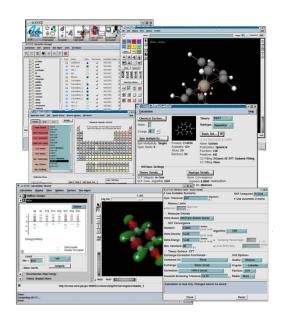


Basic introduction of NWChem software

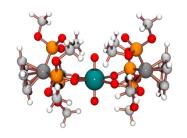
Background


NWChem is part of the Molecular Science Software Suite

- Designed and developed to be a highly efficient and portable Massively Parallel computational chemistry package
- Provides computational chemistry solutions that are scalable with respect to chemical system size as well as MPP hardware size

NWChem Overview

- Originally designed for parallel architectures
 - Scalability to 10,000's of processors (partly even to 100,000)
- Emphasis on modularity, portability, and integration
- Portable runs on a wide range of computers
 - Supercomputer to Mac or PC with Windows
 - Now runs efficiently on IBM BlueGene, Cray XT, InfiniBand
- Uses Global Arrays/ARMCI for parallelization
- NWChem 6.1 is open-source and freely available



NWChem Science Capabilities

- Provides major modeling and simulation capability for molecular science
 - Broad range of molecules, including biomolecules, nanoparticles and heavy elements
 - Electronic structure of molecules (non-relativistic, relativistic, ECPs, first and second derivatives)
 - Solid state capability (DFT plane-wave, CPMD)
 - Molecular dynamics, molecular mechanics
- World-wide distribution
 - 70% is academia, rest government labs and industry
- About 140/year publications citing NWChem

NWChem's core developer team

Bert de Jong Team lead Properties/Relativity

Karol Kowalski High accuracy

Niri Govind
Density functional
theory

Ken Lopata EMSL Wiley Postdoc

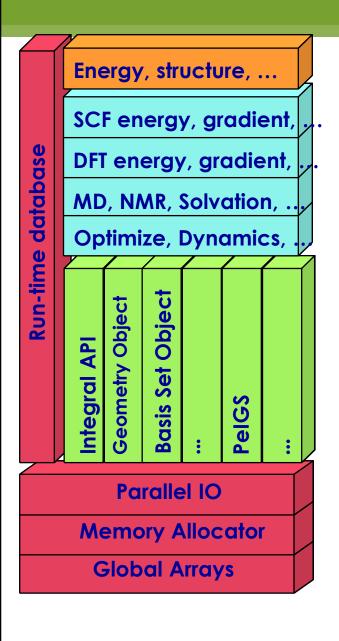
Eric Bylaska
Plane wave methods

Edoardo Aprà DFT & HPC

Marat Valiev QM/MM

Huub van Dam DFT/HPC

NWChem capabilities overview


- NWChem brings a full suite of methodologies to solve large scientific problems
 - Gaussian-based DFT/TDDFT
 - Ground & Excited States, Optimization, Properties (NMR, Electric field gradient, linear response,...)
 - Plane wave based DFT
 - Car-Parinello MD (CPMD), Band Structure, Optimization, etc.
 - ◆ High Accuracy Methods → MP, CC, EOMCC
 - Ground & Excited States
 - Molecular Dynamics, Molecular Mechanics
 - ◆ Integrated Methodologies → QM/MM
 - ♦ Scripting → Python

NWChem Structure

Generic Tasks

Molecular
Calculation
Modules

Molecular Modeling Toolkit

Molecular
Software
Development
Toolkit

- Object-oriented design
 - abstraction, data hiding, APIs
- Parallel programming model
 - non-uniform memory access, Global Arrays, MPI
- Infrastructure
 - GA, Parallel I/O, RTDB, MA,
- Program modules
 - communication only through the database
 - persistence for easy restart

Structure of GA

Application programming language interface

Fortran

С

C++

Python

Global Arrays and MPI are completely interoperable Code can contain calls to both

libraries.

