

NWChem: Planewave Density Functional Theory

Outline

- Overview of Plane-Wave Density Functional Module in NWChem
 - NWPW capabilities
 - Plane-Wave Basis
- Basic examples:
 - Geometry optimization for S₂ molecule
 - Calculations for diamond
 - Optimizing the unit cell and geometry for an 8 atom supercell of diamond with PSPW
 - Optimizing the unit cell for an 8 atom supercell of diamond with BAND
- AIMD Simulations
 - Car-Parrinello Simulation of S₂ molecule

Plane-Wave Density Functional Theory (NWPW module) in NWChem

- Highly scalable
- CG, limited memory BFGS, and RMM-DIIS minimization
- Gamma and Band structure capabilities
- Car-Parrinello and Born-Oppenheimer(extended Lagrangian dynamics)
- Constant energy and constant temperature Car-Parrinello
- Fixed atoms in cartesian, SHAKE constraints, translation contraints, and rotation constraints, Metadynamics, PMF
- Hamann, Troullier-Martins, and HGH norm-conserving pseudopotentials with optional semicore corrections
 - Interface for CPI and TETER formats
- PAW
- LDA and PBE96 exchange-correlation potentials (spin-restricted and unrestricted) SIC, pert-OEP, Hartree-Fock and Hybrid Functionals (restricted and unrestricted)
- Fractional occupation,
- Geometry/unitcell optimization, frequency, transition-state searches
- AIMD/MM
- Wannier analysis
- Wavefunction, density, electrostatic, Wannier, ELF plotting

Gaussian DFT Versus Plane-Wave DFT

Gaussian Basis Set

- Parallel Efficient
- All-Electron
 - Core regions included in calculation
 - First row transition metals can readily be calculated
- Ab Initio MD expensive
 - Pulay forces
- Different basis sets for molecules and solids

PlaneWave Basis Set

- Parallel Efficient
- Requires pseudopotentials to be efficient
 - Not all-electron
 - Core region not included
 - First row transition metals are difficult
 - Norm-conserving pseudopotentials of the nodeless 3d states require large plane-wave basis sets
 - Significant overlap between the valence 3d states and 3s and 3p states
- Efficient Ab Initio MD
 - ◆ Car-Parrinello
- Same basis set for molecules and solids

System is assumed to be placed inside a unit cell defined by the unit vectors ρ

The volume of the unit cell is

$$\Omega = \begin{bmatrix} \rho & \rho & \rho \\ a_1, a_2, a_3 \end{bmatrix} = \begin{bmatrix} \rho & \rho & \rho \\ a_1 \cdot (a_2 \times a_3) \end{bmatrix}$$

$$\begin{array}{ccc} \rho & \rho & \rho \\ r \rightarrow & r + R \end{array}$$

where

$$n_1, n_2, n_3 = integers$$

$$u_{n}(r) = \frac{1}{\sqrt{\Omega}} \sum_{G} \tilde{\psi}_{n}(G) e^{iG \cdot r}$$
 Plane-wave Expansion

Since are system is periodic our plane-wave expansion must consist of only the plane-waves $e^{iG \cdot r}$ that have the periodicity of the lattice,

We can determine these plane-waves from the following constraint

$$e^{iG\cdot(r+R)} = e^{iG\cdot r}$$

It is easy to show from the periodicity constraint that the wave-vectors can be defined in terms of the following reciprocal lattice vectors

$$\begin{array}{l} \rho \\ b_1 = 2\pi \, \frac{a_2 \times a_3}{\Omega} \\ \\ \rho \\ b_2 = 2\pi \, \frac{a_3 \times a_1}{\Omega} \\ \\ \rho \\ b_3 = 2\pi \, \frac{a_1 \times a_2}{\Omega} \end{array}$$
 Reciprocal lattice vectors

Wave-vectors that satisfy the periodicity of the lattice

$$\begin{matrix}
\rho \\
G_{i_1 i_2 i_3} = \left(i_1 - \frac{N_1}{2}\right) b_1 + \left(i_2 - \frac{N_2}{2}\right) b_2 + \left(i_3 - \frac{N_3}{2}\right) b_3
\end{matrix}$$

