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[1] Mankiw—Romer—Weil Model

Derivation of the differential equations Let0 < a < 1land0 < B < 1 witha + B < 1. The
output is given by
Y = K*HP(AL)!=*P,

Capital accumulation equations are given by

K=sY-0K,  H=s,Y—dH,

where they assume K and H have the same depreciation rate, . Definey = Y /AL, k = K/ AL,
h = H/AL and show that the following two-dimensional differential equation system deter-
mines the dynamics of the model:

k = sik®hP — (5 + g +n)k
h = spk*hP — (6 + ¢ +n)h.

Convergence to the steady state
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2. Similarly, derive conditions for k>0,k<0h>0andh <O0.

3. Equations (1) and (2) divide (k, h) space into.four regions. See Figure 1 on the answer
sheet. For each region, determine the sign of k and #, and circle the correct inequality in
Figure 1.

4. Now you can draw a sketch of dynamic behavior of the two-dimensional system. Draw
trajectories starting from each of the eight dots in Figure 2.
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Figure 1: Determine the signs of k and h
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Figure 2: Draw trajectories from the dots



