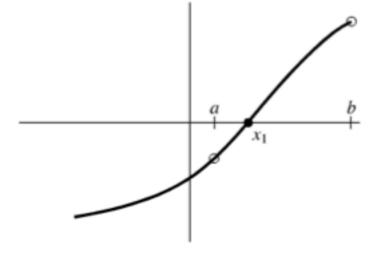
# LECTURE 6: Nonlinear Equations and Optimization

- we cover first solving nonlinear equations and 1-d optimization
- f(x) = 0 (either in 1-d or many dimensions)
- In 1-d we can bracket the root and then find it, in high dimensions we cannot
- Bracketing in 1-d: if f(x) < 0 at a and f(x) > 0 at b > a (or the other way around) and f(x) is continuous then there is a root at a < x < b

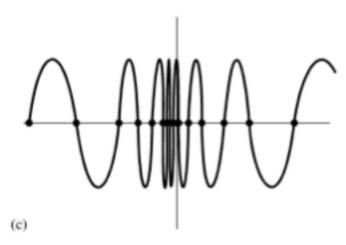


#### **Other Situations:**

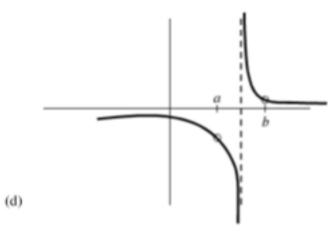
• No roots or one or two roots but no sign change:



Many roots:



• Singularity:

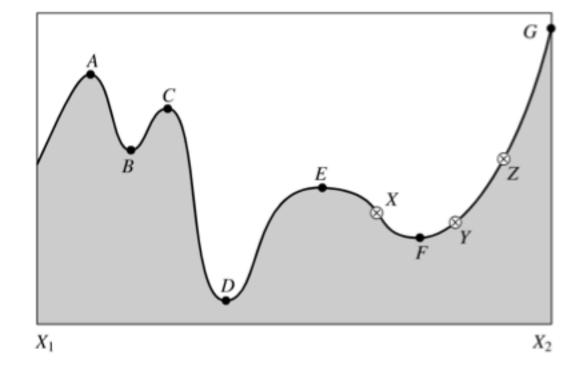


#### **Bisection for Bracketing**

- We can use bisection: divide interval by 2, evaluate at the new position, and choose left or right half-interval depending on where the function has opposite sign. Number of steps is  $log_2[(b-a)/\varepsilon]$ , where e is the error tolerance. The method must succeed.
- Error at next step is  $\varepsilon_{n+1} = \varepsilon_n/2$ , so converges linearly
- Higher order methods scale as  $\varepsilon_{n+1} = c\varepsilon_n^m$ , with m > 1

# 1-d Optimization: Local and Global Extrema, Bracketing

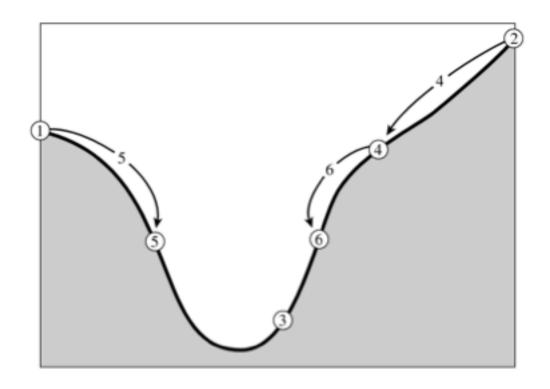
- Optimization: minimization or maximization
- In most cases only local minimum (B,D,F) or local maximum (A,C,E,G) can be found, difficult to prove they are global minimum (D) or global maximum (G)
- We bracket a local minimum if we find f(X) > f(Y) and f(Z) > f(Y) for X < Y < Z.</li>



#### Golden Ratio Search

- Remember that we need a triplet of points to bracket a < b < c such that f(b) is less than f(a) and f(c)
- Suppose w = (b-a)/(c-a). We evaluate at x, define (x-b)/(c-a) = z. The next bracketing segment will be either w+z or 1-w.

To minimize the error choose these two to be equal: z = 1 - 2w. But w was also chosen this way, so z/(1-w) = w,  $1-2w=w(1-w):w^2-3w+1=0$  and  $w = (3-5^{1/2})/2=0.382$ , 1-w=0.618, Golden Ratio  $(1/0.618=1.618=(1+5^{1/2})/2)$ .



# Newton(-Raphson) Method

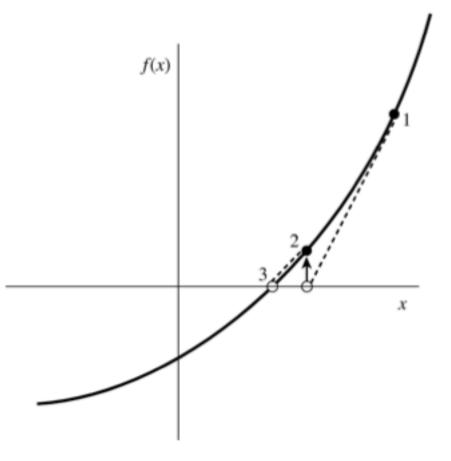
- Most celebrated of all methods, we will use it extensively in higher dimensions
- Requires a gradient:

$$f(x+\delta) = f(x) + \delta f'(x) + \dots$$

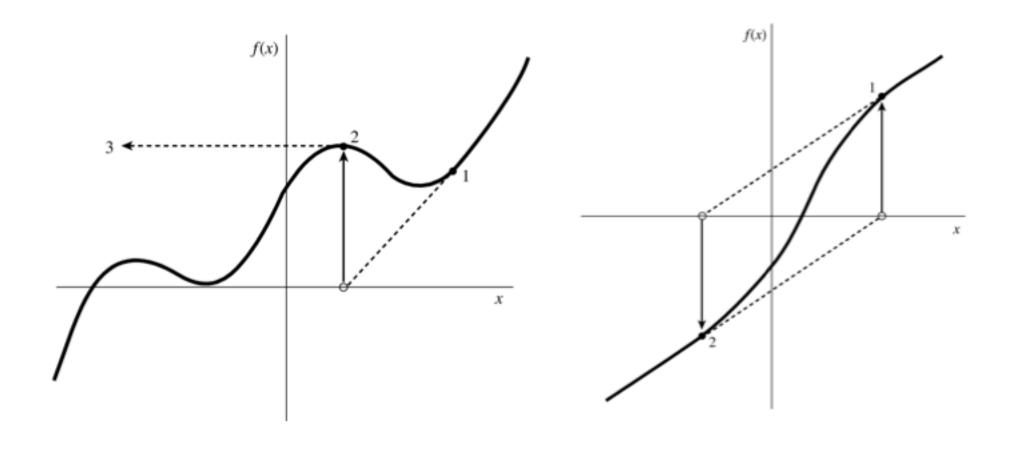
• We want  $f(x+\delta) = 0$ , hence  $\delta = -f(x)/f'(x)$ 