The exact form of the plane-wave expansion used in plane-wave code is

$$u_{n}(r) = \frac{1}{\sqrt{\Omega}} \sum_{i_{1}=1}^{N_{1}} \sum_{i_{2}=1}^{N_{2}} \sum_{i_{3}=1}^{N_{3}} \widetilde{u}_{n}(G_{i_{1}i_{2}i_{3}}^{\rho}) e^{iG_{i_{1}i_{2}i_{3}}^{\rho} \cdot r}$$

The upper-limits of the summation (N_1, N_2, N_3) control the spacing of the real-space grid

There is a further truncation of plane wave expansion in plane-wave calculations. Namely, only the reciprocal lattice vectors whose kinetic energy lower than a predefined maximum cutoff energy,

$$\frac{1}{2} \left| \frac{\rho}{G} \right|^2 < E_{cut} \qquad \text{Wavefunction Cutoff}$$
Energy

are kept in the expansion, while the rest of the coefficients are set to zero. Besides reducing the computational load, this truncation strategy limits the effects of unit cell orientation on the outcome of the calculation.

DFT calculations rarely use a completely converged planewave basis, but that convergence is usually unnecessary. However, incomplete basis set calculations using different cell sizes require that each calculation use the same E_{cut}

Since the density is the square of the wavefunctions, it can vary twice as rapidly. Hence for translational symmetry to be formally maintained the density, which is also expanded using plane-waves

$$\rho(r) = \sum_{n} u_{n}^{*}(r)u_{n}(r) = \sum_{G} \tilde{\rho}(G)e^{iG \cdot r}$$

Should contain 8 times more plane-waves than the corresponding wavefunction expansion

$$\frac{1}{2} \left| \frac{\rho}{G} \right|^2 < 4 E_{cut}$$
 Density Cutoff Energy

Often the Density cutoff energy is chosen to be the same as the wavefunction cutoff energy – This approximation is known as dualling.

In solid-state systems, the plane-wave expansion given by

$$u_{n}\binom{\rho}{r} = \frac{1}{\sqrt{\Omega}} \sum_{G} \widetilde{u}_{n} \binom{\rho}{G} e^{iG \cdot r}$$
 \(\text{\text{\$-point Plane-wave}} \)
Expansion

is not complete. Based on the fact that the translation operators T(R) are compatible with the Hamiltonian of the system, [T(R),H]=0, and that not all eigenkets of T(R) can be expanded strictly in terms of the set of eigenkets $|u_n>$. The wavefunction expansion can be generalized

$$\begin{vmatrix} \rho \\ k, n \end{vmatrix} = \begin{vmatrix} \rho \\ k \end{vmatrix} |u_n|$$
 or $\psi_{k,n}(r) = e^{ik \cdot r} u_n(r)$ Bloch's Theorem

Where k are all the allowed wave-vectors in the primitive cell of the reciprocal lattice.

Minimal Input Example

Minimal input (all defaults)

```
geometry
Be 0 0 0
end
task pspw
```

- Performs a closed-shell N³ DFT calculation using the local density approximation on the beryllium atom.
- Important Keywords: simulation_cell, vectors, XC, tolerances

Example Input: \$2 molecule LDA geometry opt.


```
echo
title "total energy of s2-dimer LDA/30Ry with PSPW method"
scratch_dir./scratch
permanent_dir ./perm s
start s2-pspw-energy
geometry
$ 0.0 0.0 0.0
$ 0.0 0.0 1.88
end
nwpw
 simulation cell
   SC 20.0
 end
 cutoff 15.0
 mult 3
 xc Ida
 Imbfgs
end
task pspw energy
task pspw optimize #optimize geometry
```