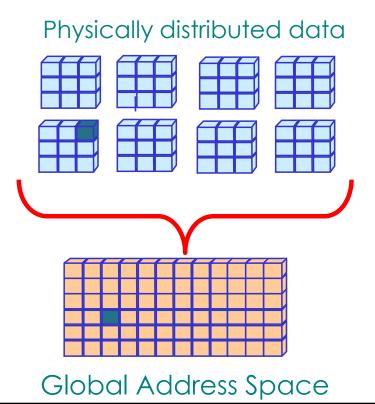
Message Passing

Global operations

ARMCI portable 1-sided communication put,get, locks, etc

system specific interfaces threads, IB, Portals, DCMF, Gemini, MT-MPI, ...

distributed arrays layer


memory management, index translation

Global Arrays

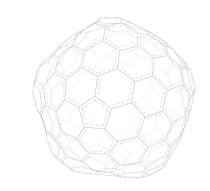
- **Distributed dense arrays** that can be accessed through a shared memory-like style
- High level abstraction layer for the application developer (that's me!)
- One-sided model = no need to worry and send/receive

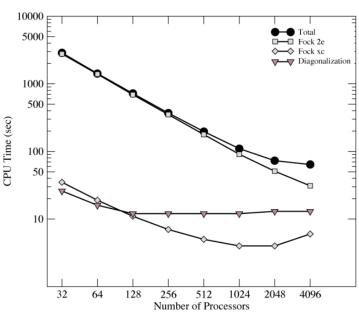
single, shared data structure/ global indexing

e.g., access A(4,3) rather than buf(7) on task 2

NWChem: Gaussian DFT (1)

- Gaussian based DFT → Finite systems (molecules, clusters, nanostructures)
 - Wide range of local and non-local exchange-correlation functionals
 - Traditional xc functionals
 - Wide range of hybrid functionals (B3LYP, PBE0, BeckeH&H...)
 - HF Exchange
 - Meta-GGA functionals
 - Minnesota functionals (M05, M06)
 - SIC and OEP
 - Range separated functionals
 - DFT + D implementation (long-range empirical vdW)
 - Double hybrid functionals
 - Spin-orbit DFT
 - ECP, ZORA, DK
 - Constrained DFT
 - ◆ TDDFT for excited states → Optical spectroscopy
 - Various properties (NMR, Linear response,...)



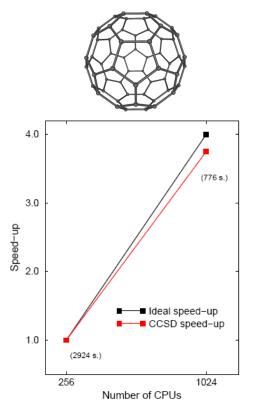


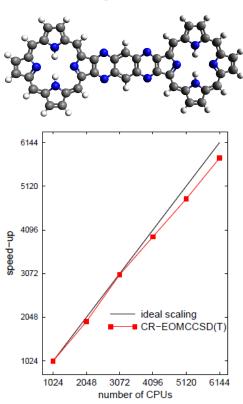
NWChem: Gaussian DFT (2)

- Calculation on C₂₄₀
 - PBE0 functional, 6-31G*
 - Direct integral evaluation
 - Size 3600 basis functions
- Timings for different components of the Kohn-Sham matrix construction
 - Fock 2e two electron integrals
 - Fock xc the DFT contribution
 - Diagonalization eigenvector solve
- Scalability limited by diagonalization
- Fock_2e cost can be dramatice reduce by using Coulomb-fitting

NWChem: High Accuracy Methods (1)

- Coupled Cluster
 - Closed shell coupled cluster [CCSD and CCSD(T)]
 - Tensor contraction engine (TCE)
 - Spin-orbital formalism with RHF, ROHF, UHF reference
 - CCSD,CCSDT, ...
 - CCSD(T), CR-CCSD(T), ...
 - EOMCCSD,EOMCCSDT
 - Linear response CC (polarizabilities, hyperpolarizabilities)
 - Active-space CCSDt/EOMCCSDt

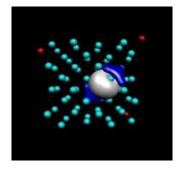



NWChem: High Accuracy Methods (2)

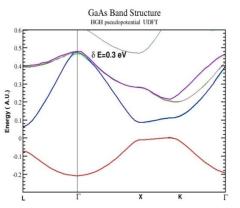
Extensive development of scalable algorithms

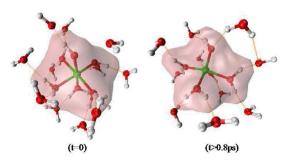
CCSD calculation of C_{60} (1080 basis set functions)

