Abstract In this course, we will use R/Bioconductor packages to explore, process, visualise and understand mass spectrometry-based proteomics data, starting with raw data, and proceeding with identification and quantitation data, discussing some of their peculiarities compared to sequencing data along the way. The workflow is aimed at a beginner to intermediate level, such as, for example, seasoned R users who want to get started with mass spectrometry and proteomics, or proteomics practitioners who want to familiarise themselves with R and Bioconductor infrastructure.
This material available under a creative common CC-BY license. You are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) for any purpose, even commercially.
If you (re-)use this material, please cite the following reference
Gatto, Laurent. (2019, January). Bioconductor tools for mass spectrometry and proteomics. Zenodo. http://doi.org/10.5281/zenodo.2547971
Before we start:
If you identify typos, if there are parts that you would like to see expended or clarified, please let me know by telling me directly (during workshops), opening a github issue or by emailing me. Please do also briefly specify your background/familiarity with mass spectrometry and/or proteomics (beginner, intermediate or expert) so that I can update accordingly.
In recent years, there we have seen an increase in the number of packages to analyse mass spectrometry and proteomics data for R and Bioconductor, as well as an increase in total number of downloads. See vignette Proteomics packages in Bioconductor for more details and code underlying these figures.
It is also good to highlight that several of these package have become a group efforts, supported by several developers in the community. This post illustrates the various contributions to MSnbase. mzR has benefited by a similar wide range of successful contributions. Both packages, and in particular mzR, are used by many others, and will be described in some detail in this workflow.
This workflow illustrates R / Bioconductor infrastructure for proteomics. Topics covered focus on support for open community-driven formats for raw data and identification results, packages for peptide-spectrum matching, data processing and analysis:
Links to other packages and references are also documented. In particular, the vignettes included in the RforProteomics package also contains relevant material.
This workflow provides a general introduction to Bioconductor software for mass spectrometry and proteomics. If you are interested in
vignette("pRoloc-tutorial", package = "pRoloc")
or
online.vignette("msnid_vignette", package = "MSnID")
or
online. In
addition, the vignettes of the msmsTest package
describe how to analyse spectral counting data using packages
dedicated for the analysis of high throughput sequencing data.vignette("MALDIquant-intro", package = "MALDIquant")
and available
online.vignette("Cardinal-walkthrough", package = "Cardinal")
and
online.The follow packages will be used throughout this documents. R version
3.5
or higher is required to install all the packages using
BiocManager::install
.
library("mzR")
library("mzID")
library("MSnID")
library("MSnbase")
library("rpx")
library("MLInterfaces")
library("pRoloc")
library("pRolocdata")
library("MSGFplus")
library("rols")
library("hpar")
library("ensembldb")
The most convenient way to install most of the tutorials requirement (and more related content), is to install RforProteomics with all its dependencies.
if (!require("BiocManager"))
install.package("BiocManager")
BiocManager::install("RforProteomics", dependencies = TRUE)
Other packages of interest, such as rTANDEM or MSGFgui will be described later in the document but are not required to execute the code in this workflow.
In Bioconductor version 3.6, there are respectively 92
proteomics,
62
mass spectrometry software packages
and 17
mass spectrometry experiment packages. These
respective packages can be extracted with the proteomicsPackages()
,
massSpectrometryPackages()
and massSpectrometryDataPackages()
and
explored interactively, or looked at by exploring the respective
biocViews
on the
Bioconductor web page.
library("RforProteomics")
pp <- proteomicsPackages()
DT::datatable(pp)
Exercise Explore available proteomics packages using the
proteomicsPackages()
function above or the Bioconductor software page. What software could you use to analysemzML
files?
Most community-driven formats described in the table are supported in
R
. We will see how to read and access these data in the following
sections.
Type | Format | Package |
---|---|---|
raw | mzML, mzXML, netCDF, mzData | MSnbase (read and write in version >= 2.3.13) via mzR |
identification | mzIdentML | mzID (read) and MSnbase (read, via mzR) |
quantitation | mzQuantML | |
peak lists | mgf | MSnbase (read) |
quant and id | mzTab | MSnbase (read) |
Mass spectrometry (MS) is a technology that separates charged molecules (ions) based on their mass to charge ratio (M/Z). It is often coupled to chromatography (liquid LC, but can also be gas-based GC). The time an analytes takes to elute from the chromatography column is the retention time.
