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LECTURE 8: PROBABILISTIC 
GRAPHICAL  AND HIERARCHICAL 
BAYESIAN MODELS
• Probabilistic graphical models (Bayesian and Markov networks)
• Hierarchical Bayesian models 
• Motivation: we want to write down the probability of the data d 

given some parameters ! we wish to determine. But the relation 
between the two is difficult to write in a closed form. For 
example, the parameters determine some probability distribution 
function (PDF) of perfect data x, but what we measure is d, a 
noisy version of x, and noise is varying between measurements.

• The main goal of this lecture is to derive automatic rules that will 
give correct answer in complicated inference situations: a way to 
formalize statistical inference

1



PHYS188: DATA SCIENCE AND BAYESIAN STATISTICS FOR PHYSICAL SCIENCES UROŠ SELJAK

LECTURE 8: 
ADVANCED BAYESIAN CONCEPTS

• We can introduce s as latent variables and model them together 
with !. Then ! can be viewed as hyperparameters for s.  The 
advantage is that at each stage PDF is easier to write down. 
However, we now have a lot of parameters to determine, most of 
which we do not care about. 

• Modern trend in statistics is to use the hierarchical modeling 
approach, enabled by advances in MC, specially HMC. 

• We can also try to marginalize over x analytically: convolve true 
PDF with noise PDF and do this for each measurement. This 
works, but requires doing the convolution integrals. The 
advantage is fewer variables, just !.
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Graphical Models for Probabilistic and 
Causal Reasoning

• We would like to describe the causal flow of events such that we 
can generate (simulate) events in a probabilistic setting (a flowchart 
of generating data)

• We can describe this with directed acyclic graphs (DAG)
• Typically we divide the process into components each of which 

generates a single variable x (given all other variables), which we 
can generate using random number generator for p(x)

• We can also use the same process to describe inference of latent 
(unobserved) variables from data 

• This also goes under the name of Bayesian networks or Belief 
networks 

• probabilistic graphical models (PGM): a more general class of 
networks that includes Bayesian networks and Markov networks 3
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Approach of Bayesian Networks/PGMs

• We infer the causal (in)dependence of variables
• Write factorized joint probability distributions
• Perform data analysis by posterior inference
• Once we have BN we can do the posterior analysis using 

MCMC or variational methods (next lecture)
• One way to think about BN: can we realistically simulate the 

data? If yes then we have a well defined BN, because we 
specify a simulation with a bunch of randomly drawn variables 
followed by deterministic rules that lead to data 
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PGM Rules

• Each circle is a probability distribution for the variable 
inside it

• Each arrow is a conditional dependence
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PGM Rules

• Each solid point is a fixed variable (pdf is a delta function)
• Each plate contains conditionally independent variables: 

repetition, compressed notation for many nodes
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Breaking causality down into components

Credit: Slides from B. Leistedt 7
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Breaking causality down into components

Credit: Slides from B. Leistedt 8
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Let’s add additional complexity
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Each%circle%has%its%own%p
Each%arrow%has%its%own%letter%after%|
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Example

• Write down corresponding probability expressions for this 
graph
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PGM Rules: Observables and Inference

• Each shaded (or double) circle implies an observable (c), 
everything else (a,b) is not an observable, but a latent (hidden) 
variable

• If we want to determine latent variables (a,b) from observables 
we do posterior inference (inverse problem requires Bayes rule)

11
=p(a,b|c)p(c)
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Posterior Inference

• Here D, F are data
• C, E parameters
• A, B fixed parameters

• We need all these conditional PDFs (probability distribution 
functions): p(F|E), p(D|C,E), p(C|A,B), p(E), note that p(A) and 
p(B) are delta functions (fixed parameters)
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Definitions

13
Duane&Rich&blog&https://www.quora.com/What:are:probabilistic:graphical:models:and:
why:are:they:useful
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Bayesian network: conditional independence
• Conditional)independence
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Chain)rule

Example)from)Koller)&)Friedman
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Markov Network
• Not every probabilistic model can be represented by Bayesian N.
• Markov networks: edges are undirected
• We divide the graph into complete subgraphs
• simple CI                                   Gibbs rule

16
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Markov Network

• !" are Boltzmann factors exp(-Hi), describing interaction energy 
Hi between neighboring spins, PM is Boltzmann factor for total 
energy, Z is partition function, i.e. the sum of the Boltzmann 
factors over all configurations

• In statistical physics, once we have Z we can derive macroscopic 
quantities we are interested in (like mean energy, mean 
magnetization etc.)