The energies from the simulation


```
... == Summary Of Results ==
```

number of electrons: spin up= 7.00000 down= 5.00000 (real space)

total energy : -0.2041363137E+02 (-0.10207E+02/ion) total orbital energy : -0.4944372503E+01 (-0.41203E+00/electron) hartree energy : 0.1680529987E+02 (0.14004E+01/electron) exc-corr energy : -0.4320620600E+01 (-0.36005E+00/electron)

ion-ion energy : 0.8455644190E-02 (0.42278E-02/ion)

kinetic (planewave) : 0.7529965882E+01 (0.62750E+00/electron) V_local (planewave) : -0.4506036741E+02 (-0.37550E+01/electron) V_nl (planewave) : 0.4623635248E+01 (0.38530E+00/electron) V_Coul (planewave) : 0.3361059973E+02 (0.28009E+01/electron) V_xc. (planewave) : -0.5648205953E+01 (-0.47068E+00/electron)

Virial Coefficient : -0.1656626150E+01

orbital energies:

-0.2001309E+00 (-5.446eV) -0.2001309E+00 (-5.446eV) -0.3294434E+00 (-8.965eV) -0.2991148E+00 (-8.139eV) -0.3294435E+00 (-8.965eV) -0.2991151E+00 (-8.139eV) -0.3582269E+00 (-9.748eV) -0.3352434E+00 (-9.123eV)

-0.5632339E+00 (-15.326eV) -0.5246249E+00 (-14.276eV)

-0.7642738E+00 (-20.797eV) -0.7413909E+00 (-20.174eV)

Total PSPW energy: -0.2041363137E+0

title "Diamond 8 atom cubic cell - geometry and unit cell optimization" echo

```
permanent_dir ./perm
scratch dir ./scratch
start diamond
memory 950 mb
#**** Enter the geometry using fractional coordinates ****
geometry center noautosym noautoz print
system crystal
  lat a 3.56d0
  lat b 3.56d0
  lat_c 3.56d0
  alpha 90.0d0
  beta 90.0d0
  aamma 90.0d0
 end
 C -0.50000d0 -0.50000d0 -0.50000d0
 C 0.0000d0 0.0000d0 -0.5000d0
 C 0.0000d0 -0.5000d0 0.0000d0
 C -0.50000d0 0.00000d0 0.00000d0
 C -0.25000d0 -0.25000d0 -0.25000d0
 C 0.25000d0 0.25000d0 -0.25000d0
 C 0.25000d0 -0.25000d0 0.25000d0
 C -0.25000d0 0.25000d0 0.25000d0
end
```



```
• • •
nwpw
 ewald rcut 3.0
 ewald ncut 8 #The default value of 1 needs to be increased for small cells
 Imbfgs
 xc pbe96
end
driver
 clear
 maxiter 40
end
set nwpw:cif_filename diamond.opt # create a CIF file containing
optimization history
set includestress .true.
                            # this option tells driver to optimize the unit cell
task pspw optimize ignore
```


Optimization converged

St	ер	Energy	Delta	E G	3max (Grms)	(rms)	(max	Wall	time
@	6	-45.076883			0.00037 ok	_	0.0000	2 0.00	0003	174.5

Geometry "geometry" -> "geometry" ------

Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.)

No.	Tag	Charge	e X	Y Z	_
1 C 2 C 3 C 4 C 5 C 6 C		6.0000 6.0000 6.0000 6.0000 6.0000	1.82723789 0.00000857 -0.00000584 1.82712018 2.74074195 0.91366407	1.82729813 -0.00006053 1.82706061 0.00006354 2.74072805 0.91370055	1.82705440 1.82730027 0.00002852 -0.00002544 2.74088522 2.74064976
7 C 8 C		6.0000 6.0000	0.91351181 2.74078843	2.74080771 0.91348115	0.91352917 0.91365446

Lattice Parameters

lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.)

```
a1=< 3.654 0.000 0.000 >
a2=< 0.000 3.654 0.000 >
a3=< 0.000 0.000 3.654 >
a= 3.654 b= 3.654 c= 3.654
alpha= 90.000 beta= 90.000 gamma= 90.000
omega= 48.8
```

reciprocal lattice vectors in a.u.

```
b1=< 0.910 0.000 0.000 > b2=< 0.000 0.910 0.000 > b3=< 0.000 0.000 0.910 >
```