An mass spectrometer is composed of three components:
When using mass spectrometry for proteomics, the proteins are first digested with a protease such as trypsin. In mass shotgun proteomics, the analytes assayed in the mass spectrometer are peptides.
Often, ions are subjected to more than a single MS round. After a first round of separation, the peaks in the spectra, called MS1 spectra, represent peptides. At this stage, the only information we possess about these peptides are their retention time and their mass-to-charge (we can also infer their charge be inspecting their isotopic envelope, i.e the peaks of the individual isotopes, see below), which is not enough to infer their identify (i.e. their sequence).
In MSMS (or MS2), the settings of the mass spectrometer are set automatically to select a certain number of MS1 peaks (for example 20). Once a narrow M/Z range has been selected (corresponding to one high-intensity peak, a peptide, and some background noise), it is fragmented (using for example collision-induced dissociation (CID), higher energy collisional dissociation (HCD) or electron-transfer dissociation (ETD)). The fragment ions are then themselves separated in the analyser to produce a MS2 spectrum. The unique fragment ion pattern can then be used to infer the peptide sequence using de novo sequencing (when the spectrum is of high enough quality) of using a search engine such as, for example Mascot, MSGF+, …, that will match the observed, experimental spectrum to theoratical spectra (see details below).
The animation below show how 25 ions different ions (i.e. having different M/Z values) are separated throughout the MS analysis and are eventually detected (i.e. quantified). The final frame shows the hypothetical spectrum.
The figures below illustrate the two rounds of MS. The spectrum on the left is an MS1 spectrum acquired after 21 minutes and 3 seconds of elution. 10 peaks, highlited by dotted vertical lines, were selected for MS2 analysis. The peak at M/Z 460.79 (488.8) is highlighted by a red (orange) vertical line on the MS1 spectrum and the fragment spectra are shown on the MS2 spectrum on the top (bottom) right figure.
The figures below represent the 3 dimensions of MS data: a set of spectra (M/Z and intensity) of retention time, as well as the interleaved nature of MS1 and MS2 (and there could be more levels) data.
MS-based proteomics data is disseminated through the ProteomeXchange infrastructure, which centrally coordinates submission, storage and dissemination through multiple data repositories, such as the PRoteomics IDEntifications (PRIDE) database at the EBI for mass spectrometry-based experiments (including quantitative data, as opposed as the name suggests), PASSEL at the ISB for Selected Reaction Monitoring (SRM, i.e. targeted) data and the MassIVE resource. These data can be downloaded within R using the rpx package.
library("rpx")
pxannounced()
## 15 new ProteomeXchange annoucements
## Data.Set Publication.Data Message
## 1 PXD011796 2019-02-18 14:53:08 New
## 2 PXD010078 2019-02-18 14:43:59 New
## 3 PXD009108 2019-02-18 14:09:37 New
## 4 PXD008803 2019-02-18 14:00:41 New
## 5 PXD010314 2019-02-18 13:36:56 New
## 6 PXD005824 2019-02-18 13:36:17 New
## 7 PXD009981 2019-02-18 11:54:58 Updated information
## 8 PXD012206 2019-02-18 11:53:16 New
## 9 PXD011095 2019-02-18 11:49:53 New
## 10 PXD011411 2019-02-18 11:40:46 New
## 11 PXD012545 2019-02-18 10:19:50 New
## 12 PXD010720 2019-02-18 09:17:50 Updated information
## 13 PXD006999 2019-02-18 09:12:41 Updated information
## 14 PXD009675 2019-02-16 13:33:04 New
## 15 PXD006818 2019-02-16 12:41:32 New
Using the unique PXD000001
identifier, we can retrieve the relevant
metadata that will be stored in a PXDataset
object. The names of the
files available in this data can be retrieved with the pxfiles
accessor function.
px <- PXDataset("PXD000001")
px
## Object of class "PXDataset"
## Id: PXD000001 with 12 files
## [1] 'F063721.dat' ... [12] 'generated'
## Use 'pxfiles(.)' to see all files.
pxfiles(px)
## [1] "F063721.dat"
## [2] "F063721.dat-mztab.txt"
## [3] "PRIDE_Exp_Complete_Ac_22134.xml.gz"
## [4] "PRIDE_Exp_mzData_Ac_22134.xml.gz"
## [5] "PXD000001_mztab.txt"
## [6] "README.txt"
## [7] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML"
## [8] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzXML"
## [9] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01.mzXML"
## [10] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01.raw"
## [11] "erwinia_carotovora.fasta"
## [12] "generated"
Other metadata for the px
data set:
pxtax(px)
## [1] "Erwinia carotovora"
pxurl(px)
## [1] "ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2012/03/PXD000001"
pxref(px)
## [1] "Gatto L, Christoforou A. Using R and Bioconductor for proteomics data analysis. Biochim Biophys Acta. 2014 1844(1 pt a):42-51"
Data files can then be downloaded with the pxget
function. Below, we
retrieve the raw data file. The file is
downloaded2 If the file is already available, it is not downloaded a second time.
