# Machine Learning - Regression¶

In [3]:
#lets read a dataset for training a machine learning model along with all R packages/libraries loaded
rm(list=ls())
library(sqldf)
library(nnet)
setwd("/home/deepak/Documents/Projects/Product")

In [6]:
str(inp)

'data.frame':	24 obs. of  2 variables:
$x: int 0 1 2 3 4 5 6 7 8 9 ...$ y: num  0.501 0.606 0.662 0.702 0.729 ...


### So we are interested in learning a function y = f(x) since here we are dealing with continous variable being the prediction, we call this a regression problem¶

#### We'll start with using OLS (ordinary least squares) regression to learn the function y = f(x) which is basically a closed form solution. In subsequent sections, we compare and contrast with iterative approaches gradient descent and neural network as parallel approaches.¶

Lets check the plot of (x,y)

In [55]:
options(repr.plot.width=4, repr.plot.height=3)
plot(inp$x,inp$y,type='p',lwd=0,col='blue',cex.lab=0.75, cex.axis=0.7,xlab='x',ylab='y',main='Training Dataset',
cex.main=0.75)
lines(inp$x,inp$y,col='blue')
grid()


## Section 1 : OLS (closed form analytic solution)¶

#### Looking at the above visualization, it is clear we are learning a non-linear function/ doing a non-linear curve fitting. Lets start with simple linear assumption and slow build complexity by using feature transformation.¶

In [131]:
ols = lm(y ~ x,inp)
summary(ols)

Out[131]:
Call:
lm(formula = y ~ x, data = inp)

Residuals:
Min          1Q      Median          3Q         Max
-0.15971571 -0.02197410  0.01146224  0.03575527  0.04422893

Coefficients:
Estimate  Std. Error  t value               Pr(>|t|)
(Intercept) 0.660798742 0.019163354 34.48242 < 0.000000000000000222 ***
x           0.011049328 0.001427691  7.73930          0.00000010186 ***
---
Signif. codes:  0 â€˜***â€™ 0.001 â€˜**â€™ 0.01 â€˜*â€™ 0.05 â€˜.â€™ 0.1 â€˜ â€™ 1

Residual standard error: 0.04841536 on 22 degrees of freedom
Multiple R-squared:  0.731369,	Adjusted R-squared:  0.7191585
F-statistic: 59.89673 on 1 and 22 DF,  p-value: 0.0000001018626


#### As seen from the model fit, model has an R-square of 71% indicates variance explained by the model which looks good. Also, both intercept and weight of x turns out to be significant (p-value < 0.05). Hence trying linear approximation y = c + mx gives y = 0.660799 + 0.011049 * x. Lets inspect actual vs. predicted curve¶

In [132]:
x = seq(0,25,0.1)
y = 0.660799 + 0.011049 * x
options(repr.plot.width=8, repr.plot.height=3)
par(mfrow=c(1,2))
res = resid(ols)
plot(x,y,type='p',lwd=0,col='blue',cex.lab=0.75, cex.axis=0.7,xlab='x',ylab='predicted y=f(x)',
cex.main=0.75, main = 'Actual vs. Predicted')
lines(x,y,)
lines(inp$x,inp$y,col='blue')
grid()
x=seq(0,23,1)
plot(x,res,col='blue',pch=18,cex.lab=0.75, cex.axis=0.7,xlab='x',ylab='residuals',
cex.main=0.75,main='Residuals')
abline(0, 0)


