

## Relativity, Spectroscopy and the EMSL Basis Set Library







#### **Outline**



- Relativity
  - Intro into relativistic effects
  - Capabilities in NWChem to handle relativity
- Spectroscopy
  - NMR properties
  - Vibrational frequencies
- EMSL Basis Set Library

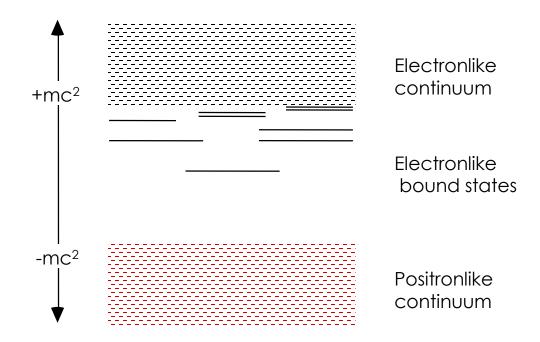




#### Quick introduction to relativity



- Dirac Hamiltonian instead of Schrödinger Hamiltonian
  - Includes description of positron states


$$\begin{pmatrix} V & c \sigma \cdot p \\ c \sigma \cdot p & V - 2 mc^{2} \\ 1 & 4 & 4 & 2 & 4 & 4 & 3 \end{pmatrix} \begin{pmatrix} \psi & L \\ \psi & s \end{pmatrix} = \varepsilon \begin{pmatrix} \psi & L \\ \psi & s \end{pmatrix}$$

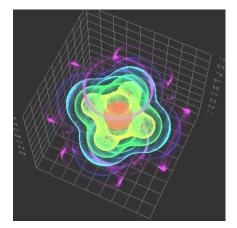
$$h \begin{pmatrix} D \\ i \end{pmatrix}$$

$$\hat{H} \begin{pmatrix} \Psi^L \\ \Psi^S \end{pmatrix} = E \begin{pmatrix} \Psi^L \\ \Psi^S \end{pmatrix}$$

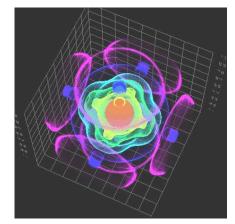
$$\hat{H} = \sum_{i}^{N} h_{i}^{D} + \frac{1}{2} \sum_{i \neq j}^{N} \left( \frac{1}{r_{ij}} - \frac{\left(\alpha_{i} \cdot \alpha_{j}\right)}{r_{ij}} \right)$$

Spectrum of electron in field of nucleus









#### **Effects of relativity**



- Scalar relativistic
  - Contraction and stabilization of s- and p-type orbitals
  - Expansion and destabilization of d- and f-type orbitals
- Spin-orbit splitting
  - Orbitals with angular momentum I > 0 split into subshells  $I \pm \frac{1}{2}$
  - Coupling between electronic states

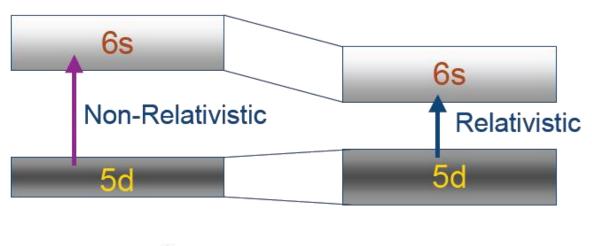


Non-relativistic



Relativistic

Electron density plot of the  $7\gamma_{6g}$ spinor in UF<sub>6</sub>






## Relativity in every day life

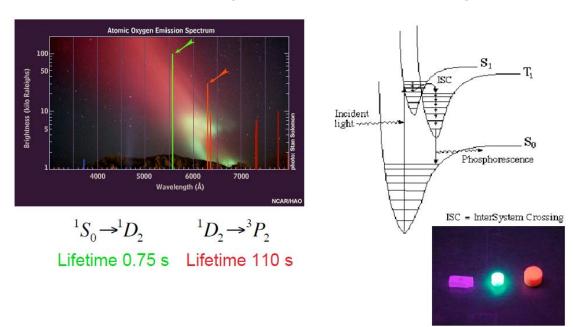


- Non-relativistic gold has silver color
  - Stabilization of s-band and destabilization d-band shifts absorption via d-s transition from UV to Vis