CR-EOMCCSD(T) calculation of the Porphyrin dimer linked by a tetraazaanthracene bridge (P₂TA)



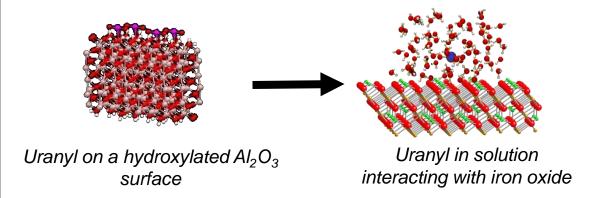
NWChem: Plane wave (1)

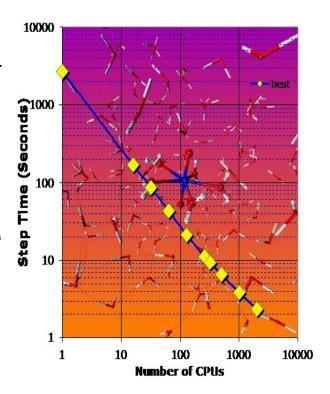



- Plane wave density functional theory
 - Gamma point pseudopotential and projector augmented wave
 - Band structure (with spin-orbit ZORA)
 - Extensive dynamics functionality with Car-Parrinello
 - AIMD QM/MM molecular dynamics, e.g. SPC/E,CLAYFF solid state MD
 - Various exchange-correlation functionals
 - LDA, PBE96, PBE0, B3LYP
 - Exact exchange
 - SIC and OEP

Spin-Orbit splitting in GaAs

Car-Parrinello provides evidence for five-coordinate Al(H₂O)₄OH²⁺ Swaddle et al, **Science**, **2005**

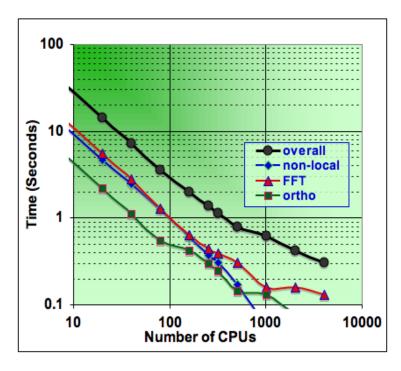


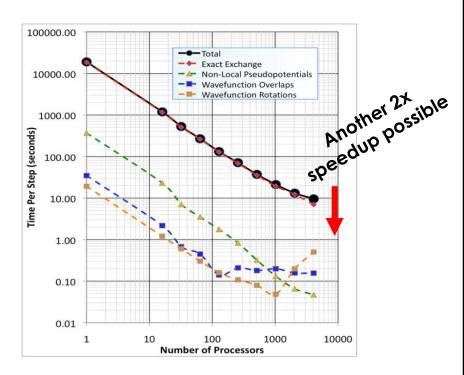


NWChem: Plane wave (2)

- Can handle charged systems
- A full range of pseudopotentials and a pseudopotential generator
- A choice of state-of-the-art minimizers
- Can also do plane-wave QM/MM

Car-Parrinello plane wave performance, PBE96 GGA Functional, -300 K thermostat, 0.121 fs time step, 122 water molecules-15.6 Å box

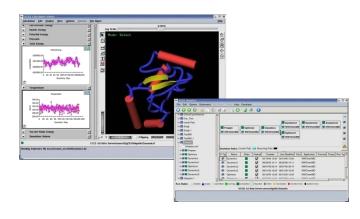


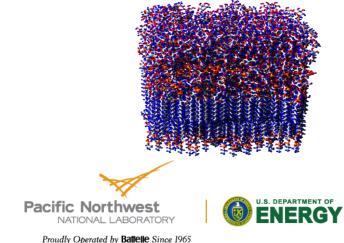

NWChem: Plane wave (3)

- Extensive work done to develop parallel plane wave algorithm for hybrid-DFT solvers
 - Results below obtained on NERSCs Franklin machine

DFT calculation on $Nb_{10}O_{28}^{6-}$ O(Ne)

Hybrid DFT calculation on 80 atom cell of hematite— O(Ne*Ne)