• Rate of convergence is quadratic (NR 9.4) m=2

$$\varepsilon_{i+1} = \varepsilon_i^2 f''(x)/(2f'(x))$$



# **Newton-Raphson is not Failure-free**



# Newton-Raphson for 1-d Optimization

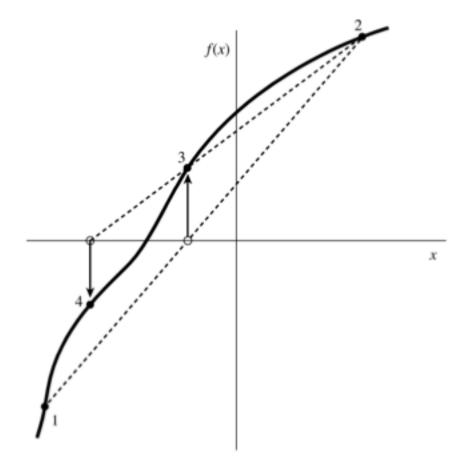
- Expand function to 2<sup>nd</sup> order (note: we did this already when expanding log likelihood)
- $f(x+\delta) = f(x) + \delta f'(x) + \delta^2 f''(x)/2 + ...$
- Expand its derivative  $f'(x+\delta) = f'(x) + \delta f''(x) + \dots$
- Extremum requires  $f'(x+\delta) = 0$  hence  $\delta = -f'(x)/f''(x)$
- This requires f": Newton's optimization method

# Secant Method for Nonlinear Equations

 Newton's method using numerical evaluation of a gradient defined across the entire interval:

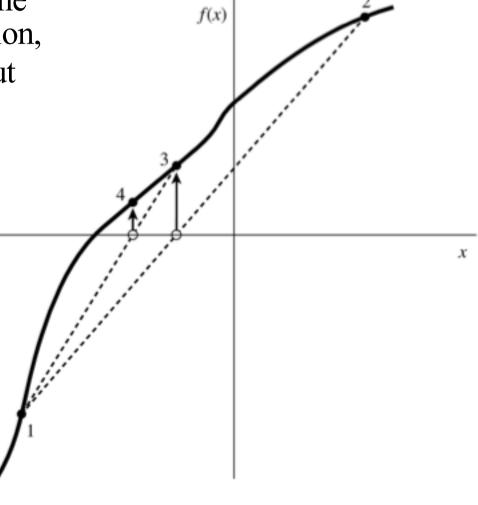
$$f'(x_2) = [f(x_2)-f(x_1)]/(x_2-x_1)$$

- $x_3 = x_2 f(x_2)/f'(x_2)$
- Can fail, since does not always bracket
- m = 1.618 (golden ratio), a lot faster than bisection

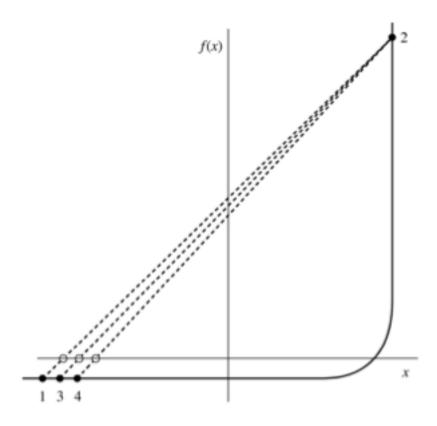


# False Position Method for Nonlinear Equations

 Similar to secant, but keep the points that bracket the solution, so guaranteed to succeed, but with more steps than secant



#### Sometimes convergence can be slow

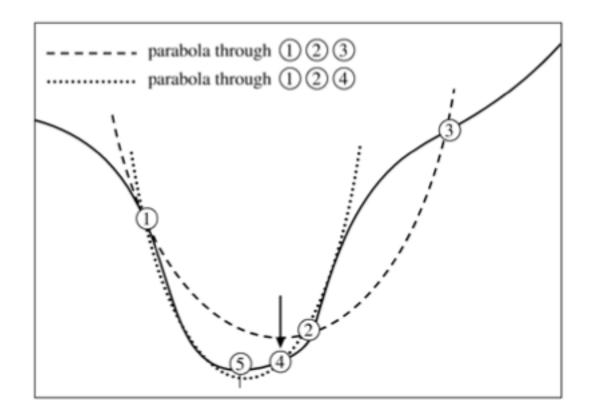


Better methods without derivatives such as Ridders or Brent's method combine these basic techniques: use these as default option and (optionally) switch to Newton once the solution is guaranteed for a higher convergence rate

# Parabolic Method for 1-d Optimization

• Approximate the function of *a*, *b*, *c* as a parabola

$$x = b - \frac{1}{2} \frac{(b-a)^2 [f(b) - f(c)] - (b-c)^2 [f(b) - f(a)]}{(b-a)[f(b) - f(c)] - (b-c)[f(b) - f(a)]}$$

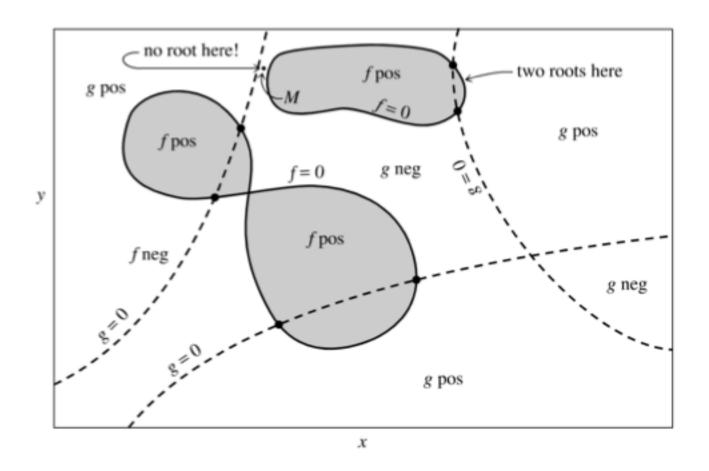


#### **Gradient Descent in 1-d**

- Suppose we do not have f", but we have f": so we know the direction of function descent. We can take a small step in that direction:  $\delta = -\eta f'(x)$ . We must choose the sign of  $\eta$  to descend (if minimum is what we want) and it must be small enough not to overshoot.
- We can make a secant version of this method by evaluating gradient with finite difference:  $f'(x_2) = [f(x_2)-f(x_1)]/(x_2-x_1)$

#### Nonlinear Equations in Many Dimensions

• f(x,y) = 0 and g(x,y) = 0: but the two functions f and g are unrelated, so it is difficult to look for general methods that will find all solutions



#### Newton-Raphson in Higher Dimensions

• Assume *N* functions

$$F_i(x_0, x_1, \dots, x_{N-1}) = 0$$
  $i = 0, 1, \dots, N-1.$ 

- Taylor expand  $F_i(\mathbf{x} + \delta \mathbf{x}) = F_i(\mathbf{x}) + \sum_{j=0}^{N-1} \frac{\partial F_i}{\partial x_j} \delta x_j + O(\delta \mathbf{x}^2).$
- Define Jacobian  $J_{ij} \equiv \frac{\partial F_i}{\partial x_j}$
- In matrix notation  $\mathbf{F}(\mathbf{x} + \delta \mathbf{x}) = \mathbf{F}(\mathbf{x}) + \mathbf{J} \cdot \delta \mathbf{x} + O(\delta \mathbf{x}^2)$ .
- Setting  $\mathbf{F}(\mathbf{x} + \delta \mathbf{x}) = 0$ , we find  $\mathbf{J} \cdot \delta \mathbf{x} = -\mathbf{F}$ .
- This is a matrix equations: solve with LU
- Update  $\mathbf{x}_{\text{new}} = \mathbf{x}_{\text{old}} + \delta \mathbf{x}$  and iterate again

# Globally Convergent Methods and Secant Methods

- If quadratic approximation in N-R method is not accurate taking a full step may make the solution worse. Instead one can do a line search backtracking and combine it with a descent direction (or use a trust region).
- When derivatives are not available we can approximate them: multi-dimensional secant method (Broyden's method).
- Both of these methods have clear analogies in optimization and since the latter is more important for data science we will explain the concepts in optimization.