## Relativity in every day life



#### Phosphorescence

 Singlet-triplet transitions and surface crossings are allowed due to spin-orbit coupling, i.e. spin is not a good quantum number



Street lights work with "forbidden" spectroscopic transition <sup>3</sup>P<sub>1</sub>
 to <sup>1</sup>S<sub>0</sub>



## Relativity in NWChem



NWChem can handle both scalar and spin-orbit effects at the DFT level

task sodft energy

task sodft optimize

task sodft frequencies

- New capabilities under development include
  - Spin-orbit TDDFT for excited states
  - NMR properties (Autschbach, University of Buffalo, USA)





#### Effective core potentials: scalar



basis

U library crenbl\_ecp

O library aug-cc-pvdz

end

ecp

U library crenbl\_ecp

end

task dft optimize

# basis set associated with ECP

# effective core potential





## Manual input scalar ECP



| еср   |            |              |                                 |
|-------|------------|--------------|---------------------------------|
| O nel | ec 2       |              | # ecp replaces 2 electrons on O |
| O ul  | # d        |              |                                 |
| 1     | 80.0000000 | -1.60000000  |                                 |
| 1     | 30.0000000 | -0.40000000  |                                 |
| 2     | 1.0953760  | -0.06623814  |                                 |
| O s   | # s - d    |              |                                 |
| 0     | 0.9212952  | 0.39552179   |                                 |
| 0     | 28.6481971 | 2.51654843   |                                 |
| 2     | 9.3033500  | 17.04478500  |                                 |
| Ор    | # p - d    |              |                                 |
| 2     | 52.3427019 | 27.97790770  |                                 |
| 2     | 30.7220233 | -16.49630500 |                                 |
| end   |            |              |                                 |
|       |            |              |                                 |





## Spin-orbit coupling



In addition to scalar relativistic ECP you need to define a spin-orbit potential

```
ecp

u library stuttgart_rsc_1997_ecp

end

so

u p

2 9.06055606 14.90142409

u d

2 8.83183198 2.72712409

u f

2 7.01851629 0.65455772

end
```





#### All-electron methodologies



NWChem can handle both scalar and spin-orbit effects at the DFT level

```
relativistic
douglas-kroll on # Use Douglas-Kroll approximation
douglas-kroll dkh # Default is Douglas-Kroll-Hess
douglas-kroll dk3full # Third-order Douglas-Kroll
end
```

```
relativistic
zora on # zora approximation will be used
end
```

Note: You will need all-electron basis sets for ALL elements





#### Spectroscopy with NWChem



- NWChem has a suite of capabilities for calculating spectroscopic properties
  - NMR properties
    - Electric field gradient (expectation value)
    - Hyperfine coupling (expectation value)
    - Shielding (response property)
    - Spin-spin coupling (response property)
  - Electric polarizability and optical rotation (response property)
- Vibrational frequencies
- UV-Vis already covered earlier





#### NMR properties



#### Expectation values

```
property
efieldgrad # gets you the electric field gradient tensor
hyperfine # gets you the hyperfine coupling tensor
end
```

#### Response properties

```
property

shielding 2 12 # calculate shielding tensor for first two atoms spinspin 1 34 # calculate spin-spin coupling tensor between atoms 3 and 4

end
task property # tell NWChem to run the properties module
```





## Calculating vibrational frequencies



First optimize your molecule's geometry!!!!

```
driver
maxiter 20  # number of geometry optimization steps
tight  # tight convergence for floppy molecules
end
task dft optimize  # tell NWChem to do the optimization
```

- You can also optimize at the SCF, MP2, TDDFT, and coupled cluster level of theory
  - Optimize excited state geometries with TDDFT
  - Caution: Coupled cluster optimization will be done using numerical gradients and will be expensive





#### Masses and intensities



NWChem uses the most common masses for elements

```
freq
reuse
mass hydrogen 2.014101779
mass 3 3.021234
end
task scf frequencies

# Reuse Hessian
# Change the mass for H to D
```

- NWChem only calculates IR intensities
  - Raman intensities are coming soon





#### Frequencies output



- NWChem prints out two sets of frequencies
  - Raw normal modes
  - Projected normal modes with translations and rotations projected out
  - Use the projected normal modes!

