Packages and sources
library(dplyr)
library(microbenchmark)
if (!require(rTRNG)) {
devtools::install_github("miraisolutions/rTRNG",
dependencies = TRUE)
library(rTRNG)
}
Rcpp::sourceCpp("code/simulationKernel.cpp")
source("code/simulationKernel.R")
source("code/ES99.R")
Data load
loaded <- load("data/__inputDataBig.RData")
loaded
stopifnot(all(c("pf", "r", "Z") %in% loaded))
J <- nrow(pf)
M <- nrow(Z)
stopifnot(ncol(Z) == J)
stopifnot(all(dim(Z) == dim(r)))
colnames(pf)
dim(Z) %>% setNames(c("M", "J"))
K <- 100
s <- 12358
timer <- function(...) {
system.time(...)["elapsed"]
}
Full simulation by rating
L_rtng <- simulationKernel(pf, Z, r, J, K, agg = pf$rtng, seed = s,
timer = timer)
ES99_rtng <- ES99(L_rtng)
sort(ES99_rtng, decreasing = TRUE)
Consistent simulation of the BBB sub-portfolio
L_BBB <- simulationKernel(pf %>% filter(rtng == "BBB"), Z, r, J, K, seed = s,
timer = timer)
all.equal(c(L_BBB), L_rtng[, "BBB"], check.attributes = FALSE)
ES99_BBB <- ES99(L_BBB)
ES99_BBB
Contribution of individual counterparties to the BBB total ES99
pfBBB <- pf %>% filter(rtng == "BBB")
L_jBBBtail <- simulationKernel(pfBBB, Z, r, J, K,
agg = pfBBB$j, mk = tail99(L_BBB), seed = s,
timer = timer)
ContrES99_jBBB <- colMeans(L_jBBBtail)
head(ContrES99_jBBB)
all.equal(sum(ContrES99_jBBB), ES99_BBB, check.attributes = FALSE)
Full distribution for the top 3 BBB counterparties (by highest contribution)
top3jBBB <- names(sort(ContrES99_jBBB, decreasing = TRUE))[1:3]
pftop3BBB <- pfBBB %>% filter(j %in% top3jBBB)
L_top3BBB <- simulationKernel(pftop3BBB, Z, r, J, K,
agg = pftop3BBB$j, seed = s,
timer = timer)
ES99_top3BBB <- ES99(L_top3BBB)
pftop3BBB %>%
select(j, V0, R) %>%
mutate(ES99 = ES99_top3BBB, ContrES99 = ContrES99_jBBB[top3jBBB],
Div = ContrES99/ES99, "Contr/V0" = ContrES99/V0)
What-if scenario: top 3 BBB counterparties downgraded (higher PD)
pfBBBwi <- pf %>% filter(rtng == "BBB") %>%
mutate(PD = replace(PD, j %in% top3jBBB, 0.01))
pftop3BBBwi <- pfBBBwi %>% filter(j %in% top3jBBB)
L_top3BBBwi <- simulationKernel(pftop3BBBwi, Z, r, J, K,
agg = pftop3BBBwi$j, seed = s,
timer = timer)
What-if scenario: impact on the BBB ES99
L_BBBwi <- L_BBB + (rowSums(L_top3BBBwi) - rowSums(L_top3BBB))
ES99_BBBwi <- ES99(L_BBBwi)
cbind(ES99_BBBwi, ES99_BBB)
What-if scenario: new contributions
L_jBBBtailwi <- simulationKernel(pfBBBwi, Z, r, J, K,
agg = pfBBB$j, mk = tail99(L_BBBwi), seed = s,
timer = timer)
ContrES99_jBBBwi <- colMeans(L_jBBBtailwi)
Benchmarks
M <- pmin(1000, M)
J <- pmin(600, J)
K <- pmin(10, K)
Z <- Z[1:M, 1:J]
r <- r[1:M, 1:J]
pf <- pf[1:J, ]
nBench <- 10
Number of threads
withThreadNr <- function(numThreads) {
RcppParallel::setThreadOptions(numThreads = numThreads)
invisible(simulationKernel(pf, Z, r, J, K, seed = s))
}
mb <- microbenchmark(withThreadNr(1),
withThreadNr(2),
withThreadNr(4),
times = nBench)
boxplot(mb, unit = "s")

Size of the sub-portfolio
set.seed(85321)
subJ <- ceiling(J/2^(0:4))
subpfs <-
lapply(as.list(subJ),
function(jlen, pf) {
pf %>% sample_n(jlen)
},
pf %>% mutate(PD = mean(PD))) %>% setNames(subJ)
RcppParallel::setThreadOptions(numThreads = 1)
withSubJ <- function(subJ) {
invisible(simulationKernel(subpfs[[as.character(ceiling(subJ))]],
Z, r, J, K, seed = s))
}
mb <- microbenchmark(withSubJ(J/2^0),
withSubJ(J/2^1),
withSubJ(J/2^2),
withSubJ(J/2^3),
withSubJ(J/2^4),
times = nBench)
boxplot(mb, unit = "s")