#### **Relaxation Methods**

- Another class of methods solving x = f(x)
- Take  $x = 2-e^{-x}$ , start at  $x_0 = 1$  and evaluate  $f(x_0) = 2-e^{-1} = 1.63 = x_1$
- Now use this solution again:  $f(x_1) = 2 e^{-1.63} = 1.80 = x_2$
- Correct solution is x = 1.84140...
- If there are multiple solutions which one one converges to depends on the starting point
- Convergence is not guaranteed: suppose  $x^0$  is exact solution:  $x_{n+1} = f(x_n) = f(x^0) + (x_n x^0)f'(x^0) + ...$  since  $x^0 = f(x^0)$  we get  $x_{n+1} x^0 = f'(x^0)(x_n x^0)$  so this converges if  $|f'(x^0)| < 1$
- When this is not satisfied we can try to invert the equation to get  $u = f^{-1}(u)$  so that  $|f'^{-1}(u)| < 1$

#### Relaxation Methods in Many Dimensions

- Same idea: write equations as x = f(x,y) and y = g(x,y), use some good starting point and see if you converge
- Easily generalized to N variables and equations
- Simple, and (sometimes) works!
- Again impossible to find all the solutions unless we know something about their structure

#### Over-relaxation

- We can accelerate the convergence:
- $\Delta x_n = x_{n+1} x_n = f(x_n) x_n$
- $x_{n+1} = x_n + (1+\omega)\Delta x_n$
- if  $\omega = 0$  this is relaxation method
- If  $\omega > 0$  this is over-relaxation method
- No general theory for how to select  $\omega$ : trial and error

#### Optimization in many dimensions

- Optimization (maximization/minimization) is of huge importance in data analysis and is the basis for recent breakthroughs in machine learning and big data
- A lot of it is application dependent and there is a vast number of methods developed: we cannot cover them all in this lecture
- Broadly can be divided into 1<sup>st</sup> order (derivatives are available, but not Hessian) and 2<sup>nd</sup> order (approximate Hessian or full Hessian evaluation)
- 0<sup>th</sup> order: no gradients available: use finite difference to get the gradient. Works fine in low dimensions
- or use downhill simplex (Nelder & Mead method). Very slow (curse of dimensionality) and we will not discuss it here.
- Warning: we can only get to the local minimum/maximum. Finding the global minimum/maximum is generally impossible (curse of dimensionality).
- Convex optimization: only one minimum (global). Non-convex: everything else

#### **Preparation of Parameters**

- Often the parameters are not unconstrained: they may be positive (or negative), or bounded to an interval
- Optimization with constraints is harder: without constraints we can just look for where the gradient is zero
- First step is to make optimization unconstrained: map the parameter to a new parameter that is unbounded. For example, if a variable is positive, x > 0, use z = log(x) instead of x.
- One can also change the prior so that it reflects the original prior:  $p_{pr}(z)dz = p_{pr}(x)dx$
- If x > 0 has uniform prior in x then  $p_{pr}(z) = dx/dz = x = e^z$

#### **Automatic Differentiation**

- All good optimization methods use gradients
- How do we take a gradient of a complicated function? We divide into a sequence of elementary individual steps where the gradient is simple, then multiply these steps together using the chain rule

$$\nabla_{x}h(y(x)) = \sum_{i=1}^{m} \frac{\partial h}{\partial y_{i}} \nabla y_{i}(x)$$

- Neural networks are a prime example of power of auto-diffs.
- Many packages developed for doing this: tensorflow, theano (no longer developed), keras, (py)torch...
- Alternative is finite differencing. This becomes extremely expensive in high dimensions. Modern NN easily have 10<sup>6</sup> and more dimensions
- Note: NN rarely uses 2<sup>nd</sup> order optimization methods due to high dimensionality of the problem and due to high data volume, which requires use of stochastic gradient descent

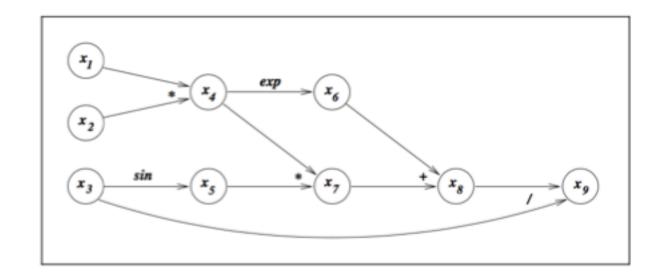
#### Example

• We have a function of 3 variables

$$f(x) = (x_1 x_2 \sin x_3 + e^{x_1 x_2})/x_3.$$

• We break it down into individual operations

$$x_4 = x_1 * x_2,$$
  
 $x_5 = \sin x_3,$   
 $x_6 = e^{x_4},$   
 $x_7 = x_4 * x_5,$   
 $x_8 = x_6 + x_7,$   
 $x_9 = x_8/x_3.$ 



#### **Forward Mode**

$$x_4 = x_1 * x_2,$$

 $x_5 = \sin x_3$ 

• Here we can only do directional derivatives:

$$x_6=e^{x_4},$$

$$D_p x_i \stackrel{\text{def}}{=} (\nabla x_i)^T p = \sum_{j=1}^3 \frac{\partial x_i}{\partial x_j} p_j, \quad i = 1, 2, \dots, 9,$$

$$x_7=x_4*x_5,$$

$$x_8=x_6+x_7,$$

• To get final answer  $D_p x_9$  we will use  $p_1 = (1,0,0)$ ,

$$x_9 = x_8/x_3$$
.

$$p_2 = (0,1,0), p_3 = (0,0,1)$$

• Suppose we want to evaluate  $D_p x_7$  and we have the values on previous steps ( $x_4$  and  $x_5$  and their  $D_p$ 's ):

$$\nabla x_7 = \frac{\partial x_7}{\partial x_4} \nabla x_4 + \frac{\partial x_7}{\partial x_5} \nabla x_5 = x_5 \nabla x_4 + x_4 \nabla x_5. \qquad \nabla_x h(y(x)) = \sum_{i=1}^m \frac{\partial h}{\partial y_i} \nabla y_i(x)$$

$$D_p x_7 = \frac{\partial x_7}{\partial x_4} D_p x_4 + \frac{\partial x_7}{\partial x_5} D_p x_5 = x_5 D_p x_4 + x_4 D_p x_5.$$

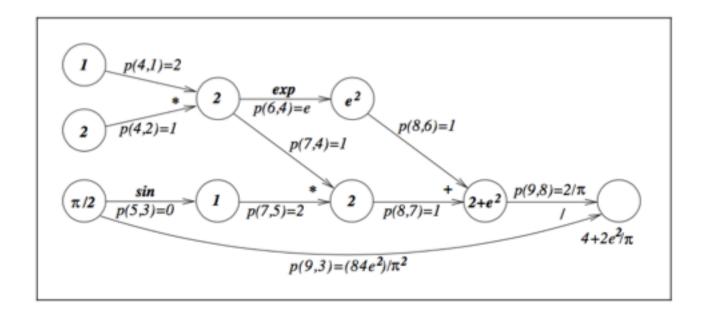
- +: Simple to evaluate, no need to store anything
- -: expensive, typically by a factor of n (# dimensions)