| NORMAL MODE EIGENVECTORS IN CARTESIAN COORDINATES |                                                      |                                                        |                                                        |                                                        |                                                      |                                                         |  |
|---------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|--|
| (                                                 | (Projected Frequencies expressed in cm-1)            |                                                        |                                                        |                                                        |                                                      |                                                         |  |
|                                                   | 1                                                    | 2                                                      | 3                                                      | 4                                                      | 5                                                    | 6                                                       |  |
| P.Frequency                                       | 0.00                                                 | 0.00                                                   | 0.00                                                   | 0.00                                                   | 0.00                                                 | 0.00                                                    |  |
| 1<br>2<br>3<br>4<br>5                             | 0.00109<br>0.00970<br>0.00624<br>0.00596<br>-0.03405 | -0.01197<br>0.20350<br>-0.00875<br>-0.00529<br>0.13917 | 0.12020<br>-0.00123<br>-0.00516<br>0.11985<br>-0.00045 | -0.07402<br>0.00184<br>0.10368<br>-0.06716<br>-0.00078 | 0.01164<br>-0.02448<br>0.00269<br>0.00152<br>0.07045 | -0.00799<br>-0.00288<br>0.13042<br>-0.00732<br>-0.00172 |  |





#### Frequencies output: Eigenvalues



Normal mode frequencies output

| Norn | nal Eigenvalue | Project        | Projected Infra Red Intensities |                            |             |  |  |
|------|----------------|----------------|---------------------------------|----------------------------|-------------|--|--|
| Mod  | de [cm**-1]    | [atomic units] | [(debye/angs)**                 | <sup>*</sup> 2] [(KM/mol)] | [arbitrary] |  |  |
|      |                |                |                                 |                            |             |  |  |
| 1    | 0.000          | 0.000042       | 0.001                           | 0.041                      | 0.013       |  |  |
| 2    | 0.000          | 0.003341       | 0.077                           | 3.257                      | 1.032       |  |  |
| 3    | 0.000          | 0.00007        | 0.000                           | 0.007                      | 0.002       |  |  |
| 4    | 0.000          | 0.004245       | 0.098                           | 4.138                      | 1.311       |  |  |
| 5    | 0.000          | 0.002836       | 0.065                           | 2.764                      | 0.876       |  |  |
| 6    | 0.000          | 0.00063        | 0.001                           | 0.061                      | 0.019       |  |  |
| 7    | 127.737        | 0.000163       | 0.004                           | 0.159                      | 0.050       |  |  |
| 8    | 170.851        | 0.00049        | 0.001                           | 0.048                      | 0.015       |  |  |
| 9    | 232.061        | 0.000973       | 0.022                           | 0.948                      | 0.300       |  |  |

Note: Three rotational and translational modes are zero (projected out)!





## Frequencies output: Imaginary modes



Sometimes you get imaginary modes

| Normal | Eigenvalue | Projected Infra Red Intensities |                |                |             |  |
|--------|------------|---------------------------------|----------------|----------------|-------------|--|
| Mode   | [cm**-1]   | [atomic units]                  | [(debye/angs)* | *2] [(KM/mol)] | [arbitrary] |  |
|        |            |                                 |                |                |             |  |
| 1      | -67.461    | 0.000411                        | 0.009          | 0.401          | 0.086       |  |
| 2      | -56.947    | 0.000814                        | 0.019          | 0.794          | 0.171       |  |
| 3      | -34.343    | 0.004494                        | 0.104          | 4.381          | 0.942       |  |
| 4      | -13.396    | 0.001548                        | 0.036          | 1.509          | 0.324       |  |
| 5      | 0.000      | 0.001474                        | 0.034          | 1.436          | 0.309       |  |
| 6      | 0.000      | 0.001367                        | 0.032          | 1.333          | 0.286       |  |
| 7      | 0.000      | 0.001035                        | 0.024          | 1.009          | 0.217       |  |
| 8      | 0.000      | 0.001463                        | 0.034          | 1.426          | 0.307       |  |
| 9      | 0.000      | 0.001567                        | 0.036          | 1.528          | 0.328       |  |
| 10     | 0.000      | 0.001901                        | 0.044          | 1.853          | 0.398       |  |
| 11     | 28.105     | 0.006869                        | 0.158          | 6.696          | 1.439       |  |
| 12     | 36.721     | 0.000162                        | 0.004          | 0.158          | 0.034       |  |