NWChem: Molecular Dynamics

- Molecular dynamics
 - Charmm and Amber force fields
 - Various types of simulations:
 - Energy minimization
 - Molecular dynamics simulation including ab initio dynamics
 - Free energy calculation
 - Multiconfiguration thermodynamic integration
 - Electron transfer through proton hopping (Q-HOP), i.e. semi-QM in classical MD
 - Implemented by Volkhard Helms group, University of Saarland, Germany
 - Set up and analyze runs with ECCE

NWChem: Hybrid QM/MM

- Seamless integration of molecular dynamics with Coupled Cluster and DFT
 - Optimization and transition states
 - QM/MM Potential of Mean Force
 - Modeling properties at finite temperature
 - Excited States with EOMCC, TDDFT
 - Polarizabilities with linear response CC
 - NMR chemical shift with DFT
- QM/MM for pathways
 - NEB-QM/MM approach for Reaction Pathway Calculations
 - Free energy calculation

NWChem: other functionality

- Other functionality available in NWChem
 - NMR shielding and indirect spin-spin coupling
 - COSMO
 - ONIOM
 - Relativity through spin-orbit ECP, ZORA, and DK
 - Electron transfer
 - Vibrational SCF and DFT for anharmonicity
 - Module for dynamic nucleation theory Monte Carlo
 - Interface with VENUS for chemical reaction dynamics
 - Interface with POLYRATE, Python
 - Interface with NBO

NWChem Input Basics

Minimal input (all defaults)

```
geometry
n 0.00 0.00 0.00
n 0.00 0.00 1.08
end
```

n library cc-pvdz end

task scf

 \blacksquare Performs a closed-shell SCF on the N₂ molecule

Geometry Input: Units

Input can be in Angstrom or atomic units

```
geometry # units are in angstroms

C 0 0 0

H 0 0.9885 -0.4329

H 0 -0.9885 0.4329

end
```

OR

```
geometry units au # change units to a.u.

C 0 0 0

H 0 1.868 -0.818

H 0 -1.868 0.818

end
```


Geometry Input: Symmetry

 \blacksquare Water molecule with C_{2v} symmetry

```
geometry units au #input using symmetry C 0 0 0 H 0 1.868 -0.818 symmetry c2v end
```

Arr C₆₀ with I_h symmetry

```
geometry #bonds = 1.4445 and 1.3945 Angstrom
symmetry Ih
c -1.2287651 0.0 3.3143121
end
```


Geometry Input: autosym and autoz

- By default NWChem will:
 - Attempt to find symmetry if none is specified
 - Attempt to build a z-matrix from cartesian coordinates (for the geometry optimization)
 - Center the molecule in the reference frame

```
geometry noautoz noautosym nocenter
C 0 0 0
H 0 0.9885 -0.4329 #Angstroms
H 0 -0.9885 0.4329
end
```


Geometry Input: zmatrix

Geometry can be specified using a z-matrix format

```
geometry
    zmatrix
    O
    H1 O 0.95
    H2 O 0.95 H1 108.0
    end
end
```

Distances and angles can be specified with variables too (see documentation)

Geometry Input: zmatrix

Distances and angles can be specified with variables

```
geometry
zmatrix
O
H1 O doh
H2 O doh H1 ahoh
variables
ahoh 108.0
doh 0.95
end
end
```


Geometry Input: zcoord

Forcing internal coordinates

```
geometry
      0.0000E+00 0.0000E+00 0.0000E+00
 Н
      -0.9436E+00 -0.8807E+00 0.7319E+00
      0.7373E+00 -0.8179E+00 -0.9932E+00
 н
      -0.7835E+00 0.1038E+01 -0.7137E+00
      0.1699E+01 0.1556E+01 0.1695E+01
      0.7715E+00 0.2377E+01 0.2511E+01
 Н
      0.2544E+01 0.6805E+00 0.2539E+01
      0.2514E+01 0.2381E+01 0.7713E+00
end
### fix the Si-Si distance to 4.0 angstroms ###
geometry adjust # initial state
 zcoord
  bond 1 4 4.00 r constant
 end
end
```