# **Backward Mode: Backpropagation**

- Here we store values at each step and perform reverse sweep over the computational graph
- We associate adjoint variable (scalar)  $\bar{x}_i$  to keep track of  $\partial f/\partial x_i$  at each node, initializing them to 0, except last one  $x_N = 1$  (since  $f = x_N$ )
- We use chain rule as  $\frac{\partial f}{\partial x_i} = \sum_{j \text{ a child of } i} \frac{\partial f}{\partial x_j} \frac{\partial x_j}{\partial x_i}$  performing
- $\bar{x}_i += \frac{\partial f}{\partial x_j} \frac{\partial x_j}{\partial x_i}$ .  $x += a \text{ means } x \leftarrow x + a$ . over all children
- Now we can use this as one input into parent of  $x_i$
- We work with numerical values. Forward sweep stores  $x_i$  and  $\frac{\partial x_j}{\partial x_i}$  as numerical values, which are then used in reverse sweep

#### Forward Sweep

- For previous example: we have to do it for specific numerical values (no symbolic algebra)
- Assume  $x = (1, 2, \pi/2)^T$ . Denote  $p(x_j, x_i) = \frac{\partial x_j}{\partial x_i}$ .



$$x_4 = x_1 * x_2,$$
  
 $x_5 = \sin x_3,$   
 $x_6 = e^{x_4},$   
 $x_7 = x_4 * x_5,$   
 $x_8 = x_6 + x_7,$   
 $x_9 = x_8/x_3.$ 

#### **Reverse Sweep**

- For reverse sweep we start with
- Node 9 is child of 3 and 8:
- Node 8 is finalized, node 3 still needs input from child node 5
- Next we update 6 and 7 with 8
- 6 and 7 are finalized, use them for 4 and 5...
- Final result is:

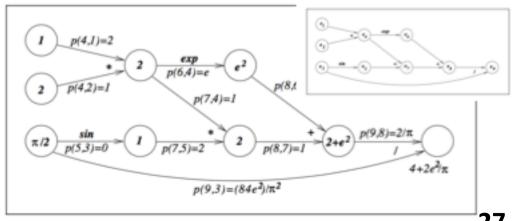
$$\begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \bar{x}_3 \end{bmatrix} = \nabla f(x) = \begin{bmatrix} (4+4e^2)/\pi \\ (2+2e^2)/\pi \\ (-8-4e^2)/\pi^2 \end{bmatrix}$$

$$\bar{x}_9 = 1 \qquad \bar{x}_9 = \frac{\partial f}{\partial x_9} = \frac{\partial f}{\partial x_9}$$

$$\bar{x}_3 + \frac{\partial f}{\partial x_9} = \frac{\partial x_9}{\partial x_3} = -\frac{2 + e^2}{(\pi/2)^2} = \frac{-8 - 4e^2}{\pi^2}$$

$$\bar{x}_8 + \frac{\partial f}{\partial x_9} = \frac{\partial x_9}{\partial x_8} = \frac{1}{\pi/2} = \frac{2}{\pi}$$

$$x_4 = x_1 * x_2,$$
 $x_5 = \sin x_3,$ 
 $x_6 + = \frac{\partial f}{\partial x_8} \frac{\partial x_8}{\partial x_6} = \frac{2}{\pi};$ 
 $x_6 = e^{x_4},$ 
 $x_7 + = \frac{\partial f}{\partial x_8} \frac{\partial x_8}{\partial x_7} = \frac{2}{\pi}.$ 
 $x_8 = x_6 + x_7,$ 
 $x_9 = x_8/x_3.$ 

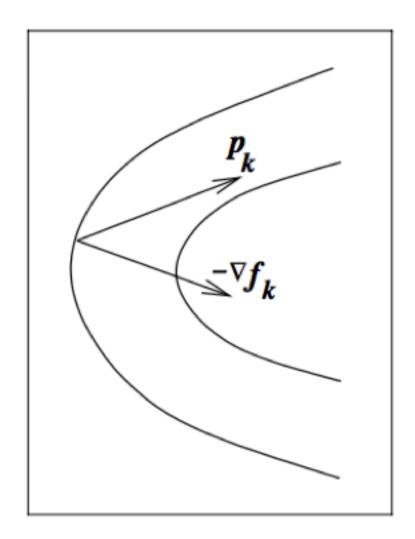


#### **Backpropagation** (Dis)Advantages

- +: computationally cheaper if f is a scalar: we get the full gradient with a cost comparable to the function evaluation: typically a few times more to evaluate  $p(x_j,x_i)$ . It is the only option if number of dimensions  $10^6++$
- -: we need to store all intermediate steps during forward sweep. This can get expensive if large number of dimensions and many operations
- In NN applications, due to high dimensionality of the networks, backpropagation is used exclusively: size of network will be limited (need to store all hidden layers)
- Note that memory requirements can limit the number of hidden layers
- In ODE/PDE applications important to have low number of time steps

# General Strategy for optimization

- We want to descend down a function J(a) (if minimizing) using iterative sequence of steps at at. For this we need to choose a direction  $p_t$  and move in that direction:  $J(a_t + \eta p_t)$
- A few options: fix  $\eta$
- line search: vary  $\eta$  until  $J(a_t + \eta p_t)$  is minimized
- Trust region: construct an approximate quadratic model for *J* and minimize it but only within trust region where quadratic model is approximately valid



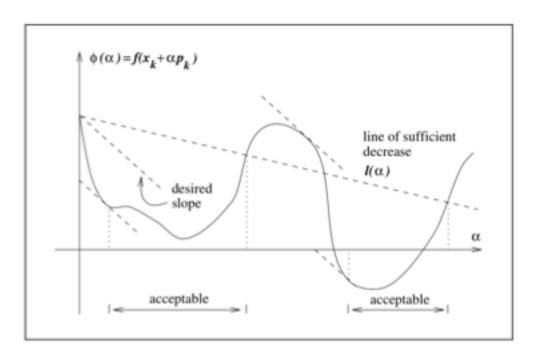
# Line Search Directions and Backtracking

- Gradient descent: Gradient  $\eta \nabla_a J(a, x_t)$
- Newton: Inverse Hessian  $H^{-1}$  times gradient  $-H^{-1}$   $\nabla_a J(a)$
- Quasi-Newton: approximate  $H^{-1}$  with  $B^{-1}$  (SR1 and BFGS)
- Nonlinear conjugate gradient:  $p_t = -\nabla_a J(a, x_t) + \beta_t p_{t-1}$ , where  $p_{t-1}$  and  $p_t$  are conjugate
- Step length with backtracking: choose first proposed length
- If it does not reduce the function value reduce it by some factor, check again
- Repeat until step length is ε, at that point switch to gradient descent

#### Line search: Wolfe conditions

- We want a sufficient decrease of the loss function along the direction pk
- We do not want a step that is too short, so we impose curvature condition: the slope at the position where we are stepping to should be shallow

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla f_k^T p_k$$
$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k,$$



#### **Trust Region Method**

• Multi-dim parabola method: define approximate quadratic function, but limit the step

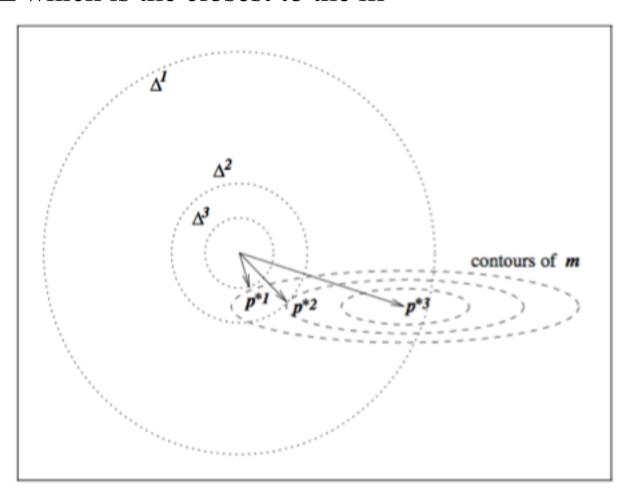
$$\min_{p \in \mathbb{R}^n} m_k(p) = f_k + g_k^T p + \frac{1}{2} p^T B_k p \qquad \text{s.t. } ||p|| \le \Delta_k$$