#### Imaginary modes: Dealing with them



- Causes for imaginary modes:
  - Small eigenvalues in floppy molecules may require tight geometry optimization
  - If you are searching for a transition state, you should find one imaginary mode
- Side bar: Transition state searches

```
freq
firstneg # follow first imaginary mode
vardir 4 # search along internal variable 4
moddir 1 # search along normal mode 1
end
task scf saddle
```



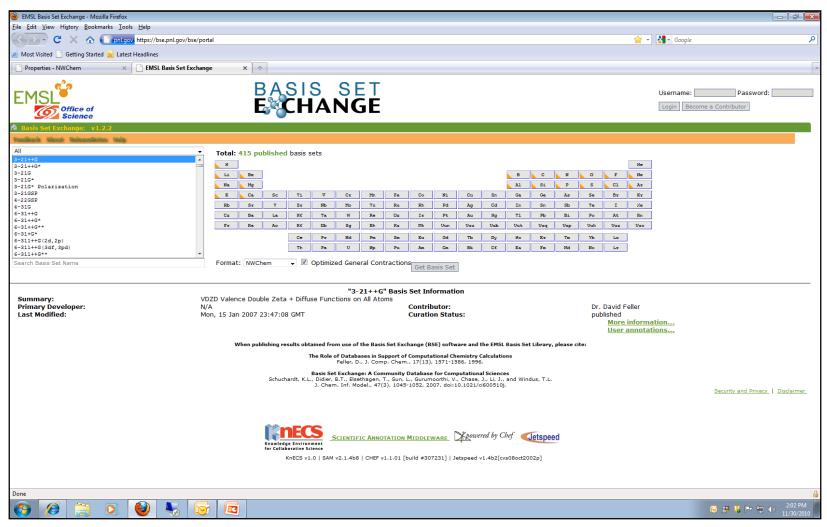


#### Frequencies output: Zero-point energy



NWChem prints out zero-point energy and other thermodynamic properties

```
Temperature
                           = 298.15K
Zero-Point correction to Energy = 63.909 \text{ kcal/mol} ( 0.101845 \text{ au})
Thermal correction to Energy = 67.730 \text{ kcal/mol} ( 0.107934 \text{ au})
Thermal correction to Enthalpy = 68.322 \text{ kcal/mol} ( 0.108878 \text{ au})
Total Entropy
                          = 75.958 \text{ cal/mol-K}
 - Translational
                          = 38.765 \text{ cal/mol-K (mol. weight} = 73.0528)
                         = 25.463 cal/mol-K (symmetry # =
 - Rotational
                            11.730 cal/mol-K
 - Vibrational
Cv (constant volume heat capacity) = 19.985 cal/mol-K
 - Translational
                           = 2.979 cal/mol-K
                              2.979 cal/mol-K
 - Rotational
 - Vibrational
                              14.026 cal/mol-K
```


Note: Different temperature can be set in input





#### **EMSL's Basis Set Exchange**





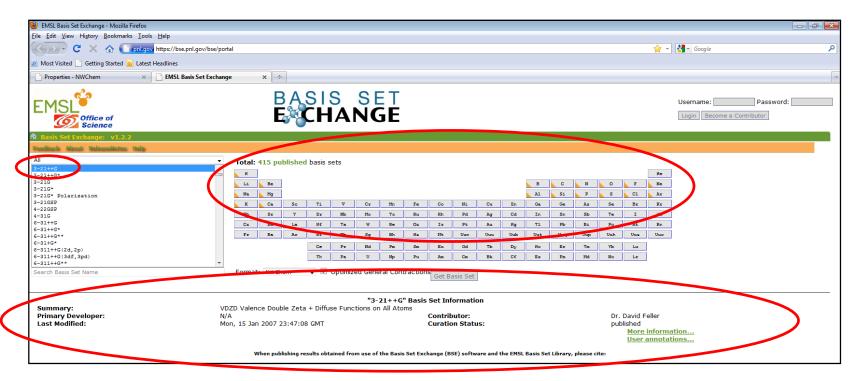
https://bse.pnl.gov/





#### **EMSL's Basis Set Exchange**




- Basis Set Exchange is comprehensive online library containing Gaussian basis sets
  - Anyone can download basis sets in the format they want
    - Supporting formats other than NWChem
  - Anyone can contribute basis sets they have developed
    - Only published online after work has been published in literature
- All basis sets that are online are also in the NWChem basis set library
  - Basis Set Exchange is source for NWChem basis set library

