresent in interactions with software that retrieve information. Ad-
vancements in machine learning (ML) have led to novel solutions for solving ranking problems
using a set of approaches known as Learning to Rank (LTR). The goal of this thesis is to demon-
strate the effectiveness of learning to rank in solving the problem of ranking geographic places
intended for navigation by comparing it to an existing place search engine called Pelias. Click-
through logs collected from Pelias usage were utilized to create a training dataset for the learning
to rank models. Linear, tree-based, and neural learning to rank models were built using the stan-
dard ML workflow and evaluated offline using the Mean Reciprocal Rank (MRR) metric. The
tree-based models show significant MRR improvements over Pelias, while a subset of the linear
and neural models show marginal improvements. An analysis of the results revealed open ques-
tions and clear directions for future work on the LTR models.
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Chapter 1

Introduction

1.1 Problem Statement

The first step in most navigation systems or applications is to choose a destination and origin. The
usual workflow is: a user provides a text query, and the system responds with a list of places that
might satisfy the users intent. This act of searching for geographic places using a textual query
is called Place Search, while the component in a navigation application that provides the place
search functionality can be referred to as a place search engine, or simply a search engine.

Generally, a search engine is a system that retrieves documents that correspond to a query. In
the context of place search, a document refers to a place; and a document’s fields can contain
data about different attributes of the place such as its name and location. A search engine always
attempts to sort results based on the probability that a result would satisfy the user’s need. This
probability is also known as relevance. In other words, the objective of a search engine is to or-
der results from most relevant to least relevant consistently. Search engines have to solve what is
known as a ranking problem to achieve this objective.

Figure 1.1: Example search screen on a Moovel application
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The search query in Figure 1.1 is “haupt”; and the results are separated by section or type, where
type could be public transport stop, point of interest (POI), or address. It should be noted that the
results are sorted based on their relevance within each section, and not across all sections.

Ranking problems and search relevance are difficult, and as a result, search engines often get the
sorting of results based on relevance wrong. In place search, this shortcoming is evident in situa-
tions where a user only finds their intended place at a lower rank position below irrelevant results
or does not find it altogether.

Traditional information retrieval (IR) methods are widely used to solve ranking problems. These
methods have shown impressive results through their use in full-text search engines such as Elas-
ticsearch and Solr, which have consequently gained popularity. These search engines implement
classical algorithms such as TF-IDF [40], BM25 [41], and PageRank [35], which have proven to
be effective at solving ranking problems. The PageRank algorithm, for example, was the core al-
gorithm behind the Google search engine at its inception. These traditional IR methods are usually
based on vector space models, probabilistic models, or boolean models; and they may be query
dependent or independent.

Place search engines based on traditional IR methods such as Pelias and Nominatim were built to
tackle the problem of ranking geographic locations, and they have similarly seen a good amount
of adoption. Despite the success of traditional IR in solving ranking problems, it has inherent lim-
itations due to the hand-tuned nature of the solutions. One of the major limitations of systems built
using these solutions is their inability to learn from implicit user feedback. In the place search use
case, learning from implicit feedback means leveraging clickthrough data to improve relevance
based on past user behaviour. The problem of learning from data is the essence of what machine
learning tries to solve.

This thesis researches an alternative and measurably improved approach for solving place ranking
using learning to rank (LTR) [27]. Learning to rank is a set of machine learning-based approaches
designed to solve the problem of sorting collections of documents based on their relevance to a
given query. Broadly, there are three learning to rank approaches: pointwise, pairwise, and list-
wise; and they differ primarily in terms of the input to their loss functions. Learning to rank is a
well-studied and increasingly popular area in machine learning that is seeing success at companies
such as Yahoo [54] and Microsoft [8]. Learning to rank and its different approaches are delved
into in greater detail in Chapter 2.

The hypothesis that learning to rank can overcome the limitations inherent in hand-tuned methods
is investigated by implementing multiple learning to rank models using clickthrough data. The
types of learning to rank models implemented are: linear, tree-based, and neural. The dataset used
in this thesis is from historical search data collected from navigation apps owned and operated by
Moovel Group. The search engine used by the apps is Pelias. Therefore, Pelias is the foundation
for this research, and also serves the benchmark for evaluating the performance of the learning to
rank models.

1.2 Limitations of the Existing Solution

Pelias uses Elasticsearch under the hood, which is a full-text search engine that supports several
functionalities for information retrieval, which includes indexing data using analysis chains; and
querying documents using text-matching based on TF-IDF and edit distance, function scoring,
hand-written boosts and weights on matched fields. A well-tuned Pelias search engine performs
satisfactorily as measured by standard ranking evaluation metrics such as clickthrough rate (CTR)
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and mean reciprocal rank (MRR). Pelias relies on continuously tuning the search engine with
learned heuristics; this is error-prone and results in accrued and sprawling complexity over time.
Additionally, Elasticsearch’s cookie-cutter abstractions are insufficient for learning and leveraging
the latent user and document features in clickthrough data. Learning to rank approaches, through
their use of machine learning, are uniquely qualified to learn optimal search result orderings based
on user feedback mined from clickthrough data.

The next sections highlight the limitations of using full-text search databases such as Elasticsearch
for place search.

1.2.1 Learning from Historical Data

Massive amounts of data are generated as users interact with a search engine. Embedded within
this data are latent features that can be leveraged to deliver a better search experience to users.
However, full-text search engines are limited to the data stored in the static fields of their doc-
uments during retrieval. This limitation can be side-stepped using machine learning-based ap-
proaches such as learning to rank, which is capable of improving search performance as the amount
and quality of training data increases.

1.2.2 Location Biasing

A common assumption in place search is that people tend to search for places closer to them than
farther away. In Elasticsearch, document scoring can be influenced at query time by defining a
decay function such as linear or exponential, and setting parameters; decay, offset, and scale for
the function. This method of scoring based on location, also known as location biasing has some
limitations. Firstly, finding optimal values for the decay functions parameters is not straightfor-
ward. Secondly, the parameters for one region are likely different from another’s - this is expected
since regions differ in terms of density and area. Lastly, the supported decay functions are able to
approximate the general user tendency of searching based on proximity, but they fall short of cap-
turing more sophisticated travel patterns. Figure 1.2 illustrates the distances in kilometers between
users and the places they clicked on.

Figure 1.2: Users’ distances from selected locations
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Figure 1.3: Distances between users and selected places vs. decay functions supported by Elasticsearch

Empirically, the Elasticsearch decay functions model the probability that a user will travel to a
location, and places are scored based on that probability. The two top plots and bottom left plot in
the figure above illustrate how documents would be scored depending on the chosen function and
its parameters. The bottom right plot shows the actual distances between users and the places they
clicked on. From this, we learn that none of the decay functions sufficiently models the observed
distribution.

1.2.3 Temporal Relevance

The importance of certain places could vary based on the time of day, week, month, and year.
Such importance could be represented in Elasticsearch, for example, by using the query operator
called Field Value Factor. Field Value Factor accepts a field and a function that would be applied
to the field value such as a square root or log function to influence a document’s score. Such a field
could be used by say, defining a field called importance that keeps track of the number of times
a document is selected. However, this operator and conceivably other hand-tuned alternatives do
not have the flexibility to capture variations in importance based on cyclical time windows like
weekends, and factors like weather.
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Figure 1.4: Variation in the ten most selected POIs in Karlsruhe over the weeks of June 2019

Figure 1.4 shows the weekly popularity patterns for points of interest within a month. For example,
Rheinstrandbad Rappenwort happened to be particularly popular during calendar week 26. This
might be correlated with the summer season, hot weather, or both.

1.2.4 Query Parsing

When Elasticsearch receives a query such as "McDonald’s Friedrichstraße", it attempts to analyze
it; which involves applying predefined tokenizers and character filters on the query. Given the
query above, Elasticsearch might attempt to match all the fields of the documents in the index
with the tokens “mcdonalds” and “friedrichstraße”. A better approach would be to recognize the
entities in the query, i.e., a restaurant or point of interest and a street, and attempt a match on the
corresponding document fields. The problem of identifying entities in a query is known as Named
Entity Recognition (NER), and it is well studied in the literature [31]. Elasticsearch has no native
facility for this.
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Figure 1.5: Distribution of Query Lengths for Successful Searches

Figure 1.6: Distribution of Query Lengths for Failed Searches

An analysis of the clickthrough data shows that searches that result in a click tend to have shorter
queries, while unsuccessful searches tend to have longer queries (Figure 1.5 and 1.6). Longer
queries require a better query parsing mechanism, which the brute force search fails to satisfy.

1.2.5 Location Sharing

Section 1.2.2 described the use of location biasing to serve users with more relevant result lists.
For location biasing to work, however, users have to permit location sharing with the navigation
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application. The clickthrough logs show that a significant percentage of users do not allow location
sharing. A cursory analysis of the impact of location sharing shows that users who do not share
their locations experience worse rankings as measured by MRR (see section 2.2.1) (Figure 1.8)
and type in slightly longer queries based on the mean character length (Figure 1.7).

Figure 1.7: Rank distributions for searches with location sharing (left) and searches without (right).

Figure 1.8: Distribution of query character lengths for searches with location sharing (left) and searches
without (right).
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1.3 Related Work

Learning to Rank (LTR) is an area of machine learning that is concerned with optimizing the
utility of ordered lists [27]. A lot of the motivation behind LTR research is a direct result of the
importance of web search engines. This is evident not only in the research produced but also in
the popular benchmark datasets such as LETOR 3.0 [39] and MSLR [37]. LTR has broader appli-
cations beyond web search engines and document retrieval and has been applied to problems such
as collaborative filtering [44], question answering [48], and computational biology [7].