- Here  $\Delta k$  is trust region radius
- Evaluate at previous iteration and compare the actual reduction to predicted reduction

$$\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$$

- If  $\rho_k$  around 1 we can increase  $\Delta_k$
- If close to 0 or negative we shrink  $\Delta_k$

- If trust region covers *m* center step there (same as Newton if B is Hessian)
- Otherwise direction of step changes to the point on the sphere of radius  $\Delta$  which is the closest to the m

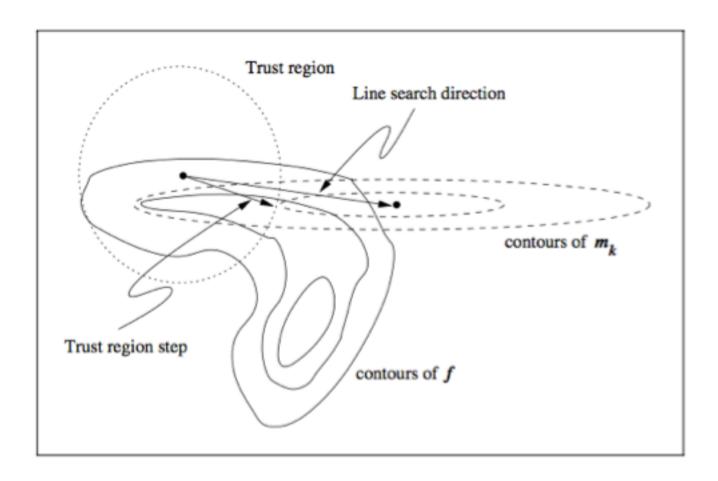


# Constrained Optimization: Lagrange Multiplier Method

- If the center of *m* is inside trust region step there
- Otherwise we must solve constrained optimization
- We solve this optimization with Lagrange multiplier method: minimize  $f + g^T p + p^T B p + \lambda (p^2 \Delta^2)$  with respect to p and  $\lambda$ . Gradient w.r.t.  $\lambda$  gives the constraint  $p^2 = \Delta^2$ , thus the constraint is automatically satisfied. This determines the value of  $\lambda$ .
- Minimization with respect to p now includes  $\lambda p^2$
- As a result the step direction is not towards center of *m* when trust region does not cover it: see picture on previous and next slide

#### Line Search vs. Trust Region

In  $2^{nd}$  order methods we have a natural choice of step size:  $\alpha k=1$  This does not mean we should actually go there: Wolfe conditions may be violated, or it is outside trust region The two methods give a different update



#### 1st Order: Gradient Descent

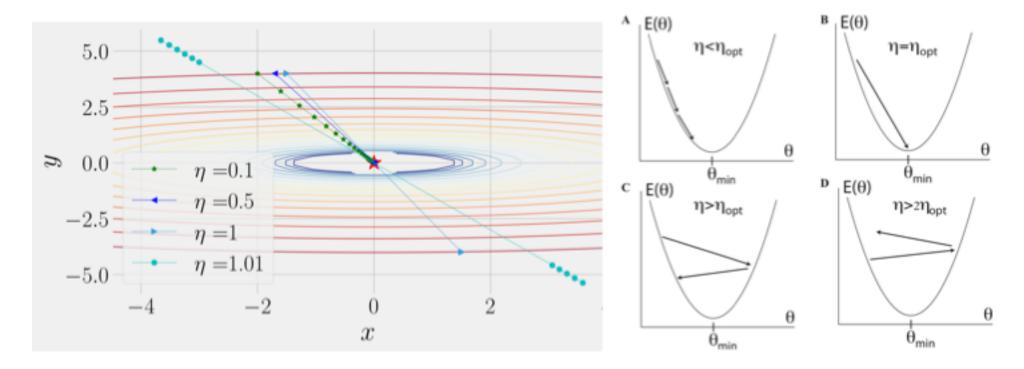
• We have a vector of parameters a and a scalar loss (cost) function J(a,x,y) which is a function of a data vector (x,y) we want to optimize (say minimize). This could be a nonlinear least square loss function:  $J = \chi^2$ 

$$\chi^{2}(\mathbf{a}) = \sum_{i=0}^{N-1} \left[ \frac{y_{i} - y(x_{i}|\mathbf{a})}{\sigma_{i}} \right]^{2}$$

- (Batch) gradient descent updates all the variables at once:  $\delta a = -\eta \nabla_a J(a)$ : in ML.  $\eta$  is called learning rate. We are not given its value, so we need to guess
- This is a poor strategy if condition number is large
- It can get stuck on saddle points, where gradient is 0 everywhere (see animation later)

# **Gradient Descent: learning rate**

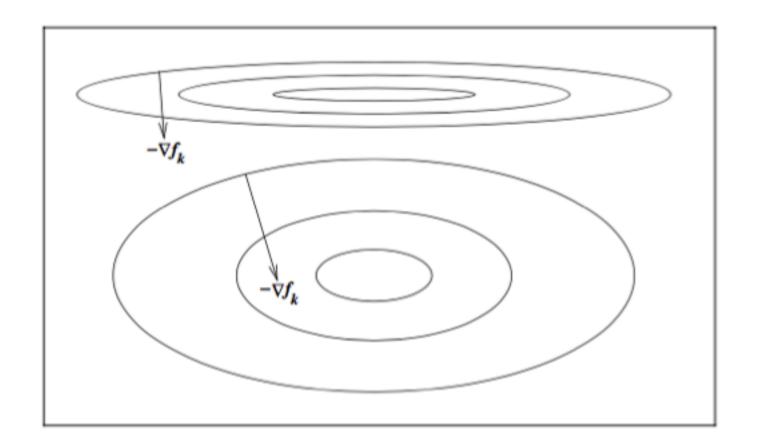
• If too small slow convergence ( $\eta$ =0.1). If optimal immediate convergence ( $\eta$ opt=0.5). If large oscillation ( $\eta$ =1). If even larger( $\eta$ >2  $\eta$ opt) divergence ( $\eta$ =1.01)



• Newton:  $\eta \nabla_a J(a) = H^{-1} \nabla_a J(a)$ : optimal  $\eta_{opt}$  is determined by the eigenvalues  $\lambda$  of inverse Hessian:  $\eta_{opt} = 1/\lambda$ 

## **Scaling**

- Change variables to make surface more circular
- Example: change of units (rescale the variables)
- Only works if variables uncorrelated (Hessian is diagonal)



## Ravines: large condition number of Hessian

To prevent divergence one must have  $\eta < 2/\lambda_{max}$  If condition number  $\lambda_{max}/\lambda_{min}$  of Hessian large we get slow convergence

(a)

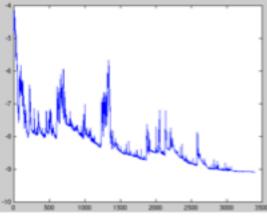
Given Hessian Q the convergence rate of gradient descent is

$$||x_{k+1} - x^*||_Q^2 \le \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2 ||x_k - x^*||_Q^2$$

where  $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$  are the eigenvalues of Q.