• As we discussed in previous lecture, rather than evaluating Z 
brute force (which is often impossible), we sample over regions 
of high posterior probability using MCMC

• There are other PGMs: e.g. chain graphical models contain both 
directed and undirected links

17
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Markov Network example: Boltzmann 
machine

• Binary'variables'xi=(01,1)
• H=!i<j wijxixj+!i bixi
• P=exp(0H)
• Z=!all statesexp(0H)
• Weights'wij,'bias'bi
• Example:'Ising model'of'spins'on'a'lattice
• "ij=0(xi0xj)2/2kT'if'i neighbor'of'j:'spins'prefer'

to'be'aligned
• Below'critical'temperature'(Curie'Tc)'all'

spins'aligned:'emergent'behavior'where'a'
phase'transition'emerges'out'of'a'weak'
local'constraint'
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Example: image cleaning
• Taken&from&Barber:&Bayesian&reasoning&and&machine&learning
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Hierarchical Bayesian Models

• PGMs encode a hierarchical causal structure: D depends on C 
which depends on A

• In many problems we have hierarchical structure of parameters
• For example, we measure some data d, which are noisy and 

related to some underlying true values x, but what we want is the 
parameters that determine their distribution !. 

• d: observable
• Variables that are not observed are called latent variables: !, x
• Variables we do not care about are called nuisance variables: x. 

We want marginalize over them to determine !

20
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Exchangeability

• When we do not know anything about latent variables xi we can 
place them on equal footing: p(x1,x2,…xJ) is invariant under 
permutation of (1, 2 , … J) indexes. 

• Their joint probability distribution cannot change upon 
exchanging xi with xj …

• A simple way to enforce this is to say p(x1,x2,…xJ) = !j=1Jp(xi|")
• This does not always work (e.g. a die has 6 exchangeable xi, but 

their values must add to 1), but works in large J limit (de Finetti
theorem). 

21
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Example

22
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Marginalization over Latent Variables

23
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Additional Complication: Noise in x

24
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Sometimes marginalization can be done analytically

25
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Example: gaussian process with unknown 
variance and noise

• We#have#data#x,#gaussian#process#that#generates#s=N(0,S),#and#
gaussian#noise#with#variance#N#that#generates#data#x.#We#can#
write#the#problem#in#terms#of#unknown#s#and#S#(ignoring#
constant#terms#like#2! and#N):

• We#can#also#analytically#marginalize#over#s:#

• No#s#dependence#left,#just#data#x#and#hyperparameter#S 26
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We should also put hyperpriors onto parameters

• We have hyperprior !: each 
parameter should have a 
prior, which can be non-
informative

• A proper PGM should start 
with hyperpriors and end 
with observables

s

27
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Another Extension: Mixture Models

• Mixture models try to fit the data with 
a mixture of components

• For example, we can fit multiple lines 
to the data assuming the data are 
drawn from one of the components 

28
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Mixture Model for Outliers

• Suppose we have data that can be fit to a linear regression, apart 
from a few outlier points 

• It is always better to understand the underlying generative model 
of outliers

• But suppose we just 
want to                                                     
identify them

29
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Let us model this as a Gaussian

• We get a poor fit to the data, goodness of fit is poor (we will 
discuss more formally what that means in the next lecture)

30
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Let us model this as a double Gaussian

• Now we allow the model  to have a nuisance parameter 0 < gi <1 
for each data point: gi = 0 indicates an outlier. We can also allow 
!b to be a nuisance parameter to marginalize over (or just make 
it a large number)

• We can define an outlier (circle) whenever posterior E(gi) < 0.5
• prior on gi: we can adopt a noninformative (uniform) prior, or 

we could have adopted a double peaked prior (one peaked at 0 
one at 1) to force the solutions into 0 or 1: this does buy not us 
that much when compared to simply using E(gi) < 0.5 criterion.  

31



PHYS188: DATA SCIENCE AND BAYESIAN STATISTICS FOR PHYSICAL SCIENCES UROŠ SELJAK

Result of Gaussian 2 Mixture Model

Note that this may not be what we want: outliers may be a 
source of information, so labeling them and discarding may 
destroy useful information

32



PHYS188: DATA SCIENCE AND BAYESIAN STATISTICS FOR PHYSICAL SCIENCES UROŠ SELJAK

Pooling 

• In previous example we have assumed each event has its own gi
without any connection between them. In the context of drawing 
data from separate experiments (which is not the case in this 
example) this is called no pooling. 