A survey of the literature did not yield much work that is closely related to the application of
LTR on place search. A slightly related area is Geographic Information Retrieval (GIR), which
is concerned with retrieving documents containing geographic dimensions based on queries with
geographical or spatial references [24]. LTR has been applied to GIR in [28]. Though similar
in name, place search is different from GIR as it involves retrieving documents that represent
geographic entities with named attributes using queries that are formulated based solely on the
named attributes. Another related work from Foursquare studies the problem of mapping a user’s
location to a point of interest; or nearby search as they refer to it [43]. The paper mentions a
system for place search using queries and doesn’t discuss it further. We believe there is no widely
available published work that demonstrates the application of learning to rank to place search
using text queries.

1.4 Summary

This chapter introduced the ranking problem and its importance to place search. The existing
solutions for solving the problem were also discussed, and their limitations were used to motivate
the core argument behind this thesis. The chapter ends with a brief look at related work in the
literature. The next chapter delves into the theoretical basis of learning to rank.



Chapter 2

Learning to Rank

Learning to Rank refers to a set of machine learning methods for optimizing the utility of ordered
lists. The goal of an LTR model is to predict the relative ordering of a set of observations, in
contrast with classification and regression models; which aim to accurately predict values of in-
dividual observations as separate from other observations. An LTR model determines a scoring
function f(· ) that defines a ranking over a set such that a loss L is minimized.

Before going further, it is important to define some terms within the context of LTR.

Query Group

A query group identifies a list of ranked documents {dj}mj=1 associated with a single query input q,
where m is the number of documents. For example, a search for the query “Hauptbahnhof” might
return fifteen results that make up a query group. A definition of a query group is crucial because
it affects how a training dataset is constructed and labelled. During our work, we identified two
ways of defining a query group:

• A query group could be the set of documents returned for a unique query; with relevance
judgements based on clicks defined as the normalized frequencies of the documents.

• A query group could be the set of documents returned for an instance of a query; with
relevance judgements based on whether a document is clicked or not. This is the definition
adopted by this thesis.

Scoring Function

In regression and classification models, a scoring function f (.) determines the value of a single
observation, while in LTR, the scoring function determines the rank of each document in a query
group.

Loss Function

The loss function L(.) determines the difference between the predicted ordering of documents
and their optimal ordering based on their labels. The exact formulation of the loss function is
determined by the learning to rank approach.
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2.1 Learning to Rank as an Empirical Risk Minimization Problem

Empirical Risk Minimization offers a formulation of problems that can be used to find the best
approximation of a function given that we don’t know the true distribution of our data [47]. Given
that queries and documents are represented as vectors in Rn , learning to rank can be modelled as
an empirical risk minimization problem as follows:
With a labelled dataset {(Xq, yq)}nq=1, where

• n is the total number of training queries.

• Xq = {dj}mj=1 is the set of documents for query q, also known as a query group.

• yq = {yj}mj=1 is the set of relevance judgments for our documents.

The goal is to learn a function h : Rn ! R , which minimizes:

R̂ (h) =
1

n

nX

q=1

L (⇡ (h,Xq) , yq)

where ⇡ (h,Xq) is the ranking of documents for query q, and L measures the difference between
the prediction ⇡ (h,Xq) and the ground truth label yq.

Based on the empirical risk minimization principle, an LTR algorithm chooses the scoring func-
tion f that minimizes the empirical risk R̂ (h):

f = argmin
h✏H

R̂ (h)

Based on the scoring function f , the rankings obtained from ⇡ (f,Xq) should output the best
ordering based on the relevance judgements in the form:

yqi > yqj , f (dqi ) > f
⇣
dqj

⌘

2.2 Evaluation Metrics

Several metrics have been devised to evaluate the performance of search engines at delivering the
best rankings to users. Popular metrics include Click-Through Rate (CTR), Mean Average Preci-
sion (MAP) [27], Normalized Discounted Cumulative Gain (NDCG) [27], Mean Reciprocal Rank
(MRR) [29], and Expected Reciprocal Rank (ERR) [12]. NDCG is designed to evaluate perfor-
mance based on graded relevance judgments. MAP and MRR only consider whether a document
is relevant or not i.e. binary relevance, and are better suited metrics compared to NDCG when only
one document in a result list is considered relevant. CTR is an online evaluation metric, which can
be approximated using Precision at k (P@k) .

MRR, MAP, and NDCG are discussed briefly. Then the distinction between online and offline
evaluation metrics and how that impacts what can be measured in terms of information retrieval
performance is discussed. Finally, the evaluation metric used in this thesis and the reasoning
behind is explained.

2.2.1 Mean Reciprocal Rank (MRR)

The reciprocal of a query is the inverse of a clicked result’s rank. Taking the mean of reciprocals
across n queries gives the value of MRR.
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MRR =
1

n

nX

i=1

1

ranki

where ranki refers to the rank of the selected document for the i-th query.

2.2.2 Mean Average Precision at k (MAP@k)

MAP is the mean of Average Precisions (AP). It is suited for cases where relevance is binary, i.e.,
1 or 0. In order to understand MAP@k, P@k needs to be defined first. P@k corresponds to the
number of relevant results in the result list. Since we assume that there’s only a single relevant
result, P@k can never be perfect except for k = 1. P@k does not account for the ranks at which
of the selected document appears among k. P@k is computed as follows:

Pi@k =
TPi

TPi + FPi
=

Pmin{k,⇢i}
j=1 relij

k

where Pi@k is the precision at k for a query i, k is a cutoff for the number of results to consider,
TP is the number of true positives, FP is the number of false negatives, ⇢i is the number of
results, and relij is the relevance of a result item (1 or 0).

P@k corresponds to the number of relevant results in the result list. P@k does not account for the
ranks at which the selected document appears among k. For example, if a result list contains items
with relevances [0, 0, 0, 1, 0], then P@3, would be 0 or NaN because:

P@3 = (0 + 0 + 0)/3 = 0
P@4 = (0 + 0 + 0 + 1)/4 = 0.25
P@5 = (0 + 0 + 0 + 1 + 0)/5 = 0.2

Average Precision at k (AP@k) is calculated using:

APi@k =

Pmin{k,⇢i}
j=1 relijPi@j
Pmin{k,⇢i}

j=1 relij

where APi@k is the average precision at k and Pi@j is the precision at j.

For example, if a result list contains items with relevances [0 1 0 1 1], then AP@2 would be
calculated as:

AP@2 = 0 ⇤ 0 + 0.5 ⇤ 0.5 = 0.25
AP@4 = (0 ⇤ 0) + (0.5 ⇤ 0.5) + (0 ⇤ 0) + (0.5 ⇤ 0.5) + (0.5 ⇤ 0.5) = 0.75

Finally, MAP@k is formulated as:

MAP@k =

PU
i=1APi@k

n

where n is the number of queries.
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2.2.3 Normalized Discounted Cumulative Gain at k (NDCG@k)

NDCG@k is similar to MAP@k, the key difference being that NDCG works for non-binary or
graded relevance in addition to binary relevance. The idea behind NDCG is that each item in a
result list has a relevance score that is referred to as the gain (G). Cumulative Gain (CG) is the
result of summing up the relevance scores.

CGi@k =
kX

j=1

relj

where relj is the relevance of the item at rank j.

NDCG takes into account the order in which more relevant items compared to less relevant items
appear. Before summing up the scores, each score is divided by a discounting factor that signals a
reduction in gain as rank positions progress down the result list. Summing up the discounted gains
produces the Discounted Cumulated Gain (DCG).

DCGi@k =
kX

j=1

2relj � 1

ln (j + 1)

DCGs across different result lists are not necessarily comparable due to different result list sizes
or the number of relevant results. In order to make DCGs comparable, they are normalized using
the ideal DCG (IDCG).

IDCGi@k =

|RELk|X

j=1

2relj � 1

log2 (j + 1)

where |RELk| is the ideal ranking of items in the result list.

NDCGi@k =
DCGi@k

IDCGi@k

2.2.4 Online Evaluation vs. Offline Evaluation

Offline evaluation involves evaluating the performance of a model using clickthrough data, while
online evaluation involves evaluating performance on a running system. Both methods have limi-
tations.
Online Evaluation

• The model has to serve traffic from a deployed system (usually in an A/B testing setup).

• Users are experimented on, and they may experience performance degradation.

Offline Evaluation

• Offline can’t evaluate how a model will affect user behavior in terms of queries. Say we
want insight into whether the length of queries typed by users would change, or whether
users would type certain queries differently.

• Unable to measure performance improvement on queries that had previously not resulted in
a click.

• Unable to evaluate the interaction between the ranker and reranker. For example, it wouldn’t
be possible to re-rank a larger number of documents and test a model’s performance, or
update parameters in the search engine and test the relative change in the re-ranker’s perfor-
mance.
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2.2.5 Evaluation Metrics Used

Online metrics are relatively difficult to obtain compared to offline metrics; hence, the metric of
choice for evaluating the learning to rank models in this work is MRR. The choice of MRR over
MAP and NDCG@k is based on the form of the training data. That is, each query group or result
list has only one relevant item (the one clicked on by a user) that has the binary relevance label
of 1; other items in the query group receive the label 0. Even though MRR@1 produces the same
score as NDCG@1 and MAP@1, once the relevant item is found in MRR, the score remains the
same regardless of the result list size. This is not the same with MAP and NDCG. This behavior
makes MRR more desirable for the current use case.

2.3 Types of Features

The input space of machine learning models is made of vectors derived from features of the input
data. Input vectors for LTR models can be constructed in several ways:

• Example / Document / Static Features: these are the features that are specific to each item in
a query group. For example, the name of a place, its longitude and latitude, neighbourhood,
etc.

• Dynamic Features: these features are derived from the relationship between queries and
documents features. For example, the edit distance between a query and a place name.

• Query Level Features or Query Features: these are derived solely from the query e.g. query
text.