#### **Stochastic Gradient Descent**

- Stochastic gradient descent: do this just for one data pair  $x_i$ ,  $y_i$ :  $\delta a = -\eta \nabla_a J(a, x_i, y_i)$
- This saves on computational cost, but is noisy, so one repeats it by randomly choosing data *i*
- Has large fluctuations in the cost function



- This is potentially a good thing: it may avoid getting stuck in the local minima (or saddle points)
- Learning rate is slowly reduced
- Has revolutionized machine learning (can handle large data)

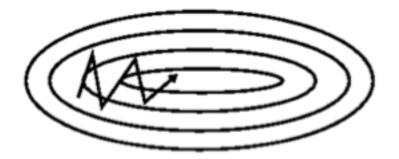
#### Mini-batch Stochastic Gradient

- Mini-batch takes advantage of hardware and software implementations where a gradient w.r.t. to a number of data points can be evaluated as fast as a single data (e.g. mini-batch of N = 256 for GPUs)
- We cycle over all minibatches: this is called an epoch
- Randomizing mini batches prevents fitting spurious correlations
- Challenges of (stochastic) gradient descent: how to choose learning rate (in 2<sup>nd</sup> order methods this is given by Hessian)
- Ravines: still slow



## Adding Momentum: Rolling down the hill

- We can add momentum and mimic a ball rolling down the hill
- Use previous update as the direction
- $v_t = \gamma v_{t-1} + \eta \nabla_a J(a)$ ,  $\Delta a_{t+1} = a_{t+1} a_t = -v_t$  with  $\gamma$  of order 1 (e.g. 0.9)
- Momentum increases descent speed for directions where gradient does not change, while not affecting large gradient directions



• Physics analogy: viscous fluid with drag coefficient μ in external potential E=J

potential E=J
$$m \frac{\mathbf{w}_{t+\Delta t} - 2\mathbf{w}_{t} + \mathbf{w}_{t-\Delta t}}{(\Delta t)^{2}} + \mu \frac{\mathbf{w}_{t+\Delta t} - \mathbf{w}_{t}}{\Delta t} = -\nabla_{w} E(\mathbf{w}) \qquad m \frac{d^{2}\mathbf{w}}{dt^{2}} + \mu \frac{d\mathbf{w}}{dt} = -\nabla_{w} E(\mathbf{w})$$

$$\Delta \mathbf{w}_{t+\Delta t} = -\frac{(\Delta t)^{2}}{m + \mu \Delta t} \nabla_{w} E(\mathbf{w}) + \frac{m}{m + \mu \Delta t} \Delta \mathbf{w}_{t} \qquad \gamma = \frac{m}{m + \mu \Delta t}, \qquad \eta = \frac{(\Delta t)^{2}}{m + \mu \Delta t}$$

#### **Nesterov Accelerated Gradient**

• We can predict where to evaluate the next gradient using previous velocity/momentum update

• 
$$v_t = \gamma v_{t-1} + \eta \nabla_a J(a - \gamma v_{t-1}), \Delta a = -v_t$$

• Momentum (blue) vs NAG (brown+red=green)



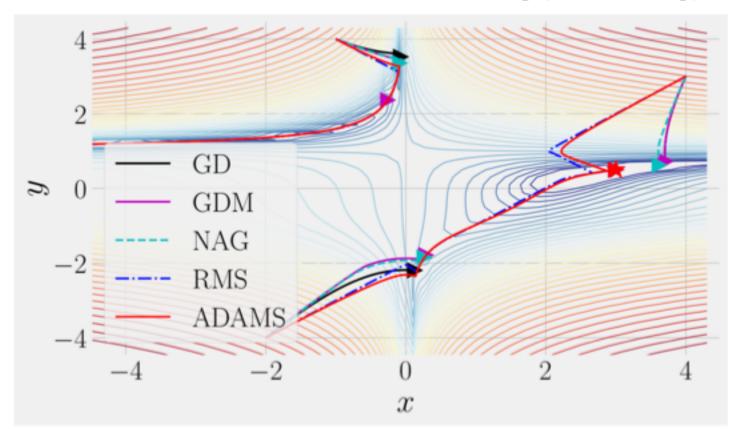
• See <a href="https://arxiv.org/abs/1603.04245">https://arxiv.org/abs/1603.04245</a> for theoretical justification of NAG based on a Bregman divergence Lagrangian

# Using second moment of gradient: Adagrad, Adadelta, Rmsprop, ADAM, ...

- How to specify the schedule: updates of  $\eta$  dependent on  $a_i$
- Use past gradient information to update  $\eta$ : "quasi second order"
- Example: RMSprop
- $g_t = \nabla_a J(a)$ ;  $v_t = \beta_2 v_{t-1} + (1 \beta_2) g_t^2$ : average gradient squared with element wise vector operations
- Update rule:  $\Delta a_{t+1} = -\eta g_t/(v_t^{1/2} + \varepsilon)$ : reduces learning rate where the gradient is large
- Example ADAM: ADAptive Momentum estimation
- $m_t = \beta_1 m_{t-1} + (1 \beta_1) g_t$ : average gradient
- bias correction:  $m_t' = m_t/(1-\beta_1)$ ,  $v_t' = v_t/(1-\beta_2)$
- Update rule:  $\Delta a_{t+1} = -\eta m_t'/(v_t'^{1/2} + \varepsilon)$ .
- Recommended values  $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$ ,  $\eta = 10^{-3}$ ,  $\varepsilon = 10^{-8}$

## **Practical performance**

- ADAM and RMSprop are faster to converge
- But generalization properties may be worse
- Monitor out of sample performance and exit (early termination) when validation error starts increasing (overfitting)



# Adding gradient noise

- To avoid getting stuck on local minima it is helpful to add noise (Neelakantan etal 2015)
- Stochastic gradient descent already does that, but sometimes we want more
- If we do full batch we can add noise explicitly to the gradient and then anneal it to zero

$$g_{t,i} = g_{t,i} + N(0, \sigma_t^2).$$
  $\sigma_t^2 = \frac{\eta}{(1+t)^{\gamma}}.$ 

 If we do not anneal to zero this becomes one of the MC sampling methods called Langevin sampling (Welling and Teh 2011): next lecture

#### 2<sup>nd</sup> Order Method: Newton

- We have seen that there is no natural way to choose learning rate in 1<sup>st</sup> order methods
- But Newton's method provides a clear answer what the learning rate should be:
- $J(a+\delta a) = J(a) + \delta a \nabla_a J(a) + \delta a \delta a' \nabla_a \nabla_{a'} J(a)/2 \dots$
- Hessian  $H_{ij} = \nabla_{a_i} \nabla_{a_j} J(a)$
- At the extremum we we want  $\nabla_a J(a) = 0$  so a Newton update step is  $\delta a = -H^{-1} \nabla_a J(a)$
- We do not need to guess the learning rate
- We do need to evaluate Hessian and invert it (or use LU): expensive in many dimensions!
- In high dimensions we use iterative schemes to solve the inverse problem

