Learning to Rank Places GELMERODA LINDENHOF GELMERODAFR MELLINGER E 40 LEGEFELDER **UBERSICHT** LEGEFELD WANDERKARTE Legende: Hauptwanderwege Ortswanderwege Goethe-Wanderweg Naturlehrpfad Waldgebiet Ortslage : Wüstung KILIANS-RODA /// Straße/Weg MECHELRODA Fluß, Bach Quelle Autobahn See · 418 Höhenpunkt Waidstein Eisenbahnstrecke △ Aussichtsturm ↑ Schutzhütte .= 1000 Streckenführung Wanderwege OStandort dieser Tafel Entfernungsanzeiger:

Shuaib Yunus

Disclaimer

This thesis was carried out while under the employ of REACH NOW. The dataset used is collected from apps owned by REACHNOW

Problem Statement

Solve the ranking problem for geospatial search using Learning to Rank's (LTR) machine learning and deep learning based approaches.

Pelias - Existing Search Engine

Based around Elasticsearch:

- Performant indexing pipeline for millions of places.
- Sophisticated handwritten analysis chains.
- Intricate Elasticsearch queries to match query texts.

Limitations of Pelias

Limitations of Pelias are based around Elasticsearch as well.

- Learning from Historical Data
- Location Biasing
- Temporal Relevance
- Query Parsing
- Location Sharing

Location Biasing

Temporal Relevance

Variations in the ten most selected POIs in Karlsruhe over the weeks of June 2019

Query Parsing - Successful Queries are short

Query Parsing - Failed Searches are lengthy

Location Sharing

LTR as an Empirical Risk Minimization Problem

The goal is to learn a scoring function $h: \mathbb{R}^n \to \mathbb{R}$, which minimizes:

$$\hat{R}(h) = \frac{1}{n} \sum_{q=1}^{n} L(\pi(h, X_q), y_q)$$

An LTR algorithm chooses the scoring function f that minimizes the empirical risk $\hat{R}\left(h\right)$:

$$f = \arg\min_{h \in \mathcal{H}} \hat{R}(h)$$

The rankings obtained from $\pi\left(f,X_{q}\right)$ should output the best ordering based on the relevance judgements in the form:

$$y_i^q > y_j^q \Leftrightarrow f(d_i^q) > f\left(d_j^q\right)$$

Datacat	Dimension	Description	
Dataset	freq	Number of times the place was selected	
	Query text	Query text	
<u>Metadata</u>	focus point latitude	Latitude of the user	
app = KVV.mobil	focus point longitude	Longitude of the user	
period = 3 months	timestamp	Timestamp of the search	
search results = 3 mil	target	Whether the search is for an origin or destination	
no. of selected = 500 k	name	Name of the place	
	locality	Locality of the place	
Label	neighbourhood	Neighbourhood of the presented place	
Context Features	borough	Borough of the place	
Context Features	place latitude	Latitude of the place	
Per-Item Features	place longitude	Longitude of the place	
	type	Type of the place i.e. poi, address, or station	

Evaluation Metrics

Mean Reciprocal Rank (MRR)*

$$MRR = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{rank_i}$$

Mean Average Precision at k (MAP@k)

$$\text{MAP@} k = \frac{\sum_{i=1}^{U} AP_i@k}{n} \text{ , where } AP_i@k = \frac{\sum_{j=1}^{\min\{k,\rho_i\}} rel_{ij}P_i@j}{\sum_{i=1}^{\min\{k,\rho_i\}} rel_{ij}} \text{ & } P_i@k = \frac{TP_i}{TP_i + FP_i} = \frac{\sum_{j=1}^{\min\{k,\rho_i\}} rel_{ij}}{k}$$

Normalized Discounted Cumulative Gain at k (NDCG@k)

$$NDCG_i@k = \frac{DCG_i@k}{IDCG_i@k}$$
 Where, $IDCG_i@k = \sum_{j=1}^{|REL_k|} \frac{2^{rel_j} - 1}{\log_2{(j+1)}}$ & $DCG_i@k = \sum_{j=1}^k \frac{2^{rel_j} - 1}{\ln{(j+1)}}$

LTR Approaches

Pointwise à la McRank, Ordinal Regression

$$L(\pi(f, X_q), y_q) = \frac{1}{n} \sum_{i=1}^{n} (f(d_i^q) - y_i^q)^2$$

Pairwise à la RankingSVM, RankNet

$$L(\pi(f, X_q), y_q) = \sum_{(i,j): y_i^q < y_i^q} \log(1 + \exp(f(d_i^q))) - (f(d_j^q))$$

Listwise à la LambdaRank, LambdaMART
$$\lambda_{uv} = \frac{-1}{1 + e^{f(x_u) - f(x_v)}}$$

LambdaMART and LambdaRank uses pairwise errors, but with weighted gradients based on misranked positions.

Learning to Rank Framework Used

Data Engineering

Feature Engineering

Temporal Features i.e. hour, day, month, year.

$$x_{\sin} = \sin\left(\frac{2*\pi*x}{\max(x)}\right)$$
 $x_{\cos} = \cos\left(\frac{2*\pi*x}{\max(x)}\right)$

Spatial Features i.e. user's location, place's location.

