
Learning to Rank Places

Shuaib Yunus

This thesis was carried out while under the

employ of REACH NOW. The dataset used is

collected from apps owned by REACH NOW

Disclaimer

Problem Statement

Solve the ranking problem for geospatial search

using Learning to Rank’s (LTR) machine learning

and deep learning based approaches.

Pelias - Existing Search Engine

Based around Elasticsearch:

● Performant indexing pipeline for millions of

places.

● Sophisticated handwritten analysis chains.

● Intricate Elasticsearch queries to match query

texts.

Limitations of Pelias

Limitations of Pelias are based around Elasticsearch

as well.

● Learning from Historical Data

● Location Biasing

● Temporal Relevance

● Query Parsing

● Location Sharing

Location Biasing

Temporal Relevance

Query Parsing - Successful Queries are short

query = “McDonald’s Friedrichs”
entities = {

 “name”: “mcdonalds”,
 “street”: “friedrichs”

 }

Elasticsearch Query:
{ “query”:
 { “bool”: {

“should”: [
 {“match”: {“name”: “mcdonalds”}},

 {“match”: {“street”: “friedrichs”}}
]

 }
}

Query Parsing - Failed Searches are lengthy

Elasticsearch Query:
{ “query”:
 { “bool”: {

“should”: [
 {“match”: {“name”: “mcdonalds”},
 {“match”: {“name”: “friedrichs”}}

]
 }
}

Location Sharing

Learning to Rank (LTR)

LTR as an Empirical Risk Minimization Problem

The goal is to learn a scoring function 𝒉 : ℝn → ℝ, which minimizes:

An LTR algorithm chooses the scoring function 𝑓 that minimizes the
empirical risk :

The rankings obtained from should output the best ordering based on

the relevance judgements in the form:

Dataset
Dimension Description

freq Number of times the place was selected

Query text Query text

focus point latitude Latitude of the user

focus point longitude Longitude of the user

timestamp Timestamp of the search

target Whether the search is for an origin or destination

name Name of the place

locality Locality of the place

neighbourhood Neighbourhood of the presented place

borough Borough of the place

place latitude Latitude of the place

place longitude Longitude of the place

type Type of the place i.e. poi, address, or station

Metadata

app = KVV.mobil

period = 3 months

search results = 3 mil

no. of selected = 500 k

Label

Per-Item Features

Context Features

Evaluation Metrics

Mean Reciprocal Rank (MRR)*

Mean Average Precision at k (MAP@k)

 , where &

Normalized Discounted Cumulative Gain at k (NDCG@k)

 Where, &

LTR Approaches

Pointwise à la McRank, Ordinal Regression

Pairwise à la RankingSVM, RankNet

Listwise à la LambdaRank, LambdaMART

LambdaMART and LambdaRank uses pairwise errors, but with weighted

gradients based on misranked positions.

Learning to Rank Framework Used

Data Engineering

Feature Engineering

Temporal Features i.e. hour, day, month, year.

Spatial Features i.e. user’s location, place’s location.

“lon,lat” => [lon, lat]

Textual Features i.e. query text, place name, city etc.

Hashing vectorizer on character ngrams of range [2,5].

Categorical Features i.e. language, place type (stop, address, poi) etc.

One-hot encoder

Train-Test-Validation Split

Test = 20%

Validation = 20% of (100% - Test) = 16%

Train = 100% - (Test + Validation) = 64%

Splits treat query groups as a whole, as

opposed to the normal split on each

observation.

1 query group

Tree-Based Ranker

ML Algorithm: Gradient Boosted Trees

LTR Algorithms: LambdaRank, LambdaMART

Libraries: XGBoost, LightGBM

Hyperparameters:

• Objective function i.e. MAP, NDCG, Pairwise

• Scaling of positive weights i.e. selected results

• Number of rounds i.e. number of trees.

• Minimum child weight

• Maximum tree depth

Neural Ranker

ML Algorithm: Neural Network

LTR Algorithms: LambdaRank, LambdaMART

Libraries: TensorFlow Ranking

Optimizations: Multi-Item Scoring (Groupwise Scoring Functions),

Ranking Metric Optimization (LambdaLoss)

Hyperparameters:

• NN Architecture i.e. activation fn, hidden layers, etc.

• LambdaLoss Metric i.e. MRR, NDCG, Mean Squared, etc.

• Group size for Groupwise Scoring Functions

Results

Model Comparisons

Model MRR

Pelias 0.8493 -

SVMrank 0.7415 -13%

XGBoost 0.8754 +3.1%

LightGBM 0.8922 +5.1%

TF-Ranking (Linear) 0.8675 +2.2%

TF-Ranking (Deep) 0.8559 +0.78%

Rank Distributions

Pelias XGBoost

Rank Distributions (cont.)

SVMrank LightGBM

Tree-Based Ranker - Hyperparameter Tuning

Model MRR

XGBoost (Default) 0.8531

XGBoost (HP Tuned) 0.8754

LightGBM (Default) 0.8826

LightGBM (HP Tuned) 0.8922

Tree-Based Feature Importances

Top 20 non-textual features

Top 20 features

Neural Ranker Architectures

Model MRR

1 Linear (sigmoid) (0 hidden layers) 0.8675

2 FC-64-32-16: 80% dropout 0.8559

3 FC-32 (shallow network, 80% dropout) 0.8523

4 FC-512-256-32 (groupwise with size=5) 0.8247

5 FC-512-256-32 0.8070

6 FC-512-256-32 (tanh) 0.8039

7 FC-64-32-16 0.8038

8 FC-512-256-32 (approximate MRR loss) 0.7790

9 Non-Linear (ReLU) (0 hidden layers) 0.7732

Neural Ranker - Training Loss

Linear (Sigmoid) FC-512-256-32

MRR = 0.8675 MRR = 0.8070

Neural Ranker - Training Loss

FC-64-32-16 (80% Dropout) FC-512-256-32 (MRR Loss)

MRR = 0.8559 MRR = 0.7790

Model vs Pelias - Location Sharing

Model vs Pelias - Query Parsing

Query Character Length Range LightGBM MRR Pelias MRR

[3, 10] 0.9003 0.8481

[11, 20] 0.8721 0.8531

[21, 30] 0.8044 0.8612

[31, 40] 0.5647 0.8167

Model vs Pelias - Query Parsing (cont.)

Tree-Based Rankers vs Neural Rankers

Tree-Based Neural

Training Time

Hyperparameter Tuning

Ease of implementation

Cool factor

Conclusion

● LTR models show improvement as top-k rerankers on top of

Pelias.

● Tree-based rankers produced higher MRR scores than neural

rankers.

● Both tree-based and neural rankers reveal potential for

significant improvements on modest tuning.

Future Research

● Interaction between Pelias and the LTR rankers to optimize for

different respective retrieval phases.

● Explore applicability of unbiased learning to rank methods.

● Incorporating unsuccessful queries during training.

● Rankers for worldwide search using city-based datasets.

Thank you!