		====			
	internuclear distances				
cente	r one		center two atomic units angstroms		
5 C 6 C		1 C 1 C	2.99027 1.58238 2.99027 1.58238		
6 C	į	2 C	2.99027 1.58238		
7 C		1 C	2.99026 1.58238		
7 C		3 C	2.99027 1.58238		
8 C		1 C	2.99027 1.58238		
8 C	ĺ	4 C	2.99027 1.58238		

number of included internuclear distances:

internuclear angles

center 1	l	center 2	center 3	degrees
5 C	1 C	60	 	109.46
5 C	1 C	70		109.48
5 C	1 C	80		109.48
6 C	1 C	70		109.47
6 C	1 C	80		109.46
7 C	1 C	80		109.48
1 C	6C	20		109.48
1 C	7 C	3 (109.47
1 C	8 C	40		109.47

number of included internuclear angles:

The C-C bond distance after the geometry optimization is 1.58 Angs. and agrees very well with the experimental value of 1.54 Angs.. Another quantity that can be calculated from this simulation is the cohesive energy. The cohesive energy of a crystal is the energy needed to separate the atoms of the solid into isolated atoms, i.e.

$$E_{coh} = -\left(E_{solid} - \sum_{a} E_{atom}^{a}\right)$$

where E_{solid} is the energy of the solid and are the energies of the isolated atoms. In order to calculate the cohesive energy the energy of an isolated carbon atom at the same level of theory and cutoff energy will need to be calculated.

Using this energy and energy of diamond the cohesive energy per atom is calculated to be

$$E_{coh} = -(-45.07688304au/8 - (-5.421213534au)) = 0.2133968au = 5.8eV$$

This value is substantially lower than the experimental value of 7.37eV! It turns out this error is a result of the unit cell being too small for the diamond calculation (or too small of a Brillioun zone sampling). In the next section, we show how increasing the Brillouin zone sampling reduces the error in the calculated cohesive energy.

Optimizing the unit cell for an 8 atom supercell of diamond with **BAND**


```
title "Diamond 8 atom cubic cell - geometry and unit cell optimization"
Echo
permanent_dir./perm
scratch_dir ./scratch
start diamond-band
memory 1950 mb
#**** Enter the geometry using fractional coordinates ****
geometry center noautosym noautoz print
system crystal
  lat a 3.58d0
  lat b 3.58d0
  lat_c 3.58d0
  alpha 90.0d0
  beta 90.0d0
  gamma 90.0d0
 end
 C -0.50000d0 -0.50000d0 -0.50000d0
 C 0.0000d0 0.0000d0 -0.5000d0
 C 0.0000d0 -0.5000d0 0.0000d0
 C -0.50000d0 0.00000d0 0.00000d0
 C -0.25000d0 -0.25000d0 -0.25000d0
 C 0.25000d0 0.25000d0 -0.25000d0
 C 0.25000d0 -0.25000d0 0.25000d0
 C -0.25000d0 0.25000d0 0.25000d0
end
set includestress .true. # option tells driver to optimize the unit cell
set nwpw:zero forces .true. # option zeros the forces on the atoms--> only lattice parameters optimized
```


Optimizing the unit cell for an 8 atom supercell of diamond with BAND


```
nwpw
ewald rcut 3.0
 ewald_ncut 8 #The default value of 1 needs to be increased
Imbfgs
xc pbe96
end
#1x1x1 k-point mesh
nwpw
monkhorst-pack 1 1 1
end
set nwpw:cif_filename diamond111.opt
driver; clear; maxiter 40; end; task band optimize ignore
#2x2x2 k-point mesh
nwpw
 monkhorst-pack 222
end
set nwpw:cif_filename diamond222.opt
driver; clear; maxiter 40; end; task band optimize ignore
#3x3x3 k-point mesh
nwpw
 monkhorst-pack 3 3 3
end
set nwpw:cif filename diamond333.opt
driver; clear; maxiter 40; end; task band optimize ignore
```