"lon, lat" => [lon, lat]

<u>Textual Features</u> i.e. query text, place name, city etc.

Hashing vectorizer on character ngrams of range [2,5].

<u>Categorical Features</u> i.e. language, place type (stop, address, poi) etc.

One-hot encoder

Train-Test-Validation Split

```
Test = 20%

Validation = 20% of (100% - Test) = 16%
```

Train = 100% - (Test + Validation) = 64%

Splits treat query groups as a whole, as opposed to the normal split on each observation.

1 query group

Tree-Based Ranker

ML Algorithm: Gradient Boosted Trees

LTR Algorithms: LambdaRank, LambdaMART

Libraries: XGBoost, LightGBM

Hyperparameters:

- Objective function i.e. MAP, NDCG, Pairwise
- Scaling of positive weights i.e. selected results
- Number of rounds i.e. number of trees.
- Minimum child weight
- Maximum tree depth

Neural Ranker

ML Algorithm: Neural Network

LTR Algorithms: LambdaRank, LambdaMART

Libraries: TensorFlow Ranking

Optimizations: Multi-Item Scoring (Groupwise Scoring Functions), Ranking Metric Optimization (LambdaLoss)

Hyperparameters:

- NN Architecture i.e. activation fn, hidden layers, etc.
- LambdaLoss Metric i.e. MRR, NDCG, Mean Squared, etc.
- Group size for Groupwise Scoring Functions

Model Comparisons

Model	MRR	
Pelias	0.8493	-
SVM ^{rank}	0.7415	-13%
XGBoost	0.8754	+3.1%
LightGBM	0.8922	+5.1%
TF-Ranking (Linear)	0.8675	+2.2%
TF-Ranking (Deep)	0.8559	+0.78%

Rank Distributions

Rank Distributions (cont.)

Tree-Based Ranker - Hyperparameter Tuning

Model	MRR
XGBoost (Default)	0.8531
XGBoost (HP Tuned)	0.8754
LightGBM (Default)	0.8826
LightGBM (HP Tuned)	0.8922

Т	ree-B	ased Fe	ature Importances Top 20	features
			Weight	Feature
_			0.1574	x0_stop
ı	op 20 no	n-textual f	-eatures 0.0173	he
	Weight	Feature	0.0173	he
			0.0173	he
	0.1574	x0_stop	0.0138	dur
	0.0036	x0_address	0.0138	dur
	0.0010	x0_poi	0.0138	dur
	0.0005	place_lon	0.0130	ruh
	0.0005	place_lat	0.0130	ruh
	0.0003	focus_lat	0.0130	ruh
	0.0002	focus_lon	0.0111	(sp
			0.0111	(sp
	0.0000	month_sin	0.0079	markt
	0.0000	hr_cos	0.0079	markt
	0.0000	hr_sin	0.0053	baden
	0.0000	day_sin	0.0053	baden
	0.0000	is_weekend	0.0053	baden
	0.0000	day_cos	0.0050	mark
	0.0000	uu,_000	0.0050	

month_cos

0

mark

ruchs

0.0050

0.0048

Neural Ranker Architectures

#	Model	MRR
1	Linear (sigmoid) (0 hidden layers)	0.8675
2	FC-64-32-16: 80% dropout	0.8559
3	FC-32 (shallow network, 80% dropout)	0.8523
4	FC-512-256-32 (groupwise with size=5)	0.8247
5	FC-512-256-32	0.8070
6	FC-512-256-32 (tanh)	0.8039
7	FC-64-32-16	0.8038
8	FC-512-256-32 (approximate MRR loss)	0.7790
9	Non-Linear (ReLU) (0 hidden layers)	0.7732

Neural Ranker - Training Loss

FC-512-256-32

MRR = 0.8675

MRR = 0.8070

Neural Ranker - Training Loss

FC-64-32-16 (80% Dropout)

FC-512-256-32 (MRR Loss)

MRR = 0.8559

MRR = 0.7790

Model vs Pelias - Location Sharing

Model vs Pelias - Query Parsing

Query Character Length Range	LightGBM MRR	Pelias MRR
[3, 10]	0.9003	0.8481
[11, 20]	0.8721	0.8531
[21, 30]	0.8044	0.8612
[31, 40]	0.5647	0.8167

Model vs Pelias - Query Parsing (cont.)

Tree-Based Rankers vs Neural Rankers

	Tree-Based	Neural
Training Time		
Hyperparameter Tuning	Y	
Ease of implementation		
Cool factor		

Conclusion

- LTR models show improvement as top-k rerankers on top of Pelias.
- Tree-based rankers produced higher MRR scores than neural rankers.
- Both tree-based and neural rankers reveal potential for significant improvements on modest tuning.

Future Research

- Interaction between Pelias and the LTR rankers to optimize for different respective retrieval phases.
- Explore applicability of unbiased learning to rank methods.
- Incorporating unsuccessful queries during training.
- Rankers for worldwide search using city-based datasets.