• Context Features: these are features that apply to all items in a query group. For example
timestamp, user’s geographic coordinates, etc.

2.4 LTR Approaches

The two ways that LTR approaches differ is in their characterizations of the scoring and loss
functions they are trained to minimize. Even though some LTR algorithms clearly fall under one
approach, some LTR algorithms combine multiple approaches in their scoring and loss functions.
A more thorough distinction can be drawn across the approaches based on their input space, output
space, hypothesis space, and loss function [27].
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Figure 2.1: LTR Algorithms [27]

2.5 Pointwise Approaches

In the pointwise approach, given a query group, a score is computed for each document indepen-
dent of other documents. Each document’s loss is also defined in terms of the difference between
its labelled score and its predicted score. The ranking of a result list is derived by simply sorting
documents by their predicted scores. The pointwise approach amounts to training a classifier or
regressor that predicts the relevance of a document given a query, where the loss function could
be the following:

L (⇡ (f,Xq) , yq) =
1

n

nX

i=1

(f (dqi )� yqi )
2

The pointwise approach bears the closest resemblance to standard ML models, but models the
ranking problem poorly compared to other approaches. Additionally, the pointwise approach’s
loss can hardly be optimized based on the query-level and position-based characteristics of the
evaluation metrics. The pairwise model tries to overcome this limitation by modeling the relative
order of pairs of documents.

Examples of the pointwise approach include McRank [26] and Ordinal Regression [14].

2.6 Pairwise Approaches

In the pairwise approach, a collection of ordered document pairs is created by applying the carte-
sian product of the set of documents in a query group onto itself. In other words, each document
in the query group is paired with every other document, which is then inputted into the scoring
function to produce preferences between pairs of documents. After comparing all pairs, an overall
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ordering of documents emerges. A preference function for each pair returns a value of 1 given
that the preference is correct (concordance), or -1 otherwise (discordant). The loss function aims
to minimize the number of discordant pairs. The pairwise approach bears a resemblance to the
real world conception of ranking problems through its modeling of relative order. The following
example is of a loss function for the pairwise approach:

L (⇡ (f,Xq) , yq) =
X

(i,j) : yqi <yqj
log

⇣
1 + exp (f (dqi ))�

⇣
f
⇣
dqj

⌘⌘⌘

Once we have a loss function that outputs the pairwise preferences between pairs of documents,
an absolute ordering needs to be derived [27]. This derivation is known as a rank aggregation, and
can be represented as:

max
⇡

X

u<v

h
�
x⇡(u), x⇡(v)

�

Where ⇡ (u) and ⇡ (v) are the indices of the documents given by the ordering ⇡.

Rank aggregation can be computationally intensive, and is a NP-hard problem. However, given
that the LTR models in this thesis are top-k re-rankers, discussed in Section 3.1, this is a non-issue.

A potential issue with the pairwise approach is that its loss functions have a tendency to be dom-
inated by queries with large numbers of document pairs [27]. A solution for this involves using
a query-level normalization so the magnitude of losses between query-document pairs becomes
comparable[38]. We find this to be a non-issue in this thesis as a result of the definition of query
group adopted, and use of LTR models as top-k re-rankers where k is a bounded and much smaller
subset of documents in the search index.

Examples of the pairwise approach include Ranking SVM, RankNet, and RankBoost.

2.6.1 Ranking SVM

The Ranking SVM algorithm reduces the ranking problem to a classification problem using the
SVM algorithm. It was introduced in [21] as one of the pioneering applications of machine learn-
ing on clickthrough data to optimize search engine ranking. The author frames the idea of learning
labels from clickthrough data as relative relevance judgements, which can be represented as:

linki < r ⇤ linkj for all pairs 1  j  i, with i 2 C, j /2 C

where C is a set of clicked documents, and linki is preferred over link linkj based on a click.
After formulating the relative relevance judgments, Kendall’s ⌧ (pronounced Kendall’s Tau) is in-
troduced as an expected loss function that minimizes the lower bound of the Average Precision
[6] metric or the average rank of relevant documents when maximized. Kendall’s ⌧ measures the
number of inversions required in order to have the optimal ordering of results [2]. It is defined
as the number of concordant over the number of discordant pairs. Given that r1 and r2 are two
ranking functions, the Kendall’s Tau between r1 and r2 is represented as:

⌧ (r1, r2) =
P �Q

P +Q
= 1� 2Q

P +Q

where P is the number of concordant pairs and Q is the number of discordant pairs (inversions).

Empirical risk minimization can be used to optimize by defining the empirical loss as:
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⌧s (f) =
1

n

nX

i=1

⌧
�
rf(qi), r

⇤

i

�

where s is a training set containing queries q, and r⇤ is the expected relative relevance judgements.

Next, a training dataset is created by taking the cross-product of queries and documents to create a
set of all possible query-documents pairs, and generating features based on the pairs. The training
set can be denoted as x = {� (q, di)}ni=1 where � projects query q and document d pairs onto
a feature space. Features such as TF-IDF scores and pagerank are commonly used for document
retrieval [37]. In place search, a feature might be the edit distance between a query and place
name. A classifier is used to determine the relevance between pairs based on the hyperplane
that minimizes the hinge loss i.e. the loss on a correct ordering is 0, while an incorrect ordering
is 1. Preference between pairs is determined by their distance from the hyperplane, while the
hyperplane is learned based on the weights of query-document pairs’ features. This is formulated
as follows:

min
1

2
||w||2 + C

nX

i=1

X

u,v:y
(i)
u,v=1

⇠u, v(i)

s.t. wT
⇣
x(i)u � x(i)v

⌘
� 1� ⇠(i)u,v , if y(i)u,v = 1,

⇠(i)u,v � 0 , i = 1, ..., n.

Where C is a regularization parameter that controls the trade-off training error and generalizability
of the classifier, ⇠ are the slack variables, and 1

2 ||w||
2 is the margin term.

2.6.2 RankNet

The RankNet algorithm minimizes the cross-entropy loss for a pair of documents given by a scor-
ing function that is the probability that one document should be ranked over another [27] [8]. The
scoring function, which gives the probability u is scored higher than v is given as:

Pu,v (f) =
exp (f (xu)� f (xv))

1 + exp (f (xu)� f (xv))

The cross-entropy loss function is then used:

L (f ;xu, xv, yu,v) = �P̄u,v logPu,v (f)�
�
1� P̄u,v

�
log (1� Pu,v (f))

Given that its loss function is differentiable, RankNet can be modelled using a neural network
and optimized using the Stochastic Gradient Descent algorithm. By optimizing the loss function
above, RankNet minimizes the number of incorrect orderings among pairs of documents. Fidelity
loss is a loss function developed to overcome the problem with RankNet where the cross entropy
loss has a non-zero minimum in certain cases [27] [46].

2.7 Listwise Approaches

The listwise approach directly reads in the list of all documents and tries to come up with the
optimal ordering for it. The listwise approach has been found to perform consistently better than
the other approaches [27][10]. Algorithms in the listwise approach fall into two categories: algo-
rithms that minimize listwise ranking losses and algorithms that directly minimize the evaluation
metric [27]. Algorithms in the first category include ListNet [10] and ListMLE [52]. The next two
sections discuss two well-known algorithms in the first category: LambdaRank [9] and Lamb-
daMART [51].
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2.7.1 LambdaRank

Even though the performance of ranking models is evaluated using metrics such as NDCG and
MAP, these metrics are not optimized directly because they are flat and discontinuous with respect
to their parameters. The algorithms discussed so far use surrogate loss functions that indirectly
optimize the evaluation metrics. The RankNet algorithm, for example, optimizes for the number
of pairwise errors, but that doesn’t work well for some evaluation measures [8]. In RankNet, the
cost of misranking a pair of documents i1 and i200 is the same as that of j1 and j100. This behavior
of RankNet gradients is illustrated in Figure 2.2.

Figure 2.2: Gradient Magnitudes in RankNet vs. LambdaRank

In Figure 2.2, the list of results on the left has a lower pairwise loss compared to the list on the
right when computed by RankNet. Informally, the red arrow indicates the magnitudes of gradients
computed by RankNet, while the black arrow depicts LambdaRank’s gradient magnitudes. [8].

LambdaRank, a listwise approach, bypasses this problem by introducing a new cost function that
give weights to the pairwise errors, in other words, adjusts the gradients of the cost based on a
discount factor such as the rank.

�uv =
�1

1 + ef(xu)�f(xv)

where � is a penalty term that represents the cost of ranking u and v wrongly.

By using any one of several evaluation metrics like NDCG as �, we can directly optimize an
implicit cost function based on the metric in a listwise manner, even though the metric itself is a
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non-smooth cost function. Similar to RankNet, LambdaRank was described in [9] using a neural
network, and was shown to improve over RankNet in terms of training speed and performance.

2.7.2 LambdaMART

The LambdaMART algorithm is a combination of LambdaRank and MART, which stands for
Multiple Additive Regression Trees, also known as Gradient Boosted Trees. The authors of [51]
found that gradient boosted trees work well for ranking problems due to their suitability for han-
dling discrete features and multi-class classification (if the ranking problem is framed as one).
Since gradient boosted trees can be used to optimize any loss function that can compute a gradient
at each training stage, and LambdaRank computes gradients based on its implicit cost function,
the two can be combined [19] . LambdaMART integrates LambdaRank with gradient boosted
trees by training a tree from scratch, computing lambda gradients based on the cost function of the
scores outputted by the initial tree, and training the rest of the boosted trees using the algorithm
outlined in [51].
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2.8 Bias in Clickthrough Data

Clickthrough data indicates relative user preferences between documents and provides implicit
user feedback; however, clickthrough data alone is not a reliable source of data for building robust
learning systems, due to the bias and noise inherent in implicit user feedback. Bias is an important
topic in learning to rank and is well studied in [23] and [49].