Geometry Input: system

Crystal lattice, used in plane wave code, for 3-D periodic systems (crystals)

```
geometry units angstroms center noautosym noautoz print
 system crystal
  lat a 3.625d0
                 #diamond
  lat b 3.625d0
  lat c 3.625d0
  alpha 90.0d0
  beta 90.0d0
  gamma 90.0d0
 end
     -0.50000d0 -0.50000d0 -0.50000d0
     0.0000d0
                0.0000d0 -0.5000d0
     0.0000d0 -0.5000d0 0.0000d0
     -0.50000d0 0.00000d0 0.00000d0
     -0.25000d0 -0.25000d0 -0.25000d0
     0.25000d0 0.25000d0 -0.25000d0
     0.25000d0 -0.25000d0
                           0.25000d0
     -0.25000d0 0.25000d0 0.25000d0
end
```


Basis Set Input: Using libraries

Atoms can be defined by symbol and name

```
basis
O library cc-pvdz
H library cc-pvdz file /usr/d3g681/nwchem/libraries/
end
```

* can be used to state that all atoms in the system should be using the same basis set type

```
* library cc-pvdz
end
```


Basis Set Input: Explicit basis sets

Basis set input can be done with exponents and coefficients

```
basis spherical
 Hs
  13.0100 0.019685
  1.9620 0.137977
  0.4446 0.478148
  0.1220 0.501240
H s
  0.1220 1.000000
Hp
  0.7270 1.000000
end
```


Basis Set Input: Explicit basis sets

Libraries and explicit input can be used together

```
basis spherical* library cc-pvdzH p0.007270 1.000000end
```


Task Input

Task directive tells NWChem what it should do

task scf task scf energy # default is energy

task dft optimize task dft saddle task ccsd frequencies

task pspw optimize

task md dynamics

Task Input

Tasks are preformed in sequence as listed in input

task scf energy

task dft optimize ignore # ignore if failed, go to next task task dft saddle task ccsd frequencies

Restarting a calculation

To restart NWChem will need certain files, that should be saved in permanent directory

```
start ne
permanent_dir /users/me
geometry
ne 0 0 0
end
basis
ne library cc-pvdz
end
task scf
```

```
restart ne
permanent_dir/users/me
scf
thresh 1e-8
end
task scf
```

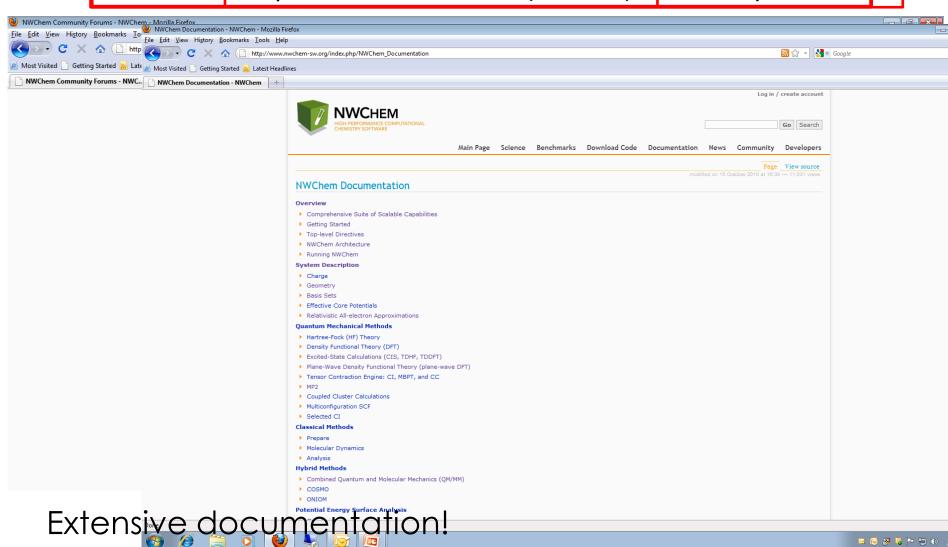

Setting memory and charge keyword

If NWChem fails with an error asking for more memory, you can set it explicitly

memory 2400 mb

- Remember, memory is per processor!
- By default, molecules have a neutral charge (0)

charge -1



NWChem web pages

Deteritediation interestate this interest the contract of the

NWChem website

http://www.nwchem-sw.org

NWChem Mailing List

- Archive at http://www.emsl.pnl.gov/docs/nwchem/nwchem-support/
- To subscribe mail majordomo@emsl.pnl.gov subscribe nwchem-users
- To post mail nwchem-users@emsl.pnl.gov

Questions ...?

