
Once per machine:
• Get set up with use_devtools() so devtools is always loaded in

interactive R sessions

• create_github_token() — Set up GitHub credentials
• git_vaccinate() — Ignores common special files

Once per package:
• create_package() — Create a project with package scaffolding
• use_git() — Activate git
• use_github() — Connect to GitHub
• use_github_action() — Set up automated package checks

Package Structure

Package Development : : CHEATSHEET

 DESCRIPTION

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at r-pkgs.org • HTML cheatsheets at pos.it/cheatsheets • devtools 2.4.5 • usethis 3.1.0 • testthat 3.2.3 • roxygen2 7.3.2 • Updated: 2025-08

A package is a convention for organizing files into directories.
This cheat sheet shows how to work with the 7 most common
parts of an R package:

☑ Pick a license with use_mit_license(), use_gpl3_license(),
use_proprietary_license().

☑ Add packages that you need with use_package().

The  DESCRIPTION file describes your work, sets up how your
package will work with other packages, and applies a license.

DESCRIPTION NAMESPACE

Makes packages available Makes function available

Mandatory Optional (can use :: instead)

use_package() use_import_from()

 NAMESPACE
The  NAMESPACE file helps you make your package self-
contained: it won’t interfere with other packages, and other
packages won’t interfere with it.

☑ Export functions for users by placing @export in their
roxygen comments.

☑ Use objects from other packages with package::object or
@importFrom package object (recommended) or
@import package (use with caution).

☑ Call document() to generate NAMESPACE and load_all() to
reload.

All of the R code in your package goes in folder R/. A package with just
an R/ directory is still a very useful package.

☑ Create a new package project with
create_package("path/to/name").

☑ Create R files with use_r("file-name").

• Follow the tidyverse style guide at style.tidyverse.org
• Click on a function and press F2 to go to its definition
• Find a function or file with Ctrl + .

folder R/

Workflow

Edit code

load_all() test()

Run code

Edit tests

document()

check()

git commit
git push

?fun

Edit roxygen

There are multiple packages useful to package development,
including usethis which handily automates many of the more
repetitive tasks. Install and load devtools, which wraps together
several of these packages to access everything in one step.

• load_all() (Ctrl/Cmd + Shift + L) — Load code
• document() (Ctrl/Cmd + Shift + D) — Rebuild docs and NAMESPACE
• test() (Ctrl/Cmd + Shift + T) — Run tests
• check() (Ctrl/Cmd + Shift + E) — Check complete package

package-name
 DESCRIPTION
 NAMESPACE
folder R/
folder tests/
folder man/
folder vignettes/
folder data/

Import packages that your
package requires to work. R
will install them when it installs
your package.

use_package(x, type = "imports")

Suggest packages that
developers of your package
need. Users can install or not,
as they like.

use_package(x, type = "suggests")

Getting Started

if (interactive()) {
require("devtools", quietly = TRUE)
automatically attaches usethis

}

Having problems with git? Get a situation report with git_sitrep().

Verify your code is correct

Include datasets in your package

Document your code and write
tutorials and how-tos

Write R code for your package

Set up metadata and organize
package functions

mailto:info@posit.co
http://posit.co
http://r-pkgs.org
https://pos.it/cheatsheets

folder man/

☑ Document each function with a roxygen block above its
definition in R/. In RStudio, Code > Insert Roxygen Skeleton
helps (Ctrl/Cmd + Alt + Shift + R).

☑ Document each dataset with roxygen block above the name
of the dataset in quotes.

☑ Document the package with use_package_doc().

☑ Build documentation in folder man/ from Roxygen blocks with
document().

The roxygen2 package lets you write documentation
inline in your .R files with shorthand syntax.
• Add roxygen documentation as comments beginning with #'.
• Place a roxygen @ tag (right) after #' to supply a specific section

of documentation.
• Untagged paragraphs will be used to generate a title,

description, and details section (in that order).

#' Add together two numbers
#'
#' @param x A number.
#' @param y A number.
#' @returns The sum of `x` and `y`.
#' @export
#' @examples
#' add(1, 1)
add <- function(x, y) {
 x + y
}

@description
@examples
@examplesIf
@export

@family
@inheritParams
@param
@rdname

@returns
@seealso

COMMON ROXYGEN TAGS

ROXYGEN2

folder vignettes/
☑ Create a vignette that is included with your package with

use_vignette().

☑ Create an article that only appears on the website with
use_article().

☑ Write the body of your vignettes in R Markdown.

Websites with pkgdown

☑ Use GitHub and use_pkgdown_github_pages()
to set up pkgdown and configures an automated workflow
using GitHub Actions and Pages.

☑ If you're not using GitHub, call use_pkgdown() to configure
pkgdown. Then build locally with pkgdown::build_site().

☑ Set up test infrastructure with use_testthat().

☑ Create a test file with use_test().

☑ Write tests with test_that() and expect_().

☑ Run all tests with test() and run tests for current file
with test_active_file().

☑ See coverage of all files with test_coverage() and
see coverage of current file with test_coverage_active_file().

test_that("Math works", {
 expect_equal(1 + 1, 2)
 expect_equal(1 + 2, 3)
 expect_equal(1 + 3, 4)
})

Expect statement Tests

expect_equal() Is equal? (within numerical tolerance)

expect_error() Throws specified error?

expect_snapshot() Output is unchanged?

folder tests/

The contents of a package can be stored on disk as a:
• source - a directory with sub-directories (as shown in

Package structure)
• bundle - a single compressed file (.tar.gz)
• binary - a single compressed file optimized for a specific OS

Packages exist in those states locally or remotely, e.g. on CRAN or
on GitHub.

From those states, a package can be installed into an R library and
then loaded into memory for use during an R session.

Use the functions below to move between these states.

Internet On disk Library Memory

library()

install.packages() CRAN

install.packages(type = "source") CRAN

install_github() GitHub

install()

build()

build(binary = TRUE)

load_all()

Re
po

si
to

ry

So
ur

ce

Bu
nd

le

Bi
na

ry

In
st

al
le

d

In
 m

em
or

y

Package States

folder data/

 README.Rmd + NEWS.md

☑ Create a README and NEWS markdown files with
use_readme_rmd() and use_news_md().

☑ Record how a data set was prepared as an R script and save
that script to folder data-raw/ with use_data_raw().

☑ Save a prepared data object to folder data/ with use_data().

The documentation will become the help pages in your package.

Visit r-pkgs.org to learn
much more about
writing and publishing
packages for R.

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at r-pkgs.org • HTML cheatsheets at pos.it/cheatsheets • devtools 2.4.5 • usethis 3.1.0 • testthat 3.2.3 • roxygen2 7.3.2 • Updated: 2025-08

http://r-pkgs.org
mailto:info@posit.co
http://posit.co
http://r-pkgs.org
https://pos.it/cheatsheets