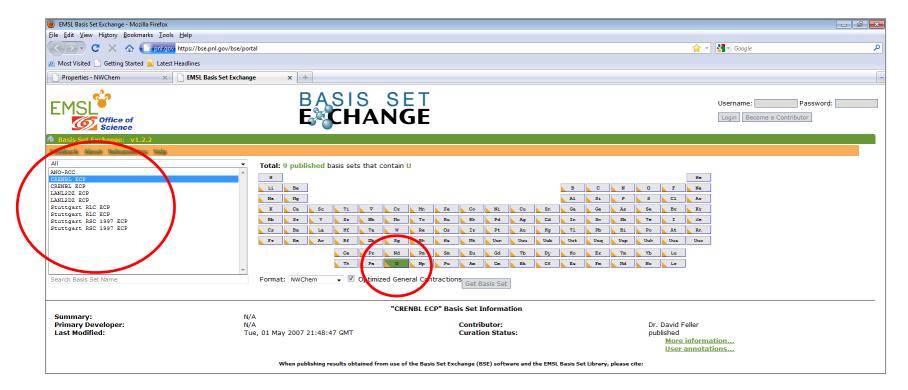




#### Elements covered by basis set





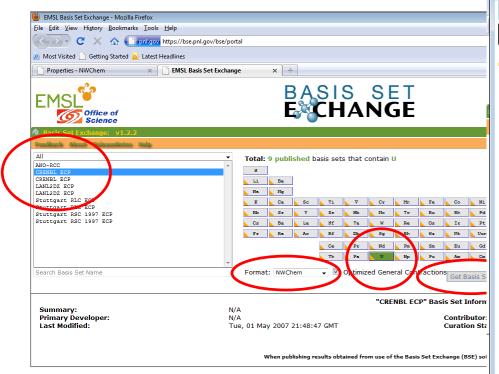

- When you select a basis set
  - You see the elements that are covered by the basis set
  - You can get more details about the basis set itself



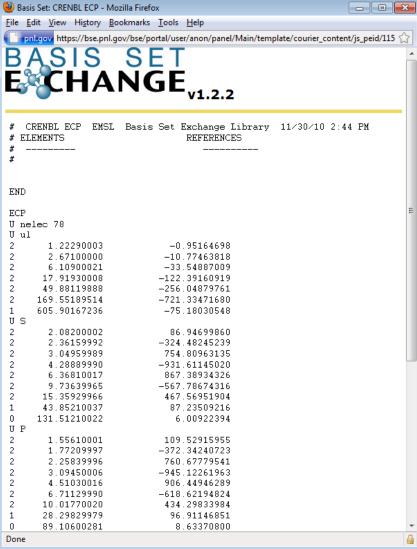


#### Basis set for certain element






- Select an element
  - And find the basis sets available for this element



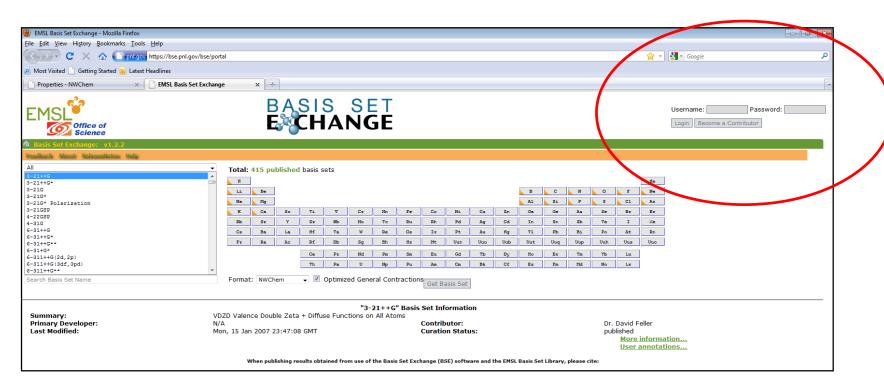



Getting a basis set from the Exchange



- Select an element
  - Select a basis from the list
  - Select a format you want the
  - Click "Get Basis Set"








#### Adding Basis Sets to the Exchange



- You can add basis sets you have developed to the exchange for download by others
  - Get an account and start adding









## Questions?

# Community forum: www.nwchem-sw.org