Figure 2.3: Rank distribution by types of places selected by users

There are multiple types of bias, which include: position bias [22], presentation bias [55], and
trust bias [34]. These biases are all a type of selection bias, a phenomenon that’s widely studied in
other fields such as medical research. Position bias dictates that users are likely to click on results
that occur at higher positions in the result list. Trust bias is similar to position bias; it occurs when
users overestimate the relevance of results placed at a higher rank due to the trust they place in the
search system. Presentation bias shows up in cases where users are unduly influenced by a result
based on its display attributes, for example, label, icon, formatting, etc.

Several techniques have been proposed in the literature to address noise and bias in clickthrough
data. Some techniques that address bias with an assumption of noise-freeness include result ran-
domization, random pair harvesting where result pairs are randomly flipped, and position-based
click models [3]. Most unbiasing techniques involve using inverse propensity weighting (IPW), a
method popularized by Joachims T. et al. in [23], which involves estimating the click bias at each
rank, and training an unbiased model with the estimated biases using a learning to rank algorithm.
More recently, research in [3] presents a Bayesian approach to Inverse Propensity Scoring (Bayes-
IPS) that address both trust bias and click noise.
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The neural ranking framework used in this thesis supports implementing unbiased learning to rank
models using inverse propensity weights [36]. It accomplishes this by computing inverse propen-
sity weights for rank positions and including them in the computation of loss during training. We
do not address the topic of implementing an unbiased learning to rank model within this thesis.

Signs of bias can be observed bias in our data by looking at rank distributions (Figure 2.3) and
distribution of query lengths across rank position (Figure 2.4). The historical data shows that
when queries are longer, the lower the position of the result selected by users. A longer query
could indicate that a user included additional details, such as the street of a point of its interest and
its administrative levels. It could also indicate that the user was searching for a location that has a
weak popularity boosting, but is highly relevant for the given query. Research done in [49] found
that longer queries resulted in more clicks at lower positions due to reduced positional bias.

Figure 2.4: Average query lengths at selected ranks

2.9 Summary

This chapter provided an explanation of learning to rank, and its approaches and their differences.
It also provided descriptions of the metrics used to evaluate learning to rank models and met-
rics used in this work. It concluded with a cursory glance at bias in clickthrough data and the
use of unbiased learning to rank to counteract it. The next chapter lays the groundwork for the
implementation of the learning to ranks models.



Chapter 3

Experiment Setup

3.1 LTR Framework

Figure 3.1: LTR Framework [27]

The learning to rank framework in [27] illustrates the interaction between a base ranker and re-
ranker. The model h can be viewed as the re-ranker and the ranking system as the base ranker.
Assuming test data is inbound search requests from a user, the ranking system would fetch the top-
k results, and the model would re-rank them into the final order that is shown to a user. The user’s
interaction with the result list is fed back into the learning system as training data, completing a
feedback loop.

3.2 Dataset

The data used to train the LTR models in this work is collected from search sessions of a navi-
gation app’s users. When a user types a query and selects a place from the list of results, the list
is logged with an indication of the selected place. Also logged are the coordinates of the user,
whether they were searching for an origin or destination, and the timestamp of when the search
occurred. The collected data is further processed and enriched with the properties of each place in
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the result list such as its name, city and coordinates.

Dimension Description
text Query text
focus point latitude Latitude of the user
focus point longitude Longitude of the user
timestamp Timestamp of the search
target Whether the place is an origin or destination
name Name of the place
locality Locality of the place
neighbourhood Neighbourhood of the place
borough Borough of the place
place latitude Latitude of the place
place longitude Longitude of the place
type Type of the place i.e. poi, address, or station
freq Number of times the place was selected (label)

Table 3.1: Dataset Features

3.3 Labelled Data

All searches performed using the navigation application, successful and unsuccessful, are recorded
in what is known as a clickthrough log. A successful search is one where a user clicks on the result
relevant to them, and the converse is an unsuccessful search. The LTR models we are interested in
fall under the category of supervised machine learning. A key part of building supervised machine
learning is acquiring labels or ground truth for the training data. In ranking contexts, a widely
common method for acquiring labeled data or relevance judgments is to have humans judge how
well queries match search results; where a judgment can be binary (a result is either relevant or
not) or graded (a result is relevant based on some scale). This method of gathering relevance judg-
ments can be tedious, expensive, and insufficient for capturing the range of intents and queries that
users might express during the course of real-world usage.

The labels in the dataset used in this thesis are derived from clickthrough logs by labeling the
clicked result for a query as relevant, and unclicked results as irrelevant, an approach that has been
proven to work well [21]. The frequency ("freq") column, which is the label column, is set to 1
for selected, and 0 for unselected. Labels gathered from clickthrough logs are a type of implicit
feedback as they do not explicitly signify relevance. Clickthrough logs are biased and noisy, but
they bear a sufficient correlation with relevance as we can assume user preference given that users
always scan results from the top to the bottom of result lists [21]. If a user selects the third result
in a list, we can assume the third result is more relevant than the first, second, and all results below
the third. Noisiness is introduced into clickthrough data as a result of factors that contribute to
erroneous clicks during a search. Bias in clickthrough data was discussed in Section 2.8.

3.4 Data Engineering

In the previous section, it is explained that training data and labels are collected from clickthrough
logs. The more detailed explanation is that the data for the clickthrough logs are collated from
multiple data sources. When a user using the search function on a Moovel application clicks on a
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place, a single data point is recorded about the metadata of the selected place. The training data
for the LTR models, however, requires the rest of the result list that was shown along with the se-
lected place. Data on the rest of the list can be found in a data lake, which stores outgoing search
responses. By cross-referencing the data lake with metadata about the selected place, we can
recreate the original search result list from which the user selects the result. The actual implemen-
tation of this data engineering effort involves intricate details that are specific to the technologies
and architecture used within Moovel that are not covered here.

3.5 Feature Engineering

3.5.1 Temporal Features

Temporal features are time-based features. They are associated with when a search happens,
and thus, are part of the user context. The temporal features are derived from the timestamp
dimension of a search session by teasing out the day, month, year, part of the day, and whether a
search occurred during the weekend. Cyclical features are features that are recurring in nature, for
example, day, month, and year. Temporal features are further processed into cyclical features by
applying sine and cosine transformations that capture the cyclical pattern of the time values using
these functions:

xsin = sin

✓
2 ⇤ ⇡ ⇤ x
max (x)

◆

xcos = cos

✓
2 ⇤ ⇡ ⇤ x
max (x)

◆

3.5.2 Spatial Features

Spatial features identify points in geographic space and are derived from the coordinates of a user
and each place shown on the result list. The raw form of the coordinates is a comma-delimited
string. The coordinates are separated using a latitude and longitude features, that gives us two
pairs of longitudes and latitudes for a user and each place on the result list. A great-circle distance
between a user’s location and places on the result list is also computed as an additional feature
using the Haversine formula.

3.5.3 Textual Features

The textual features for each item in the query group are derived from the query text, the name
of the place, neighbourhood, borough, and city. Additional place properties such street name,
house number and zip codes; as well as other administrative levels such as county and region
could also be considered. Textual features are processed into character n-grams with an upper
bound of n = 5 and lower bound of n = 2. The n-gram matrices are created using a hashing
vectorizer or a count vectorizer from Scikit-Learn. The choice of hashing vectorizer versus count
vectorizer determines how the sparse matrix of the n-grams is created. The hashing vectorizer has
the benefit of setting a fixed size for the sparse matrix as it does not need to learn a vocabulary
on the training text, while the count vectorizer will expand to fit the vocabulary of the training
text. We experimented with the hashing vectorizer and different numbers of features, as well as
the count vectorizer.
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3.5.4 Categorical Features

Categorical features have a fixed number of possible values. They include the search target of
a user, i.e. origin or destination, type of a place in the result list; i.e. point of interest, public
transportation station, or address, platform of a user’s device, and other discrete variables. The
categorical features are processed are encoded into one-hot numeric arrays using Scikit-Learn’s
OneHotEncoder.

3.6 Feature Transformation Pipeline

Scikit-Learn provides a convenient construct called pipelines that supports composing different
feature transformers and ultimately handing them to a model function. We use Scikit-Learn’s
column transformer to combine our feature engineering into a series of steps that look like the
following:

from sklearn.compose import ColumnTransformer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder, FunctionTransformer

textual_features = [’text’, ’name’, street , ’locality’,
neighbourhood , borough ]

textual_transformer = Pipeline(steps=[
(’char_ngram_analyzer’, HashingVectorizer(n_features=2**20, analyzer=’

char_wb’, ngram_range=[2, 5]))])

categorical_features = [’place_type’, ’search_target’]
categorical_transformer = Pipeline(steps=[

(’onehot’, OneHotEncoder(handle_unknown=’ignore’))])

numerical_features = [’focus_lat’, ’focus_lon’, ’place_lat’, ’place_lon’, ’
hr_sin’, ’hr_cos’,

’day_sin’, ’day_cos’, ’month_sin’, ’month_cos’, ’
is_weekend’ ’rank
’]

preprocessor = ColumnTransformer(
transformers=[

(’cat’, categorical_transformer, categorical_features),
(’num’, ’passthrough’, numerical_features)

] + [(’{}_trf’.format(i), textual_transformer, i) for i in textual_features
])

The output of the preprocessor is a sparse matrix with n x 5242894 dimensions. The data fed into
the baseline model is preprocessed using the feature engineering outlined in Section 3.5.

3.7 Baseline Model

The baseline model used in this thesis is SVMrank, written by Thorsten Joachims. SVMrank, is an
implementation of Ranking SVM [21] (discussed in Section 2.6.1), a pairwise ranking algorithm
that has been shown to improve search engine performance using clickthrough data. SVMrank, is
written in C and uses the SVMstruct library underneath - also written by Joachims.