Optimizing the unit cell for an 8 atom supercell of diamond with BAND


```
#4x4x4 k-point mesh
nwpw
monkhorst-pack 4 4 4
end
set nwpw:cif_filename diamond444.opt
driver; clear; maxiter 40; end; task band optimize ignore

#5x5x5 k-point mesh
nwpw
monkhorst-pack 5 5 5
end
set nwpw:cif_filename diamond555.opt
driver; clear; maxiter 40; end; task band optimize ignore
```


Optimizing the unit cell for an 8 atom supercell of diamond with BAND

Parallel timings for AIMD simulation of $UO_2^{2+}+122H_2O$

- Development of algorithms for AIMD has progressed in recent years
 - 0.1-10 seconds per step can be obtained on many of today's supercomputers for most AIMD simulations.
 - However, large numbers of cpus are often required
 - ◆ 5000 cpus * 10 days → 1.2 million cpu hours
 - Very easy to use up 1-2 million CPUs hours in a single simulation

Conventional MD versus AIMD versus AIMD/MM (QM/MM)

Conventional molecular dynamics	Ab-initio molecular dynamics	Combined ab-initio molecular dynamics/molecular dynamics
Empirical, usually two- body potentials, Difficult to treat reactions	Potential obtained from Schrodinger equation, includes all-body and electronic behavior	Potential in "selected region" obtained from Schrodinger equation, includes all-body and electronic behavior
Empirical potentials parameterized for a small range of PT	Equally applicable under all conditions	Empirical potentials parameterized for a small range of PT
10 ⁵ particles no problem	600 particles with significant dynamics	1000's of particles with significant dynamics
10 ³ ps no problem	10's of ps difficult	10's of ps easy
Can be performed on workstationssupercomp uters	Still needs supercomputers	Can be performed on workstationssupercomputers

Proudly Operated by Ballelle Since 1965

Molecular Dynamics Loop

(1) Compute Forces on atoms, $F_I(t)$ for current atomic configuration, $R_I(t)$

$$F_{I}(t) \leftarrow$$

- calculate using classical potentials
 (can do large systems and long simulation times)
- calculate directly from first principles by solving many-electron Schrödinger equations (can treat very complex chemistry, but simulations times are very long)

- (2) Update atom positions using Newtons laws
- $R_{l}(t+\Delta t) \leftarrow 2*R_{l}(t) R_{l}(t-\Delta t) + \Delta t^{2}/(M_{l})*F_{l}(t)$

Pitfalls of Ab Initio Molecular Dynamics

- Expensive?
- Energy Conservation Born-Oppenheimer Error dE/dR = (☆E/ ☆c)(dc/dR) + ☆ E/ ☆R
 - "Attempts to implement such a dynamical scheme in a straightforward fashion prove to be unstable. Specifically, the atomic dynamics do not conserve energy unless a very high degree of convergence in the electronic structure calculation is demanded. If this is not done the electronic system behaves like a heat sink or source....."
 - -- Remler and Madden

$^3\Sigma_{\rm g}$ S₂ Energy Surface from QMD Simulation

Car-Parrinello Dynamics

- Car and Parrinello suggested that ionic dynamics could be run in parallel with a ficticious electronic dynamics via the following Lagrangean $L = \sum_{i=1}^{\infty} \mu \left\langle \psi_{i}^{k} \middle| \psi_{i}^{k} \right\rangle + \sum_{i=1}^{\infty} M_{i} R_{i}^{k^{2}} + E\left[\left\{\psi_{i}\right\}, \left\{R_{i}\right\}, \text{constraint} \right]$
- ► Amazingly these equations of motion result in a conservative ionic dynamics that is extremely close to the Born-Oppenheimer surface.
- The electronic system behaves quasi-adiabatically. That is the electronic system follows the ionic system and there is very little additional motion wandering away from the Born-Oppenheimer surface.