## **Quasi-Newton**

- Computing Hessian and inverting it is expensive, but one can approximate it at iteration k with a low rank symmetric tensor B<sub>k+1</sub>
- Let us construct an approximation  $m_{k+1}(p) = f_{k+1} + \nabla f_{k+1}^T p + \frac{1}{2} p^T B_{k+1} p$ .
- Wolfe condition for  $\alpha_k$   $p_k = -B_k^{-1} \nabla f_k$   $x_{k+1} = x_k + \alpha_k p_k$
- Remember secant method: we used finite difference to approximate gradient. Here we use finite difference of gradient to approximate Hessian. We'd need (N+1)/2 such terms to get the full Hessian, so if we do r we can only get low rank r approximation
- Secant condition:  $s_k = x_{k+1} x_k$ ,  $y_k = \nabla f_{k+1} \nabla f_k$ .  $B_{k+1} s_k = y_k$
- We also want B<sub>k+1</sub> to be positive definite: curvature condition  $s_k^T y_k > 0$
- This is not unique, as we have N(N+1)/2 elements but just N conditions, so we add a condition  $\min_{B} \|B B_k\|$  that  $B_{k+1}$  is closest to  $B_k$  subject to  $B = B^T$ ,  $B_{S_k} = y_k$

# Quasi-Newton: choice of norm

- Frobenius norm where  $\|\cdot\|_F$  is defined by  $\|C\|_F^2 = \sum_{i=1}^n \sum_{j=1}^n c_{ij}^2$   $\|A\|_W \equiv \|W^{1/2}AW^{1/2}\|_F$   $Wy_k = s_k$
- Unique solution: DFP (Davidon-Fletcher-Powell)

(DFP) 
$$B_{k+1} = \left(I - \rho_k y_k s_k^T\right) B_k \left(I - \rho_k s_k y_k^T\right) + \rho_k y_k y_k^T,$$

$$\rho_k = \frac{1}{y_k^T s_k}.$$

• Inverse H=B<sup>-1</sup> (Sherman-Morrison-Woodbury formula)

$$H_{k+1} = H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + \frac{s_k s_k^T}{y_k^T s_k}$$

# Quasi-Newton: BFGS and SR1

• BFGS: same as DFP, but we impose secant condition on inverse H<sub>k+1</sub> (rank 2 update, positive definite): most popular

(BFGS) 
$$H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T \quad \rho_k = \frac{1}{y_k^T s_k}$$

• Inverse gives Bk+1 (Sherman-Morrison-Woodbury formula)

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$$

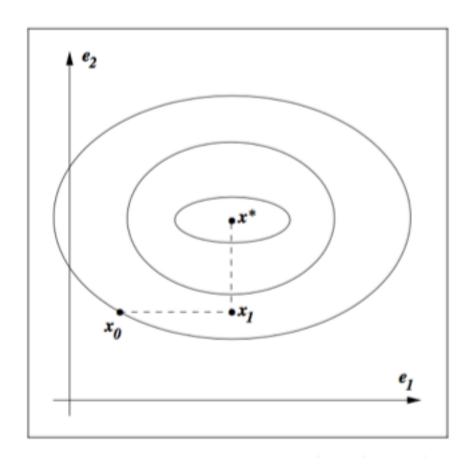
- Even simpler is rank 1 update:  $B_{k+1} = B_k + \sigma v v^T$
- Secant condition:  $y_k = B_k s_k + [\sigma v^T s_k] v$
- Inside bracket is a scalar, so v proportional to yk-Bksk
- Solution: Symmetric Rank 1 (SR1)  $B_{k+1} = B_k + \frac{(y_k B_k s_k)(y_k B_k s_k)^T}{(y_k B_k s_k)^T s_k}$

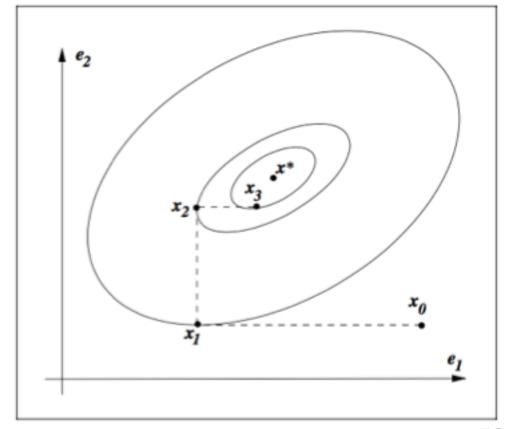
#### L-BFGS

- For large problems and many iterations this gets too expensive (too high rank). Limited memory BFGS updates only based on last *N* iterations (*N* of order 10-100)
- In practice increasing N often does not improve the results
- Historical note: quasi-Newton methods originated from W.C. Davidon's work in 1950s, a physicist at Argonne national lab.

## General minimization along coordinate direction

• If we have the matrix A in diagonal form so that basis vectors are orthogonal we can find the minimum trivially along the axes, otherwise not





## **Linear Conjugate Direction**

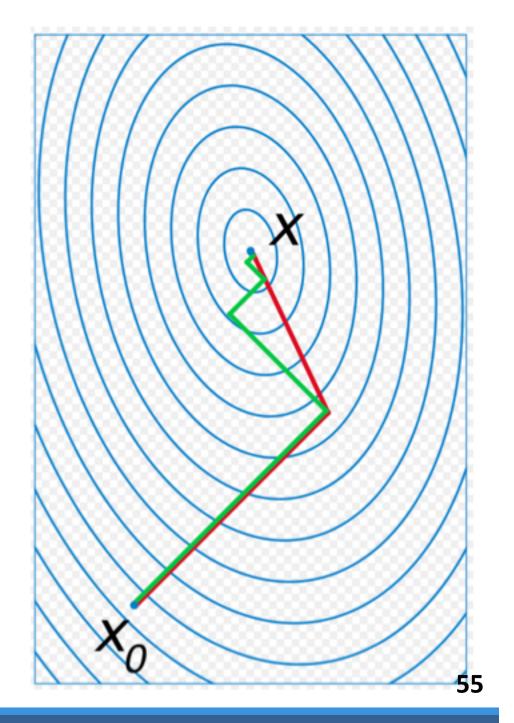
- Is an iterative method to solve Ax = b (so belongs to linear algebra)
- Can be used for optimization: min  $J = x^T Ax b^T x$
- Assume we have conjugate vectors defined as  $p_iAp_j = 0$  for all i, j not equal i
- Construction of **x** similar to Gram-Schmidt (QR), where A plays the role of scalar product norm. Start at any **x**<sub>0</sub>
- $x_{k+1} = x_k + \alpha_k p_k$  where we choose  $\alpha_k$  so that it minimizes J along  $p_k$ . By construction of conjugate vectors this also minimizes along previous directions:  $\alpha_k = -r_k^T p_k/(p_k^T A p_k)$  and  $r_k = A x_k b$
- Essentially we are taking a dot product (with **A** norm) of the residual with previous vector to project it perpendicular to previous vectors
- Since the space is N-dim after N steps we have spanned the full space and converged to true solution,  $r_N=0$ .
- How do we construct pk?