The training data for the baseline model is preprocessed using the feature engineering outlined
in Section 3.5. Scikit-learn’s ’dump_svmlight_file’ function is then used to transform the sparse
output of the feature transformation pipeline into the libsvm format expected by SVMrank.
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3.7.1 Train-Test Split

Standard machine learning practice dictates that data is split into subsets, each dedicated to a dif-
ferent part of the model building process. The sets are training data - which is used by the model
for the actual learning of its parameters; validation data - which is used by the model to tune its
hyperparameters; and test data - which is used to evaluate how well the model generalizes on un-
seen data.

For the baseline model, no hyperparameter tuning is performed. Thus, the data is split into training
and test sets that make up 80% and 20% of the data respectively.

3.8 Summary

This chapter outlines the details of the initial steps of the model building process. The attributes
of the dataset are enumerated, and the engineering involved in acquiring the dataset and prepro-
cessing it into the right format for the learning to rank models is described. Finally, the chapter
describes the baseline learning to rank model used during performance evaluation. The next chap-
ter describes the tree-based ranker and its implementation details.



Chapter 4

Tree-Based Ranker

This section describes the implementation of LTR models for place search using tree based frame-
works, namely XGBoost [13] and LightGBM [25]. XGBoost and LightGBM are two popular
libraries that implement Gradient Boosted Trees (GBT). The libraries implement LambdaMART
[51], which improves upon the LamdaRank algorithm [9] with Multiple Additive Regression Trees
(MART).

Preprocessing is a crucial step in building ML models that involves transforming source data into
the structure and representation that is best for consumption by a model. The preprocessing that
was applied to the data before feeding it into the tree-based models is discussed in this chapter.
Scikit-Learn toolkit, pandas, and numpy are used to implement the preprocessing on the training
data. This chapter begins with an introduction to XGBoost and LightGBM, and then moves on to
details of the steps it took to build LTR models using these frameworks.

4.1 Gradient Tree Boosting

Gradient tree boosting is based on the idea of using an ensemble of weak learners to build a strong
learner by successively boosting regression trees [16]. Gradient tree boosting has proven to be
effective at solving a wide range of machine learning problems [32]. It can be understood by ex-
plaining the concepts of additive modelling, boosting, and learning.

Additive Modelling involves building a model or function that predicts a dependent variable by
adding linear terms to a composite model.

Boosting is an application of the additive modelling idea, where simple models or weak learners
are combined to create a strong learner or strong predictor. The weak learners are built sequen-
tially, improving the model’s performance at each iteration. In the case of gradient tree boosting,
these weak learners are regression trees [16].

The weak learners improve the performance of the model by learning from the prediction accu-
racy of preceding learners. In gradient boosting, gradient descent is used to create weak learners
trained on earlier learners by deriving gradient vectors that minimize a cost function. The gradient
vectors are usually adjusted based on a learning rate.

The regression trees are trained by parametrizing them based on the gradient vector. Specifically,
the weights of the leaves are adjusted based on the gradient vector. The prediction from the new
tree is then added to the preceding trees to improve the final model recursively by computing new
gradients based on the loss and adjusting the weights.
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The regression trees have certain hyperparameters such as the maximum depth of the tree, min-
imum child weight, and the number of trees. The optimal values for these hyperparameters are
found using hyperparameter tuning. The algorithm for gradient boosting is outlined as follows
[32]:

In gradient tree boosting, regression trees are used as the learner model h (x, ✓)); and in learning
to rank,  (y, f) could be LambdaMART’s listwise loss with significations modifications to the
learning algorithm.

4.2 XGBoost

When XGBoost, which stands for Extreme Gradient Boosting, was introduced in 2016, it gained
immense popularity because of the improvements in scalability and computational efficiency it
had over its alternatives. It improves upon Gradient Boosted Trees using various performance and
algorithmic enhancements such as parallelization, regularization, and handling of sparse data; all
of which are significant to our objective [13]. At the time of its publication, XGBoost’s Lamb-
daMART implementation achieved state-of-the-art performance on the Yahoo! learning to rank
challenge dataset [11].

4.3 LightGBM

LightGBM was built with a similar premise of providing a performant implementation of Gradient
Boosted Trees compared to the alternatives, especially when the feature dimension and dataset are
large [25]. LightGBM introduced two techniques to accomplish this called Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). GOSS is a tree splitting algorithm
that considers all data instances with large gradients and randomly sample data instances with
small gradients, achieving a similar information gain but with a smaller data size. EFB works
by reducing the number of features by grouping mutually exclusive features [25]. The authors of
LightGBM show that its implementation of LambdaRank surpassed the performance of XGBoost
on the Microsoft Learning to Rank dataset [25] [37].
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4.4 Model Input

The input for the tree-based models are preprocessed using the feature engineering procedure out-
lined in Section 3.5. The preprocessor outputs a scipy sparse matrix, which is supported as a model
input by both XGBoost and LightGBM.

Another input required by the XGBoost and LightGBM models is a group information file. The
group information file specifies the indices at which each query group begins in the dataset sorted
in ascending order from the least query group ID to the highest. Recall that a query group is defined
as a query occurrence and its corresponding result list, and each query group has an identifier or
ID assigned to it. The group information file is formatted as follows:

1 i n d e x of que ry group 1
2 i n d e x of que ry group 2
3 .
4 .
5 .
6 i n d e x of que ry group n

4.5 Train-Validation-Test Split

Dataset splitting is usually done by randomly assigning samples to the sets based on predefined
ratios. However, ranking data is categorized by result lists or query groups; therefore, the train-
validation-test split is done by query groups instead of samples to retain the ranking semantics. In
order to perform a query group aware split, a list of the unique query group IDs is extracted and
randomly sampled from to match the ratio of the different subsets. The ratio used to split the data
into train-validation-test sets is 80% of the entire dataset for the training and validation set, which
is further split into 80% for the training set and 20% for the validation. The remaining 20% of the
entire dataset is used as the test set.

4.6 Model Fitting

LightGBM and XGBoost both support the Scikit-Learn API, which allows their model functions
to be composed into Scikit-Learn pipelines.

1 params = {’scale_pos_weight’: scale_pos_weight, ’objective’: ’rank:map’, ’
num_round’: 500,

2 ’min_child_weight’: 0.1, ’max_depth’: 6, ’learning_rate’: 0.1}
3
4 model = Pipeline(steps=[
5 (’preprocessor’, preprocessor),
6 (’ranker’, xgb.sklearn.XGBRanker(**params)) # or (’ranker’, lgb.LGBMRanker

(**params))
7 ], verbose=True)
8
9 params_fit = {’ranker__group’: group_train,

10 ’ranker__eval_group’: [group_valid]}
11
12 params_fit[’ranker__eval_set’] = [
13 (Pipeline(model.steps[:-1]).fit(X_train).transform(X_valid), y_valid)
14 ]
15
16 ranker = model.fit(X_train, y_train, **params_fit)

The model is instantiated with predeclared hyperparameters. Then it is placed into a pipeline along
with the pipeline of column transformers described in Section 3.6. In the model input section, we
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note that the models require information on query group indices. The arrays of query group indices
for the training and validation sets are specified as fitting parameters for the model. Finally, the
model is trained by simply calling the ’fit’ function.

4.6.1 Hyperparameter Tuning

XGBoost and LightGBM rankers accept hyperparameters that determine factors such as the num-
ber of successive trees trained on, the maximum depth for each tree, the learning rate, how much
a negative sample should be weighted, etc. These hyperparameters have an impact on the per-
formance of the trained model; therefore, it is important to tune them to achieve the best set of
parameters given time and resource constraints. Scikit-Learn supports two strategies for hyperpa-
rameter tuning, namely: exhaustive grid search and randomized parameter optimization.

XGBoost and LightGBM’s APIs don’t support the use of Scikit-Learn’s hyperparameter tuning
classes, but a grid search function can easily be implemented using Scikit-Learns ParameterGrid
class and an iterator. The training time for a single model with the dataset at hand is approximately
fifteen (15) minutes, therefore, the duration of the hyperparameter search is equal to the number
of permutations multiplied by the training duration. The hyperparameter search space grows ex-
ponentially with the number of hyperparameters to tune; therefore, a considerably limited grid of
values was defined for the hyperparameters to constrain the search space. The following hyperpa-
rameters were tuned:

• Objective function

• Scaling of positive weights

• Number of rounds i.e. number of trees.

• Minimum child weight

• Maximum tree depth

4.7 Summary

This chapter delivered the background information and implementation details of the tree-based
learning to rank model. The theoretical basis of XGBoost and LightGBM, frameworks that im-
plement gradient tree boosting was discussed. Subsequently, the different aspects of the model’s
implementation were described to provide clarity on the modelling process. The next chapter
discusses neural rankers using a similar approach to this chapter.



Chapter 5

Neural Ranker

A neural ranker is a ranking model built using a neural network. The application of LTR in building
neural rankers is an emerging area of research [30] [56]. This chapter discusses the implementa-
tion of a neural ranker, starting with an exposition of the framework used, the preprocessing steps,
and neural network architecture.

Our neural ranker is implemented using Tensorflow Ranking, a framework that is itself imple-
mented on top of TensorFlow [1].

5.1 TensorFlow

TensorFlow is a popular framework for building large scale machine learning and deep learning
models. The basic construct in TensorFlow are tensors, which can be described as multidimen-
sional array containers that can be used to express complex logic and manipulated using tensor
operations into what is known as a computational graph. The tensors in a computational graph or
nodes as they are called, along with tensor operations, are used to represent the input space, hy-
pothesis space, and output space of a TensorFlow model. The computational graph in TensorFlow
is most popularly used to create deep neural networks, with nodes in the computational graph
representing the input, neurons, activation functions, and output of the neural networks. Tensor
operations enable the arithmetic required to compute values as they flow through the network.
TensorFlow supports backpropagation through a mechanism known as automatic differentiation,
where each tensor operation can compute the gradient for its input tensor.