In [133]:
x = inp$x y1 = 5.413e-01 + 5.640e-02 * x -3.586e-03 * x^2 + 7.690e-05 * x^3 predicted = y1 RMSE = (mean((actual - predicted)^2))^0.5 / nrow(inp) RMSE  Out[210]: 0.000534178824592775 #### We just calculated RMSE (root mean square error - so we can compare other models using this metric). There are other error metrics one could look at, depeneding on the problem at hand. Check out kaggle for how they measure error for various competitions¶ ## Section 2 : Gradient Descent (open form solution - iterative)¶ In [153]: source("gradientdescent.R")  In [149]: # Setting up for gradient descent X <- matrix(c(inp$x,inp$x*inp$x), nrow=nrow(inp), byrow=FALSE)
y <- as.vector(inp$y) f <- function(X,y,b) { (1/2)*norm(y-X%*%b,"F")^{2} } grad_f <- function(X,y,b) { t(X)%*%(X%*%b - y) } simple_ex <- gdescent(f,grad_f,X,y,alpha=0.01,iter=120000)  Minimum function value: 0.00669805 Intercept: 0.5821183 Coefficient(s): 0.0325076650 -0.0009329719  In [201]: library(ggplot2) #options(repr.plot.width=12, repr.plot.height=3) #par(mfrow=c(1,3)) #plot_loss(simple_ex) #plot_iterates(simple_ex) #plot_gradient(simple_ex) x = seq(0,23,0.1) predicted = 0.5821183 +(0.0325076650*x) -(0.0009329719*(x*x)) predicted_gd = predicted options(repr.plot.width=4, repr.plot.height=3) plot(x,predicted,type='p',lwd=0,col='blue',cex.lab=0.75, cex.axis=0.7,xlab='x',ylab='predicted y=f(x)', cex.main=0.75) lines(inp$x,inp$y,col='red') lines(x,predicted,col= "blue") grid()  In [172]: predicted = 0.5821183 +(0.0325076650*inp$x) -(0.0009329719*(inp$x*inp$x))
actual = inp$y RMSE = (mean((actual - predicted)^2))^0.5 / nrow(inp) RMSE  Out[172]: 0.000984401645529425 ## Section 3: Neural Networks¶ In [6]: library(nnet) library(neuralnet)  #### Lets normalize data, as the neural network uses gradient descent to learn the back prop. weights. It is usually seen normalizing to [0,1] better than [-1,1]. I am skipping it for now, but something to keep in mind while trying for real world problems. We are using 3 layer 3 nodes in the hidden layer¶ In [204]: nn <- neuralnet(inp$y ~ inp$x,train,hidden=c(3,3),linear.output=T)  In [230]: plot.nn(nn,file="nn.png") dev.off()  dev.new(): using pdf(file="Rplots173.pdf")  Out[230]: pdf: 2 In [242]: nn #jj <- readJPEG("nnet_vis_1.jpg",native=TRUE) #plot(0:1,0:1,type="n",ann=FALSE,axes=FALSE) #rasterImage(jj,0,0,1,1)  Out[242]: Call: neuralnet(formula = inp$y ~ inp$x, data = train, hidden = c(3, 3), linear.output = T) 1 repetition was calculated. Error Reached Threshold Steps 1 0.0005345835713 0.008088818091 68  In [207]: #RMSE actual = inp$y
predicted = compute(nn,inp$x)$net.result
RMSE = (mean((actual - predicted)^2))^0.5 / nrow(inp)
RMSE

Out[207]:
0.000278103169993826
In [218]:
x = seq(0,23,0.1)
predicted = compute(nn,x)$net.result predicted_nn = predicted options(repr.plot.width=4, repr.plot.height=3) plot(x,predicted,type='p',lwd=0,col='blue',cex.lab=0.75, cex.axis=0.7,xlab='x',ylab='predicted y=f(x)', cex.main=0.75) lines(inp$x,inp$y,col='red') lines(x,predicted,col= "blue") grid()  ## Section 4 : Comparing the 3 models¶ In [274]: x = seq(0,23,0.1) options(repr.plot.width=8, repr.plot.height=4) plot(x,predicted_ols,type='o',lwd=0,col='blue',cex.lab=0.75, cex.axis=0.7,xlab='x',ylab='predicted y=f(x)',main="Curve Fitting - OLS, GD & NN" ,cex.main=0.75) lines(inp$x,inp\$y,col='black')
lines(x,predicted_ols,col= "blue")
lines(x,predicted_gd,col= "red")
lines(x,predicted_nn,col= "green")
legend('bottom',cex=0.75,c("Actual","Predicted - OLS","Predicted - GD","Predicted - NN"),horiz=TRUE,bg='lightblue',pt.cex=0.75,bty='n',lty=c(1,1), lwd=c(2.5,2.5),col=c("black","blue","red","green"))

In [ ]: