
Parallelization and 
benchmarks



Gaussian DFT computational kernel
Evaluation of  XC potential matrix 

element
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my_next_task = SharedCounter()

do i=1,max_i

if(i.eq.my_next_task) then

call ga_get()

(do work)

call ga_acc()

my_next_task = 

SharedCounter()

endif

enddo

barrier()
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Both GA operations are  greatly dependent on the 
communication latency



Parallel scaling of the DFT code
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Si28O148H66

3554 Basis 
functions

LDA wavefunction

XC build

Benchmark run on

Cray XK6



Parallel scaling of the DFT code
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Si159O264H110

7108 Basis 
functions

LDA wavefunction

XC build

Benchmark run on

Cray XK6



(H2O)24

72 atoms 
1224 basis functions

Cc-pvtz(-f) basis

November 2009

Floating-Point performance
at 223K cores:

1.39 PetaFLOP/s

CCSD(T) run on Cray XT5 : 24 water



What we want to solve

6

),...,1(),...,1(ˆ NENH =

Quantum ChemistryNuclear Physics Solid State Physics

Many Particle Systems
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Method Numerical

complexity

CCSD

(singles & doubles)

N6

CCSD(T)

(perturbative triples)

N7

CCSDT

(singles & doubles & triples)

N8

CCSDTQ

(singles & doubles &triples &

quadruples)

N10

Hartree-

Fock (N4) 

4-index 

transformation 
(N5)

CCSD 

(N6)

CCSD(T)

(N7)

Coupled Cluster method



What is Tensor Contraction Engine (TCE)

Symbolic manipulation & program
generator

Automates the derivation of
complex working equations based
on a well-defined second quantized
many-electron theories

Synthesizing efficient parallel
computer programs on the basis of
these equations.

Granularity of the parallel CC TCE
codes is provided by the so-called tiles,
which define the partitioning of the
whole spinorbital domain.
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Tile structure:

Occupied spinorbitals unoccupied spinorbitals

   

S1 S2 … S1 S2 … S1 S2 ………. S1 S2 ……….

Tile-induced block structure of the CC tensors:
CPU1 CPU2 CPU3 …….

CPU n
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What is Tensor Contraction Engine (TCE)



New elements of parallel design for  
the iterative CCSD/EOMCCSD method

Use of Global Arrays (GA) to implement a distributed memory model

Iterative CCSD/EOMCCSD methods (basic challenges)

Global memory requirements

Complex load balancing

Complicated communication pattern:  use of one-sided 
ga_get,ga_put,ga_acc

Implementation improvements

New way of representing antysymmetric 2-electron integrals for the 
restricted (RHF) and restricted open-shell (ROHF) references  

Replication of low-rank tensors

New task scheduling for the CCSD/EOMCCSD methods

10



Scalability of the iterative EOMCC 
methods
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Alternative task schedulers

use “global task pool” 

improve load 
balancing 

reduce the number of 
synchronization steps to 
absolute minimum

larger tiles can be 
effectively used
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New elements of parallel design for  the 
non-iterative CR-EOMCCSD(T) method

Use of Global Arrays (GA) to implement a distributed 
memory model

Basic challenges for Non-Iterative CR-EOMCCSD(T) 
method

Local memory requirements: (tilesize)4 (EOMCCSD) vs. 
M*(tilesize)6 (CR-EOMCCSD(T))

Implementation improvements
Two-fold reduction of local memory use : 2*(tilesize)6 

New algorithms which enable the decomposition of six-
dimensional tensors
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Scalability of the 
triples part of the 
CR- EOMCCSD(T) 
approach for the 
FBP-f-coronene 
system in the AVTZ 
basis set. Timings 
were determined 
from calculations 
on the Jaguar Cray 
XT5 computer 
system at NCCS.

Scalability of the non-iterative EOMCC 
code

94 %parallel efficiency using 210,000 cores
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Multireference CC methods

Multireference CC methods in NWChem 
(next release)

Strongly correlated excited states

Implemented MRCC approaches

Brillouin-Wigner MRCCSD

Mukherjee Mk-MRCCSD 
approach

State-Universal MRCCSD (under 
testing)

Perturbative triples corrections 
MRCCSD(T)

Novel paralellization strategies based 
on the processor groups

Demonstrated scalability of MRCCSD 
across 24,000 cores
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Multireference CC methods

)()()( )(m
mmmmm  TSDHTH effeff +=

K. Bhaskaran-Nair, J. Brabec, J. Pittner, H.J.J. van Dam, E. Apra, K. Kowalski,

JCP (accepted).

Numerical complexity   M  N7

Scalability    M  (scalability of the
CCSD(T) approach)

Improve the quality of the 
MRCCSD approaches

Counteract the intruder-state 
problem

GPU implementations of the MRCCSD(T)
approaches are currently tested 



Questions?
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