5.2 TensorFlow Ranking (TF-Ranking)

TensorFlow Ranking was developed to be a scalable solution for building learning to rank models
on large datasets with high dimensionality and sparsity. TensorFlow Ranking achieves its goal
by leveraging the underlying support for building scalable and robust neural network models that
comes with TensorFlow. TensorFlow is also able to take advantage of the feature engineering
functionality of TensorFlow that enables the handling of textual features using text embeddings.
TF-Ranking supports recent advances in Learning to Rank such as unbiased learning to Rank [23],
LambdaLoss framework [50], and multi-item scoring [5].

5.2.1 Multi-Item Scoring

Multi-item scoring was introduced in [5] as a method for scoring documents that deviates from
the method used by pointwise, pairwise, and listwise learning to rank approaches. Models built
on standard LTR approaches score documents using univariate functions f : �n ! R1 , which
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doesn’t factor in the relevance of other documents in a result list. Multi-item scoring involves
using multivariate scoring functions f : �n ! Rn to produce an ordering of entire result lists.
The framework for this method is known as Groupwise Scoring Functions (GSF) [5]. GSFs are
parameterized using deep neural networks (DNN) due to their ability to scale to high-dimensional
and highly sparse features [5]. A GSF can be represented as:

g (.; ✓ : �m ! Rm)

where ✓ the parameters of a DNN, and � are the documents of size m that are scored to produce a
vector of size m.

Figure 5.1: Illustration of how a GSF can be used, in this case as the bivariate function g(.) [5]

The performance of GSFs has been shown to be comparable to state-of-the-art tree-based LTR
models. A GSF-based ranker can be implemented constructed using TF-Ranking by calling the
’make_groupwise_ranking_fn’ function like such:

1 import tensorflow_ranking as tfr
2
3 tfr.model.make_groupwise_ranking_fn(
4 group_score_fn=make_score_fn(),
5 group_size=_GROUP_SIZE,
6 transform_fn=make_transform_fn(),
7 ranking_head=ranking_head)

’make_score_fn’ in the snippet above is a wrapper function over a function that fits a standard Ten-
sorFlow NN model and returns its scores or logits for the input. It is important to note that GSF
is generalization of the pointwise and pairwise scoring functions. Pointwise scoring can be used by
passing a value of one as the ’group_size’ argument to the ’tfr.model.make_groupwise_ranking_fn’
function. The value of group size significantly impacts training time, higher values resulting in
longer training times.
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5.2.2 LambdaLoss Framework

LambdaLoss is a framework for metric optimization using a principle probabilistic approach [50].
LambdaLoss provides a solution that allows for the direct optimization of query-level position-
based ranking metrics, which are otherwise flat and discontinuous. Even though LTR approaches
such as pairwise and listwise adopt loss functions that are smooth and continuous[37], the bounds
of the functions are coarse because they don’t directly optimize ranking metrics. The implementa-
tion of LambdaMART using the LambdaLoss framework achieved better performance compared
to state-of-the-art LambdaMART implementations [50]. The standard loss functions, e.g. logistic
and softmax loss, in TF-Ranking are implemented using the LambdaLoss framework.

5.2.3 TensorFlow Ranking Architecture

Figure 5.2: Tensorflow Ranking Architecture

TensorFlow Ranking’s architecture consists of four main parts: an input reader, a feature trans-
former, a scoring function, and a ranking head. The input reader is responsible for fetching data
from a data source and making it available as a properly structured TensorFlow dataset (see Sec-
tion 5.3 on structuring data for TF-Ranking). The feature transformer is a function that creates
feature columns out of the input functions output. TF-Ranking provides an estimator API, and
estimators expect to receive data that has been formatted as feature columns such as numerical
columns and categorical (one-hot encoded) columns. Next is the scoring function, which specifies
the neural network that would generate scores or logit tensors during training. The scoring func-
tion specifies properties of the network such as the input layer, hidden layer, output layer, dropout,
batch normalization, activation function, etc. Finally, the ranking head encapsulates functions that
compute the training loss and evaluation metrics. Section 5.5 describes how the different com-
ponents of the TF-Ranking framework are combined to build an LTR model. The decomposition
of TF-Ranking into components provides modularity, which makes it easy to experiment with
different LTR approaches and model configurations.

5.3 Model Input

TensorFlow Ranking provides an Estimator workflow, which is a convenient encapsulation of
models such that once an estimator is instantiated, it can be easily trained, evaluated, and invoked
to make predictions. The functions in estimators’ standard API, i.e., train, evaluate, and predict
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expect an input function that acts as a data source, when called. The following code snippet is an
example of a function that can be passed as a thunk to the TF-Ranking estimator’s train function:

1 import tensorflow as tf
2
3 def df_to_dataset(dataframe, batch_size=_BATCH_SIZE):
4 dataset = tf.data.Dataset.from_generator(
5 lambda: generator(dataframe),
6 output_types = ({
7 ’example_features’: tf.float32,
8 ’context_features’: tf.float32
9 },

10 tf.float32
11 ),
12 output_shapes = ({
13 ’per_item_feature’: tf.TensorShape([_LIST_SIZE, _NUM_PER_ITEM_FEAT_COLS

]),
14 ’context_feature’: tf.TensorShape([_NUM_CONTEXT_FEAT_COLS])
15 },
16 tf.TensorShape([_LIST_SIZE])
17 )
18 )
19
20 return dataset.repeat().batch(batch_size).make_one_shot_iterator().get_next()

The function ’df_to_dataset’ accepts a data frame, creates a generator that allows for flow control
by the estimator, and returns the next iteration of values from a TensorFlow dataset, which is a
tuple of features and labels. The features variable in the tuple is a dictionary with feature names
as keys and tensors as values. The dimensions of the feature tensors depend on the type of feature.
TensorFlow ranking makes a distinction between two types of features: per-item features and con-

text features. Per-item features are features that are specific to each item or place document in a
query group, such as the name and city of a place, its coordinates. A per-item feature could also
be derived from a relationship between the query and place attribute, for example, the distance
between a user and a place. Context features, on the other hand, are generic to a query group, for
example, user location and timestamp. A per-item feature is represented using a 3-D tensor where
the dimensions in order are: batch size (for Stochastic Gradient Descent), number of items in the
query group - fixed size of the result list, and number of columns for the feature - "1" in the case of
scalar values or "1 x n" dimensions in the case of vectors. A context feature tensor is represented
using 2-D tensor where the dimensions in order are: batch size and number of columns for the
feature. Lastly, labels returned from the input function is a 2-D tensor where the dimensions are:
batch size and list size.

List size is the number of items in a query group. The number of items in a query group, in turn,
is the number of documents returned by the search engine, which can be different from one query
to another. TF-Ranking expects a fixed list size, therefore, the query group needs to be padded or
trimmed down depending on whether it is smaller or larger than the list size.

TensorFlow estimators train models in steps, where each step has a batch size. In the case of TF-
Ranking, a batch size of 32 means 32 query groups or 32 result lists. The dimensions of per-item
features and context features imply that 32 * 15 = 480 rows of per-item features are used in a
single step, while only 32 rows of context features in used. The separation of features into the two
types can be seen as an efficient way of representing the input data.
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text
focus point latitude
focus point longitude
timestamp
target

Table 5.1: Context Features

name
locality
neighbourhood
borough
place latitude
place longitude
place type

Table 5.2: Example Features

5.3.1 Train-Test Split

The data is split into 80% and 20% for the training and test sets respectively. Unlike the tree-based
models, no validation set is allocated. Validation sets are used to tune hyperparameters; which
requires multiplying the training time by the number of hyperparameter combinations. This is
only feasible with a large number of computing resources.

5.4 Model Fitting

Fitting a neural ranker using involves putting the different TF-Ranking components together. The
following code snippet describes how to instantiate a ranker using the TF-Ranking estimator.

1 import tensorflow as tf
2 import tensorflow_ranking as tfr
3
4 def get_estimator():
5 """Create a ranking estimator."""
6 def _train_op_fn(loss):
7 """Defines train op used in ranking head."""
8 return tf.contrib.layers.optimize_loss(
9 loss=loss,

10 global_step=tf.train.get_global_step(),
11 learning_rate=_LEARNING_RATE,
12 optimizer=’Adagrad’)
13
14 ranking_head = tfr.head.create_ranking_head(
15 loss_fn=tfr.losses.make_loss_fn(_LOSS),
16 eval_metric_fns=eval_metric_fns(),
17 train_op_fn=_train_op_fn)
18
19 return tf.estimator.Estimator(
20 model_fn=tfr.model.make_groupwise_ranking_fn(
21 group_score_fn=make_score_fn(),
22 group_size=_GROUP_SIZE,
23 transform_fn=make_transform_fn(),
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24 ranking_head=ranking_head),
25 model_dir=’/tmp/tf-ranking_model’,
26 params=None)
27
28 ranker = get_estimator()

5.4.1 Training Op

First, a function to specify the training operation is defined. The training operation is executed
after logits and losses are computed at the end of a forward pass. Thus, it accepts a loss tensor as
an argument. The training operation involves optimizing a loss based on the global step, which
informs TensorFlow on what epoch to resume training - helpful if training is interrupted for any
reason; the learning rate; and lastly, the optimization algorithm. The Adagrad algorithm is used
in all our experiments. Adagrad adapts the learning rate based on the frequencies of features’
appearances, performing larger updates for infrequent features and smaller updates for infrequent
features. Adagrad has been shown to perform well on sparse dataset [15], which is a particularly
useful attribute for our use case.