Number of sub-simulations
set.seed(85321)
mklen <- ceiling(M*K/2^(0:4))
mks <-
lapply(mklen,function(s) {
sort(sample.int(M*K, s))
}) %>% setNames(mklen)
RcppParallel::setThreadOptions(numThreads = 1)
withSubMK <- function(mkl) {
invisible(simulationKernel(pf, Z, r, J, K, seed = s,
mk = mks[[as.character(ceiling(mkl))]]))
}
mb <- microbenchmark(withSubMK(M*K/2^0),
withSubMK(M*K/2^1),
withSubMK(M*K/2^2),
withSubMK(M*K/2^3),
withSubMK(M*K/2^4),
times = nBench)
boxplot(mb, unit = "s")

Source code
simulationKernel.R
simulationKernel <- function(pf, Z, r,
J,
K, mk = seq_len(K * nrow(Z)),
agg = factor(rep("PF", nrow(pf))),
seed,
timer = function(expr, ...) expr) {
stopifnot(all(c("j", "V0", "R", "PD") %in% colnames(pf)))
stopifnot(all.equal(dim(Z), dim(r)))
stopifnot(all(pf$j > 0 & pf$j <= ncol(Z)))
stopifnot(all(mk > 0 & mk <= nrow(Z) * K))
stopifnot(!is.unsorted(mk))
stopifnot(is.function(timer))
agg <- as.factor(agg)
agg_idx <- as.numeric(agg)
agg_set <- as.character(levels(agg))
L_agg <- matrix(0.0, length(mk), max(agg_idx),
dimnames = list(mk = as.character(mk),
agg = agg_set))
t <- timer(
simulationKernel_C(pf = pf, Z = Z, r = r,
J = J,
K = K, mk = mk,
agg = agg_idx,
seed = seed,
L_agg = L_agg)
)
if (!is.null(t)) {
print(t)
}
L_agg
}
ES99.R
ES99 <- function(L) {
es99 <- apply(L, 2, function(l) {
mean(l[tail99(l)])
})
es99
}
tail99 <- function(l, sorted = TRUE) {
idx <- tail(order(l), ceiling(0.01*length(l)))
if (sorted) {
idx <- sort(idx)
}
idx
}
simulationKernel.cpp
#include <Rcpp.h>
using namespace Rcpp;
#include <RcppParallel.h>
using namespace RcppParallel;
#include <trng/yarn2.hpp>
#include <trng/normal_dist.hpp>
using namespace trng;
typedef yarn2 rngKind;
struct KernelWorker : public Worker {
const int J, K;
const RVector<int> j, mk, agg;
const RVector<double> V0, R, beta, PD;
const RMatrix<double> Z, r;
const std::vector<rngKind> rngSplit;
RMatrix<double> L_agg;
KernelWorker(const NumericVector V0, const NumericVector R,
const NumericVector beta, const NumericVector PD,
const IntegerVector j, const int J,
const NumericMatrix Z, const NumericMatrix r,
const int K, const IntegerVector mk,
const IntegerVector agg,
const std::vector<rngKind> rngSplit,
NumericMatrix L_agg)
: J(J), K(K), j(j), mk(mk), agg(agg), V0(V0), R(R), beta(beta), PD(PD),
Z(Z), r(r), rngSplit(rngSplit), L_agg(L_agg)
{}
void operator()(std::size_t begin, std::size_t end) {
rngKind rngj;
normal_dist<> normal(0.0, 1.0);
unsigned int mk_begin = (unsigned int)begin;
unsigned int mk_end = (unsigned int)end;
int thismk, prevmk;
unsigned int m;
int thisj;
double sigmaj, thetaj, Yj, Lj;
for (unsigned int j_idx = 0; j_idx < j.length(); j_idx++) {
thisj = j[j_idx] - 1;
sigmaj = sqrt(1 - beta[j_idx]*beta[j_idx]);
thetaj = normal.icdf(PD[j_idx]);
rngj = rngSplit[j_idx];
prevmk = -1;
for (unsigned int mk_idx = mk_begin; mk_idx < mk_end; mk_idx++) {
thismk = mk[mk_idx] - 1;
rngj.jump(thismk - prevmk - 1);
m = thismk/K;
Yj = beta[j_idx]*Z(m, thisj) + sigmaj*normal(rngj);
Lj = V0[j_idx] - ( Yj < thetaj ?
R[j_idx] :
V0[j_idx] * (1 + r(m, thisj)) );
L_agg(mk_idx, agg[j_idx] - 1) += Lj;
prevmk = thismk;
}
}
}
};
void simulationKernel_C(const DataFrame pf,
const NumericMatrix Z, const NumericMatrix r,
const int J,
const int K, const IntegerVector mk,
const IntegerVector agg,
const unsigned long seed,
NumericMatrix L_agg) {
IntegerVector j = pf["j"];
rngKind rngFull(seed);
std::vector<rngKind> rngSplit(j.length());
for (unsigned int j_idx = 0; j_idx < j.length(); j_idx++) {
int thisj = j[j_idx] - 1;
rngSplit[j_idx] = rngFull;
rngSplit[j_idx].split(J, thisj);
}
KernelWorker w(pf["V0"], pf["R"], pf["beta"], pf["PD"],
j, J,
Z, r,
K, mk,
agg,
rngSplit,
L_agg);
int grainSize = 100;
parallelFor(0, mk.length(), w, grainSize);
}