## Linear Conjugate Gradient: construction of pk

- Computes  $\mathbf{p_k}$  from  $\mathbf{p_{k-1}}$ .  $\mathbf{p_0} = \mathbf{r_0}$
- We want the step to be linear combination of residual  $-\mathbf{r_k}$  and previous direction  $\mathbf{p_{k-1}}$  such that it is conjugate to it
- $p_k = -r_k + \beta_k p_{k-1}$  premultiply by  $p_{k-1}^T A$  and require  $p_{k-1}^T A p_k = 0$
- $\beta_k = (r_k A p_{k-1})/(p^T_{k-1} A p_{k-1})$

#### CG vs. Gradient Descent

- In 2-d CG has to converge in 2 steps
- In general CG will converge much faster than gradient descent

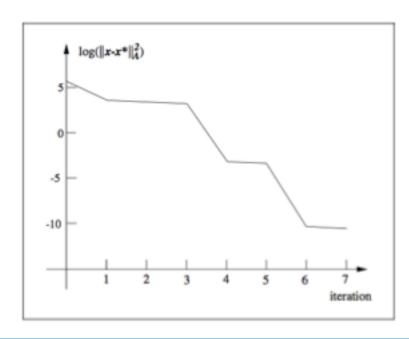


# **CG** convergence rate

- Converges rapidly for similar eigenvalues: if matrix A has r distinct eigenvalues CG converges after k=r steps
- If r clusters of eigenvalues it converges approximately in r steps
- not so fast if condition number is high: slow convergence

$$\kappa(A) = ||A||_2 ||A^{-1}||_2 = \lambda_n/\lambda_1.$$

$$||x_k - x^*||_A \le 2\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^k ||x_0 - x^*||_A$$



## **Preconditioning**

• Tries to improve condition number of **A** by multiplying by another matrix **C** that is simple

$$\hat{x} = Cx$$
.  
 $\hat{\phi}(\hat{x}) = \frac{1}{2}\hat{x}^T(C^{-T}AC^{-1})\hat{x} - (C^{-T}b)^T\hat{x}$ .  
 $(C^{-T}AC^{-1})\hat{x} = C^{-T}b$ 

- We wish to reduce condition number of  $C^{-T}AC^{-1}$
- Example: incomplete Cholesky  $\mathbf{A} = \mathbf{L}\mathbf{L}^T$  by computing only a sparse  $\mathbf{L}$
- Preconditioners are very problem specific (use physical understanding of the problem to devise it)

## Nonlinear Conjugate Gradient

- Replace  $\alpha_k$  with line search that minimizes J, and use  $x_{k+1} = x_k + \alpha_k p_k$
- Replace  $r_k = Ax_k b$  with gradient of J:  $\nabla_x J$
- $\beta_k = \nabla_x J_k \nabla_x J_k / \nabla_x J_{k-1} \nabla_x J_{k-1}$
- $p_k = -\nabla_x J_k + \beta_k p_{k-1}$
- This is Fletcher-Reeves version, Polak-Ribiere modifies eta
- CG is one of the most competitive methods, but requires the Hessian to have low condition number
- Typically we do a few CG steps at each k, then move on to a new gradient evaluation

## Gauss-Newton for Nonlinear Least Squares

$$\chi^{2}(\mathbf{a}) = \sum_{i=0}^{N-1} \left[ \frac{y_{i} - y(x_{i}|\mathbf{a})}{\sigma_{i}} \right]^{2}$$

$$\frac{\partial \chi^2}{\partial a_k} = -2 \sum_{i=0}^{N-1} \frac{[y_i - y(x_i | \mathbf{a})]}{\sigma_i^2} \frac{\partial y(x_i | \mathbf{a})}{\partial a_k} \qquad k = 0, 1, \dots, M-1$$

$$\frac{\partial^2 \chi^2}{\partial a_k \partial a_l} = 2 \sum_{i=0}^{N-1} \frac{1}{\sigma_i^2} \left[ \frac{\partial y(x_i | \mathbf{a})}{\partial a_k} \frac{\partial y(x_i | \mathbf{a})}{\partial a_l} - [y_i - y(x_i | \mathbf{a})] \frac{\partial^2 y(x_i | \mathbf{a})}{\partial a_l \partial a_k} \right]$$

$$\beta_k \equiv -\frac{1}{2} \frac{\partial \chi^2}{\partial a_k}$$
  $\alpha_{kl} \equiv \frac{1}{2} \frac{\partial^2 \chi^2}{\partial a_k \partial a_l}$   $\sum_{l=0}^{M-1} \alpha_{kl} \, \delta a_l = \beta_k$ 

$$\alpha_{kl} = \sum_{i=0}^{N-1} \frac{1}{\sigma_i^2} \left[ \frac{\partial y(x_i | \mathbf{a})}{\partial a_k} \frac{\partial y(x_i | \mathbf{a})}{\partial a_l} \right]$$

Line search in direction  $\delta a$ 

 $\alpha_{kl} = \sum_{i=1}^{N-1} \frac{1}{\sigma_i^2} \left[ \frac{\partial y(x_i | \mathbf{a})}{\partial a_k} \frac{\partial y(x_i | \mathbf{a})}{\partial a_l} \right]$  Gauss-Newton approximation: we drop 2<sup>nd</sup> term in Hessian because residual  $r = y_i - y$  is small, fluctuates around 0 and because y" may be small (or zero for linear problems)

# Gauss-Newton + Trust Region = Levenberg-Marquardt Method

- Solving  $\mathbf{A}^{T}\mathbf{A}\delta\mathbf{a} = \mathbf{A}^{T}\mathbf{b}$  is equivalent to minimize  $|\mathbf{A}\delta\mathbf{a}-\mathbf{b}|^{2}$
- if trust region is within the solution just solve this equation
- If not we need to impose  $||\delta \mathbf{a}|| = \Delta_k$
- Lagrange multiplier minimization equivalent to  $(\mathbf{A}^{T}\mathbf{A} + \lambda \mathbf{I}) \delta \mathbf{a} = \mathbf{A}^{T}\mathbf{b} \text{ and } \lambda(\Delta ||\delta \mathbf{a}||) = 0$
- For small  $\lambda$  this is Gauss-Newton (use close to minimum), for large  $\lambda$  this is steepest descent (use far from minimum)
- A good method for nonlinear least squares
- Steepest descent can be poor far away from the minimum: sometimes better to start with BFGS, then switch to L-M

#### **Inexact Newton methods**

- In high dimensions we cannot do linear algebra Hessian matrix H inversion to do the exact Newton (or Gauss Newton)
- We use conjugate gradient to solve the sub-problem  $\nabla x \nabla x J \delta x = -\nabla x J$  by iterating on a few conjugate directions
- Both line search and trust regions methods exist. The latter is called CG-Steihaug method
- Requires Hessian vector product: automatic derivative methods exist that do this (both forward and reverse modes)
- We do one or a few CG updates, then move on to recompute the gradient and Hessian vector product

## Summary

- Optimization one of key numerical methods of modern data analysis. Typical examples are nonlinear least square problem and ML parameters (e.g. neural networks etc.)
- If at this point you are confused which methods you should use you are not alone: it depends on application and often the best way to answer is to try
- 2<sup>nd</sup> order methods usually better in low dimensions
- 1<sup>st</sup> order methods may be the only choice in high dimensions
- Analytic gradient is worth having: Auto-diff with backpropagation
- Even Hessian vector product is useful (e.g. CG-Steihaug)
- Alternative is finite difference gradient, but this suffers from numerical issues and gets very expensive in high dimensions

## Summary

- If the data is independent and there is a lot of data then use stochastic 1<sup>st</sup> order methods, e.g. ADAM
- If the likelihood evaluation is slow and number of parameters low use Newton or Gauss-Newton (e.g. Levenberg-Marquardt)
- If likelihood slow and number of parameters large use approximate Newton or Gauss-Newton (e.g. Steihaug with nonlinear CG), or use quasi-Newton (e.g. L-BFGS)
- Choosing a method is not enough: you also need to choose line search method (e.g. backtracking, Wolfe conditions) or trust region determination
- Typically these methods only find local minimum. Non-convex problems are hard: we will look at some stochastic methods (e.g. simulated annealing) in next lecture

#### Literature

- Numerical Recipes, Press et al., Chapter 9, 10, 15
- Computational Physics, M. Newman, Chapter 6
- Nocedal and Wright, Optimization
- https://arxiv.org/abs/1609.04747