5.4.2 Ranking Head

Next, the ranking head is constructed by supplying the training operation, evaluation functions, and
a loss function. The loss function can be any one of several loss functions provided by TensorFlow
ranking, which include pairwise logistic loss, pairwise hinge loss, approximated mean reciprocal
rank (MRR) loss, etc. The loss functions are implemented using the LambdaLoss framework. The
evaluation metrics are used when the estimator is run in ’evaluate’ mode. The ’eval_metric_fns()’
function returns a dictionary of key-value pairs, where the keys are user-defined names for the met-
rics, and the values are functions provided by the TensorFlow ranking framework. The available
evaluation metrics include Average Relevance Position (ARP), NDCG, MRR, and precision@k.

5.4.3 Model Function

Lastly, the ’tf.estimator.Estimator’ constructor accepts a model function. The aforementioned
Groupwise Scoring Function (GSF) is used, and it accepts the group size that determines if scoring
will be pointwise, pairwise, or listwise; a transform function that transforms context and per-item
features to TensorFlow feature columns; and a score function that determines how logits will be
computed. The score function does this by specifying the neural network that makes our ranker a
neural ranker.

1 import tensorflow as tf
2 import tensorflow_ranking as tfr
3
4 def make_score_fn():
5 """Returns a scoring function."""
6
7 def _score_fn(context_features, group_features, mode, params, config):
8 """Defines the network to score a group of documents."""
9 with tf.compat.v1.name_scope("input_layer"):

10 context_input = [
11 tf.compat.v1.layers.flatten(context_features[name])
12 for name in sorted(context_feature_columns())
13 ]
14 group_input = [
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15 tf.compat.v1.layers.flatten(group_features[name])
16 for name in sorted(example_feature_columns())
17 ]
18 input_layer = tf.concat(context_input + group_input, 1)
19
20 is_training = (mode == tf.estimator.ModeKeys.TRAIN)
21 cur_layer = input_layer
22 cur_layer = tf.compat.v1.layers.batch_normalization(
23 cur_layer,
24 training=is_training,
25 momentum=0.99)
26
27 for i, layer_width in enumerate(int(d) for d in _HIDDEN_LAYER_DIMS):
28 cur_layer = tf.compat.v1.layers.dense(cur_layer, units=layer_width)
29 cur_layer = tf.compat.v1.layers.batch_normalization(
30 cur_layer,
31 training=is_training,
32 momentum=0.99)
33 cur_layer = tf.nn.tanh(cur_layer)
34 cur_layer = tf.compat.v1.layers.dropout(
35 inputs=cur_layer, rate=_DROPOUT_RATE, training=is_training)
36 logits = tf.compat.v1.layers.dense(cur_layer, units=_GROUP_SIZE)
37 return logits
38
39 return _score_fn

Figure 5.3: Architecture of Feed Forward Neural Network

The neural network architecture determines how the input of a neural network is transformed into
its output. This includes the structure of the input fed into the network; the activation function at
each layer applied to the weighted input from the preceding layer; and the dimensionality of the
output layer. The only type of neural network considered is the feed forward neural network.
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Input Layer
1 context_input = [
2 tf.compat.v1.layers.flatten(context_features[name])
3 for name in sorted(context_feature_columns())
4 ]
5
6 group_input = [
7 tf.compat.v1.layers.flatten(group_features[name])
8 for name in sorted(example_feature_columns())
9 ]

10
11 input_layer = tf.concat(context_input + group_input, 1)

The input layer of the neural ranker is a flattened and concatenated vector of the context and per-
item features.

Hidden Layers
1 _HIDDEN_LAYER_DIMS = [’512’, ’256’, ’32’]
2
3 for i, layer_width in enumerate(int(d) for d in _HIDDEN_LAYER_DIMS):
4 cur_layer = tf.compat.v1.layers.dense(cur_layer, units=layer_width)

The hidden layers of a neural network are the layers between the input layer and output layer. In
the code snippet above, we are specifying three hidden layers, with the number of units in the
layers set as 512, 256, and 32 in successive order.

Activation Function
1 cur_layer = tf.nn.relu(cur_layer)

The activation function used is ReLU or rectified linear unit, other loss functions such as Leaky
ReLU, tanh or hyperbolic tangent are available via the TensorFlow API.

Figure 5.4: Activation functions using ReLU vs. tanh

Figure 5.4 shows how activation functions transform their weighted inputs differently; the pri-
mary difference being their effect on how partial derivative of the input changes with respect to
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the weight and bias.

Output Layer
1 logits = tf.compat.v1.layers.dense(cur_layer, units=_GROUP_SIZE)

The output layer is the logits computed during a forward pass of the network, with dimensionality
equal to the group size of the groupwise scoring function.

Regularization
1 _DROPOUT_RATE = 0.5
2
3 cur_layer = tf.compat.v1.layers.dropout(
4 inputs=cur_layer, rate=_DROPOUT_RATE, training=is_training)

Regularization is a set of techniques used during the training of machine learning and deep learning
models, so that the models generalize on unseen data [17]. A model that performs well on training
data, but does not generalize well to unseen data, is exhibiting a phenomenon called overfitting.
Neural networks are particularly susceptible to overfitting due to their typically large capacity,
which means they could simply memorize the weights and biases that minimize the training loss.
There are several regularization techniques for avoiding overfitting, such as L2 regularization [17]
and dropout [45].

Dropout is a method for preventing overfitting that involves randomly dropping units and their
connections during training. Dropout prevents units from excessively co-adapting [45]. In the
simplest form of dropout, a probability p (a hyperparameter) is used to determine whether a unit
is kept or not. Srivastava et al. found p =0.5 to work for a wide range of use cases. How-
ever, the optimal value of p is found through a hyperparameter search. For the neural ranker, the
recommended value of 0.5 was used.

Figure 5.5: An illustration taken from [45] that shows on the left: a network before applying dropout; and
on the right: a thinned network after applying dropout.

Batch Normalization
1 cur_layer = tf.compat.v1.layers.batch_normalization(
2 cur_layer,
3 training=is_training,
4 momentum=0.99)

Batch normalization is used to correct for a phenomenon known as internal covariate shift, where
the learning rate of a neural network model becomes unstable due to values used at parameter
initialization and changes in the distributions of input parameters at different layers [20]. Batch
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normalization acts as a form of preprocessing at each layer it is defined, where it either normalizes
the output of a previous layer’s activation function or input to a subsequent layer by subtracting
the batch mean and dividing by the batch standard deviation.

The mean and standard deviation statistics used to normalize batches are usually moving averages
of statistics across several batches. As a result, the ‘momentum‘ argument to the ‘batch_normalization‘
function is used to determine how much importance is given to the statistics from earlier mini-
batches. The momentum is commonly set as a large value such as 0.99, which is also the default
in TensorFlow.

Choosing a Neural Network Architecture

The constituents of this architecture are the key determinants of whether a neural network can
approximate a target function. According to the Universal Approximation Theorem [18], a single
layer network network can approximate any continuous function subject to some constraints on
the activation function. Even though the universality theorem assures us of the applicability of a
neural network to approximate our ranking function, searching for the neural network architecture
that offers the best approximation is not an easy task. Neural architecture search [57] is a field
of study that explores automated ways of generating state-of-the-art neural network architectures.
Neural architecture search can be thought of similar to the hyperparameter search methods of our
tree based models. For the neural ranker, the search space would be limited to the network type
being considered for the problem, i.e. feedforward neural networks.

5.5 Summary

This chapter introduced neural rankers and provided brief explanations of some neural network
concepts. TF-Ranking, the framework used to implement the neural rankers in this work, and
its various components and their interactions are also described. The next chapter will share the
findings that support the argument behind this thesis.



Chapter 6

Results and Discussion

In Section 2.2, we discussed several metrics that are used to evaluate the performances of learning
to rank models. The metric chosen for evaluating the models in this thesis is the Mean Reciprocal
Rank (MRR). The implementations of the evaluation metric applied is the same across all models,
and the same test data is used based on an 80% and 20% split between training data and test data,
respectively. Furthermore, query groups containing only a single result were excluded from the
evaluation since the model would always perform perfectly for those cases.

This chapter begins with comparisons of model performances for the evaluation metric; then pro-
ceeds to discuss the performances of tree-based rankers and neural rankers from different aspects.
The chapter wraps up with an in-depth comparison of the best performing model against the Pelias
search engine.

6.1 Model Comparisons

As discussed in Chapter 1, LTR models are top-k re-rankers of results pre-fetched by the Pelias
search engine. Since the objective is to examine the potential improvements of using LTR models
as re-rankers, the performance of the search engine is included in the comparisons. Also, the re-
sults list a linear ranker and a deep neural net ranker separately; even though both are implemented
using TF-Ranking.

Model MRR
Pelias 0.8493
SVMrank 0.7415
XGBoost 0.8754
LightGBM 0.8922
TF-Ranking (Linear) 0.8675
TF-Ranking (Deep) 0.8559

Table 6.1: MRR scores for learning to rank models and Pelias.

The MRR scores for the models show that the tree-based models perform better than the Pelias and
the other learning to rank models. TF-Ranking’s neural ranker and linear ranker show marginal
improvements over Pelias, with SVMrank performing worse than Pelias.

Figure 6.1 shows the position rank distributions used to calculate MRR. SVMrank is an exception
with its heavier tail compared to the other models, while the other models exhibit a power law
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distribution. Based on the results of the relevant metric, the LightGBM tree-based model offers
the best improvement as a top-k re-ranker on top of Pelias.

Figure 6.1: Distributions of ranks for pelias and learning to rank models.

6.2 Tree-Based Models

6.2.1 Hyperparameter Tuning

As mentioned in Section 5.4, hyperparameter tuning was applied to the tree-based models to find
the set of parameters that yielded the best model. Table 6.1 shows that hyperparameter tuning
provides a marginal improvement over the default configuration for both XGBoost and LightGBM
models, with the XGBoost model showing the more significant improvement.