• We could have also used gi = g, which is to say that all data are 
drawn from the same pdf: complete pooling in the context of 
separate experiments. Then we do not determine gi for each data 
point, instead we use the data to determine 1-g as the outlier fraction 
(g=3/19 on previous slide). This allows us to determine !b from the 
data (!b=30 +/- 10 on previous slide) 

• Or we could have grouped data into separate groups each with its 
own prior, if we have a priori reasons to separate them into such 
groups: partial pooling. For example, outliers with x<40 have a 
different prior than outliers with x>40 on previous slide

33
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Alternatives: Robust Analysis

• So far we used L2 norm, 
justified by Gaussian error 
distribution, as in the least 
squares fit. We used a 
mixture of Gaussians to treat 
outliers

• If we know the error 
probability distribution we 
can use it instead: Gaussian 
is the most compact and any 
other distribution will reduce 
sensitivity to outliers

• This can be related to 
changing the norm 34
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Error PDF
• Suppose we know PDF of the error P=e(-!)

• We then want to minimize 

• If this is only a function of difference between model and data we 
can minimize over a

•

35
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M-Estimators and Norms

• Gaussian (L2)

• Laplace (double exponential, L1)

• Lorentzian (Cauchy)

• All are special cases of Student t: !(z) = log(n+z2)
• Student t can also be viewed as a mixture of gaussians with the same 

mean and variances distributed as inverse-"2 with n degrees of freedom
• Norms: Lp norm defined as
• L2: ridge, L1: lasso

36
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Regularization
• In image processing, machine learning etc. we often work with many more 

parameters than we can determine from the data: this is a form of non-
parametric analysis (i.e. we have many more parameters than we can 
handle)

• Because of this the parameters will fit noise: overfitting
• If there is no noise by sampling is sparse the parameters will fit the data 

where measured and the model will make little sense elsewhere: overfitting

• To prevent that we regularize the solutions by imposing some smoothness 

• Easiest way to achieve this is to minimize the sum of !2 and norm of 
parameters, with the relative contribution determining the overall level of 
smoothness

• In Bayesian context we are adding a prior

37
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Tikhonov (ridge, L2) Regularization

• We use L2 norm and add it to linear least squares

• ! can be a general matrix, but  for L2 ! ="I

• Normal equation solution

• SVD solution:

• We see that regularization reduces condition number of the 
matrix: it regularizes it   

38



PHYS188: DATA SCIENCE AND BAYESIAN STATISTICS FOR PHYSICAL SCIENCES UROŠ SELJAK

Bayesian Regression

• In the Bayesian context we perform regression of coefficients aj
assigning them some prior distribution, such as a gaussian with 
some precision !. If we also have noise precision " then ln p is

• So regularizing parameter is # = !/"
• How do we set !? It is a hyper-parameter that we can 

determine separately from the data itself. We will return to this 
when we discuss gaussian process and regression (lecture 11) 39
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L1 vs. L2 Norm for Regularization
• Suppose we have just one linear relation and 2 parameters: we must 

regularize. We want to find w1 and w2 subject to their linear relation 
E11w1+E12w2 = c1 (normal eq., red line) and minimizing the norm L1 or L2

• We see that L1 norm is minimized at w1 = 0: L1 norm enforces sparseness, 
L2 does not

• Bayesian view: Laplace distribution is sharply peaked at 0
• L1 regularization is called LASSO: can both regularize and reduce 

dimensionality (shrinkage). Least absolute shrinkage and selection operator40
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Example: Image sampled at discrete points

Credit: F. Lanusse 41
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No Regularization Reconstruction

42
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L2 Norm Regularization

43
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L1 Norm Regularization

44
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Linmix: Fitting with correlated errors in x and y

U(x,y): uniform between x and y
Dirichlet distribution f:

This could have been solved by 
integrating out latent variables 
analytically: this does not change 
hierarchical modeling approach 46
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Summary
• The simplest way to write the full probabilistic model is to break it down 

into individual conditional probabilities, which often includes several levels 
of hierarchy of parameters

• Doing this is facilitated with the help of directed acyclic graphs (Bayesian 
networks) or undirected graphs (Markov networks)

• The price one pays is a large number of parameters: one either works with 
all of them or tries to marginalize analytically over nuisance parameters that 
are not of interest

• A few typical examples are regression with errors in both variables, 
regression with outliers etc. 

• A more heuristic approach to outliers is robust analysis with M-estimators  
where the error distribution is generalized beyond gaussian to a Student t 
distribution

• This is related to the concept of L-norms, where L1 lasso norm corresponds 
to Laplace distribution which enforces sparsity

• This in turn is related to regularization in the context of image processing 
with incomplete and noisy data 47
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• Numerical Recipes, Press et al., Chapter 15
• Bayesian Data Analysis, Gelman et al. , Chapter 5
• https://www.quora.com/What-are-probabilistic-graphical-

models-and-why-are-they-useful (7 parts!)
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