 Pacific Northwest NATIONAL LABORATORY

Basic features of ab-initio molecular dynamics

DFT Equations

$$H \psi_{i} = \varepsilon_{i} \psi_{i}$$

$$H \psi_{i}(\mathbf{r}) = \begin{pmatrix} -\frac{1}{2} \nabla^{2} + V_{i}(\mathbf{r}) + \hat{V}_{NL} + V_{H} [\rho](\mathbf{r}) \\ + (1 - \alpha) V_{x} [\rho](\mathbf{r}) + V_{c} [\rho](\mathbf{r}) \end{pmatrix} \psi_{i}(\mathbf{r}) - \alpha \sum_{j} K_{ij}(\mathbf{r}) \psi_{j}(\mathbf{r})$$

CP dynamics: Ion and wavefunction motion coupled. Ground state energy $\mu = 0$

$$\mu \psi_{i}^{\otimes} = H \psi_{i} - \sum_{i=1}^{N_{e}} \lambda_{ij} \psi_{j}$$

$$M_{I} \mathbf{R}_{I}^{\otimes} = \mathbf{F}_{I} \qquad \mathbf{F}_{I} = \sum_{i=1}^{N_{e}} \left\langle \psi_{i} \left| \frac{\partial H}{\partial \mathbf{R}_{I}} \right| \psi_{i} \right\rangle$$

Want to do this in ~1second per step

Plane-wave basis sets, pseudopotentials are used to solve PDE

Why do we need a second / EMSI

per step?

- Current ab-initio molecular dynamics simulations for 10 to 100 picoseconds can take several months to complete
- The step length in ab initio molecular dynamics simulation is on the order of 0.1...0.2 fs/step
 - 20 ps of simulation time → 200,000 steps

 - At 1 second per step → 2-3 days
 At 10 seconds per step → 23 days
 - At 30 seconds per step →70 days
 - \bullet 1 ns of simulation time \rightarrow 10,000,000 steps
 - ▶ at 1 second per step → 115 days of computing time
 - At 10 seconds per step → 3 years
 - At 30 seconds per step → 9 years
 - At 0.1 seconds per step → 11.5 days.

Cost of AIMD step

$$(1/2)\Delta\Psi + V_{ext}\Psi + V_{H}\Psi + V_{xc}\Psi + V_{x,exact}\Psi = E\Psi$$
$$\langle \Psi_i | \Psi_j \rangle = \delta_{ij}$$

 $N_e N_g$

$$(N_a N_g + N_g Log N_g + N_e N_g) + N_a N_e N_g$$

$$N_e N_g Log N_g + N_e N_g + 2N_g Log N_g + N_g + N_e N_g$$

$$N_e N_g Log N_g + N_e N_g$$

$$N_e(N_e+1)N_gLogNg$$

$$N_e^2 N_g + N_e^3$$

- Na=500, Ne=500, Ng=256^3
 - Ne*Ng=8.4e9
 - Ne*Ng*Log(Ng)=2.0e11
 - Na*Ne*Ng=4.2e12, Ne*Ne*Ng=4.2e12

N_a - number of atoms

N_e - number of electrons

 N_{α} - number of grid points

Remember we want to do this 100,000+ times

For hybrid-dft: A day of computation on the PNNL Chinook system

→ \$16K/ε

Example: S₂ molecule LDA Car-Parrinello Simulation


```
title "S2 MD LDA/30Ry"
start s2.md
geometry
$ 0.0 0.0 0.0
$ 0.0 0.0 1.95
end
pspw
 car-parrinello
  time_step 5.0
                  #Typically between 1 and 20
  fake_mass 600.0 #Typically between 300 and and 1500
  loop 10 100
 end
 cutoff 15.0
 mult 3
 Imbfgs
end
task pspw energy
task pspw car-parrinello
```


$^3\Sigma_g^-$ S₂ Energy Surface from Car-Parrinello EMSI

Pacific Northwest

Energy Conservation

Total Energy Conservation of triplet S2 simulation

Born-Oppenheimer Error

Questions?