Model MRR
XGBoost (Default) 0.8531
XGBoost (HP Tuned) 0.8754
LightGBM (Default) 0.8826
LightGBM (HP Tuned) 0.8922

Table 6.2: MRR scores for tree-based models with and without hyperparameter tuning.
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6.2.2 Feature Importances

An advantage of tree-based models is the ease of extracting feature importances, and both XG-
Boost and LightGBM provide convenience functions for extracting feature importances. However,
the default data preprocessing described in Section 3.5 involves the use of a hashing vectorizer on
textual features such as the query text. A side-effect result of using the hashing vectorizer is that
feature names in the data matrix become indices that cannot be transformed back to feature names.
Since the count vectorizer is similar to the hashing vectorizer with a difference being that it sup-
ports retrieving feature names, a model was built using the count vectorizer for the sole purpose
of inspecting feature importances.

Figure 6.2: Feature importances of the top 20 fea-
tures overall.

Figure 6.3: Feature importances of non-textual fea-
tures.

Figure 6.2 shows the dominance of textual features compared to categorical and numerical features
in terms of feature importance. The most important feature, which is the exception, is whether a
location is a public transport stop. A cursory analysis of the clickthrough data depicted in figure
6.4 shows that transport stops are disproportionately the most selected type of place even though
other types of places appear almost as often in search results. The importance of transport stops
could be attributed to several reasons, two of which are; 1) the Moovel app as of the time of writing
always places stops as the first section of results 2) the majority of the app’s users use it for public
transportation. Further analysis is required to ascertain the degree to which unintended bias affects
the search results and click-through, as this bears relevance to the quality of models that can be
learned from the data.
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Figure 6.4: Place Type Counts.

6.3 Neural Ranker

6.3.1 Comparisons

Several neural network architectures for the neural ranker were evaluated. The neural networks
varied in terms of the: 1) loss function, 2) number of units in the hidden layers, 3) number of
hidden layers, 4) activation function, 5) scoring function, and 6) dropout rate.

Model MRR
Linear (Sigmoid) (0 hidden layers) 0.8675
FC-64-32-16: 80% dropout 0.8559
FC-32 (shallow network, 80% dropout) 0.8523
FC-512-256-32 (groupwise with size=5) 0.8247
FC-512-256-32 0.8070
FC-512-256-32 (tanh) 0.8039
FC-64-32-16 0.8038
FC-512-256-32 (approximate MRR loss) 0.7790
Non-Linear (ReLU) (0 hidden layers) 0.7732

Table 6.3: MRR scores for neural rankers.

In Table 6.3, deep neural networks are prefixed with FC (full-connected) followed by a list of the
number of units in each hidden layer. For example, FC-64-32-16 has 3 hidden layers with 64, 32,
and 16 units in that order. Each neural network in the table has the following default values unless
stated otherwise:

• Loss function: pairwise logistic loss

• Number of hidden layers: 3

• Activation function: ReLU
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• Scoring function: pointwise

• Dropout rate: 50% dropout

The MRR scores in Table 6.3 show that linear model has the highest MRR score compared to
the deep neural networks. The linear model is a one-layer neural network with a sigmoid for the
activation function. In essence, the linear model or classifier is a logistic regression model with
a pairwise loss. The reason behind the performance of this model is not investigated within this
thesis. One hypothesis could be that gradient descent performs well due to the convexity of the
logistic loss enabled by the use of LambdaLoss.

Among the deep neural networks, FC-64-32-16 with a dropout rate of 80% has the highest MRR
score of 0.8559. A similar model; FC-64-32-16 with the default dropout rate of 50% has an MRR
score of 0.8038. That is a significant difference based on the dropout rate, which indicates that
FC-64-32-16 (50% dropout) is overfitting and is improved by using a more aggressive regular-
ization. Other than the dropout rate, FC-64-32-16 (80% dropout) also has a much lower capacity
compared to the other deep neural networks such as FC-512-256-32. Similarly, this indicates that
the larger networks with the same configuration and default dropout are overfitting.

In terms of the scoring function, the model using a groupwise function showed an improvement
in MRR over models using pointwise scoring functions with the same capacity. Also noteworthy
is the worse performance of the approximate MRR loss compared to the pairwise logistic loss.

6.3.2 Training Loss

The following plots show the loss functions and global norms of the gradients at each training step
for the TF-Ranking models

Linear (Sigmoid)

Figure 6.5: Loss at final step: 0.0202 Figure 6.6: Gradient Norm at final step: 0.0961
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FC-64-32-16 (80% Dropout)

Figure 6.7: Loss at final step: 0.1386 Figure 6.8: Gradient Norm at final step: 4.0069

FC-512-256-32

Figure 6.9: Loss at final step: 0.0747 Figure 6.10: Gradient Norm at final step: 0.0435

FC-512-256-32 (tanh)

Figure 6.11: Loss at final step: 0.0748 Figure 6.12: Gradient Norm at final step: 0.0180
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FC-512-256-32 (MRR Loss)

Figure 6.13: Loss at final step: -0.9067 Figure 6.14: Gradient Norm at final step: 0.0

It is well known that the norm of the gradients with respect to the parameters of a neural network
oscillates throughout the training. It is commonly assumed that as the network converges, the dif-
ference in the sizes of the oscillations becomes smoother [33].

It can be noted that the gradient norm for the linear model (Figure 6.6) is oscillating within a much
smaller range compared to the deep neural networks. It also illustrates a more consistent decrease
in gradient norm over the course of training. For the deep neural networks, FC-64-32-16 (80%
dropout) (Figure 6.7) shows a smoother gradient norm curve compared to the others.

The pairs of loss and gradient norm charts show similar trends, demonstrating their correlation.
This correlation between the two can be exploited by factoring the size of the gradient norm
oscillations into the stopping criteria for training [33]. An area of improvement for the neural
ranking models based on this idea and the charts above is to incorporate early stopping, a form of
regularization.

6.4 Comparison against Pelias

6.4.1 Location Sharing

In Section 1.2.5, it was shown that users who do not share their location tended to click at lower
rank positions compared to users who did. To assess the performance of the LightGBM model
in terms of delivering a better ranking without knowing the location of users, the location feature
was entirely removed from the test data set. The evaluation of the learning to rank model on this
modified test data is shown in Figure 6.15.
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Figure 6.15: Rank distributions and MRR for Pelias vs. LightGBM when no location is shared.

LightGBM’s MRR score of 0.8922 on the original test set is still higher than its score of 0.888
on the test data without location due to the importance of the location feature. However, this
demonstrates a significant improvement over the original ranking delivered by Pelias.

6.4.2 Query Parsing

The challenge of query parsing is discussed in Section 1.2.5 as one of the limitations of Pelias.
Query parsing in Pelias involves extracting entities from queries and using them to match on the
corresponding fields. The rankers being evaluated all used character n-gram analyzers to prepro-
cess the textual features of the dataset. In Figure 6.16, the LightGBM model shows a more evident
worsening of rank positions with longer queries compared to Pelias. This is further illustrated in
6.4, where different MRR scores are calculated for specific ranges of query character lengths.
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Figure 6.16: Distributions of query lengths (number of characters) by ranks of clicked results from Light-
GBM and Pelias.

Query Character Length Range LightGBM MRR Pelias MRR
[3, 10] 0.9003 0.8481
[11, 20] 0.8721 0.8531
[21, 30] 0.8044 0.8612
[31, 40] 0.5647 0.8167

Table 6.4: MRR scores for LightGBM and Pelias for different query character length ranges

Further investigation is required to understand the reason behind the low MRR scores for the
learning to rank model’s performance on longer queries. A potential reason is that a large number
of shorter queries in the clickthrough data biases the training data. Figure 1.5 and 1.6 also show
that users generally type in shorter queries, which lessens the impact of performing poorly on
longer queries. However, the learning to rank model’s poor performance, in this case, presents a
clear area of improvement.

6.5 Summary

In this chapter, the results of evaluating the different learning to rank models were discussed.
Various aspects of the models were then discussed, which included the feature importances and
hyperparameter tuning of the tree base ranker; the different neural ranker architectures experi-
mented with and their performances; and lastly, comparisons of Pelias against the learning to rank
model with the best performance.



Chapter 7

Conclusion and Future Work

The growth of learning to rank has led to breakthroughs in solving ranking problems, which in
turn has led to significant improvements in the performance of search systems. This motivated the
goal of applying learning to rank to a place search engine based on traditional information retrieval
called Pelias. The intended use of the learning to rank model is to serve as a re-ranker of top-k
results already retrieved by Pelias. Several types of models; tree-based, neural, and linear were
experimented on and evaluated against Pelias using the Mean Reciprocal Rank (MRR) metric. A
number of the models showed varying levels of improvement over Pelias. Among them, a tree-
based model implemented using the LightGBM framework had the best MRR score. It is shown,
based on comparisons, that the learning to rank model improves over Pelias in cases such as when
the user’s location is not known. The findings from the experiments show strong evidence that the
performance of a place search system such as Pelias can be augmented using learning to rank.

Due to the increasing prominence of learning to rank, there is an ever-growing body of work that
could serve as the basis for potentially improving the models built in this work. Additionally, from
the findings in this thesis, we identify the following promising directions for future work:

• Further research can explore how the interaction between Pelias and the learning to rank
model can be refined so that both are optimized for their respective retrieval phases. For
example, Pelias could have less granular retrieval rules and return a larger set of top docu-
ments.

• Another pertinent area of future work is the application of unbiased learning to rank methods
to the clickthrough data used to build the models.

• Lastly, the data used in this work did not incorporate unsuccessful queries, i.e., queries that
did not result in a click. Unsuccessful queries could prove to be particularly useful for
improving the performance of the learning to rank models.
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