in the working directory and the name of the file is return by the
function and stored in the mzf
variable for later use 3 This and other files are also availabel in the msdata
package, described below.
fn <- "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML"
mzf <- pxget(px, fn)
## Downloading 1 file
## /home/lgatto/Teaching/bioc-ms-prot/TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML already present.
mzf
## [1] "/home/lgatto/Teaching/bioc-ms-prot/TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML"
AnnotationHub is a cloud resource set up and managed by the Bioconductor project that serves various omics datasets. It is possible to contribute and access (albeit currently only a limited number of) proteomics data.
library("AnnotationHub")
ah <- AnnotationHub()
## updating metadata: snapshotDate(): 2018-10-24
query(ah, "proteomics")
## AnnotationHub with 4 records
## # snapshotDate(): 2018-10-24
## # $dataprovider: PRIDE
## # $species: Erwinia carotovora
## # $rdataclass: AAStringSet, MSnSet, mzRident, mzRpwiz
## # additional mcols(): taxonomyid, genome, description,
## # coordinate_1_based, maintainer, rdatadateadded, preparerclass,
## # tags, rdatapath, sourceurl, sourcetype
## # retrieve records with, e.g., 'object[["AH49006"]]'
##
## title
## AH49006 | PXD000001: Erwinia carotovora and spiked-in protein fasta file
## AH49007 | PXD000001: Peptide-level quantitation data
## AH49008 | PXD000001: raw mass spectrometry data
## AH49009 | PXD000001: MS-GF+ identiciation data
ms <- ah[["AH49008"]]
ms
## Mass Spectrometry file handle.
## Filename: 55314
## Number of scans: 7534
The data contains 7534 spectra - 1431 MS1 spectra and 6103
MS2 spectra. The file name, 55314, is not very
descriptive because the data originates from the AnnotationHub
cloud
repository. If the data was read from a local file, is would be named
as the mzML
(or mzXML
) file (see below).
Some data are also distributed through dedicated packages. The msdata, for example, provides some general raw data files relevant for both proteomics and metabolomics.
library("msdata")
## proteomics raw data
proteomics()
## [1] "MRM-standmix-5.mzML.gz"
## [2] "MS3TMT10_01022016_32917-33481.mzML.gz"
## [3] "MS3TMT11.mzML"
## [4] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML.gz"
## [5] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01.mzML.gz"
## proteomics identification data
ident()
## [1] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid"
More often, such experiment packages distribute processed data; an example of such is the pRolocdata package, that offers quantitative proteomics data.
The MSnbase package provides high-level data
abstractions for raw MS data through the MSnExp
class and containers
for quantification data via the MSnSet
class (see Quantitative
proteomics section). Both store
spectra
(or the [
, [[
operators) or exprs
;data.frame
with pData
;data.frame
with fData
.Another useful slot is processingData
, accessed with
processingData(.)
, that records all the processing that objects have
undergone since their creation (see examples below).
MSnExp
classThe readMSData
will parse the raw data and construct an MS
experiment object of class MSnExp
. An important argument to
readMSData
is the mode, which can be "onDisk"
or
"inMemory"
. The former doesn’t load the raw data in memory (which is
not advised for MS1 data, or when many files are loaded) and is
generally the recommended mode. See the benchmarking vignette4 Open
it with vignette("benchmarking", package = "MSnbase")
or read it
online
for details).
library("MSnbase")
## get a small test data
rawFile <- dir(system.file(package = "MSnbase",
dir = "extdata"),
full.name = TRUE,
pattern = "mzXML$")
basename(rawFile)
## [1] "dummyiTRAQ.mzXML"
msexp <- readMSData(rawFile, msLevel = 2L)
msexp
## MSn experiment data ("MSnExp")
## Object size in memory: 0.18 Mb
## - - - Spectra data - - -
## MS level(s): 2
## Number of spectra: 5
## MSn retention times: 25:1 - 25:2 minutes
## - - - Processing information - - -
## Data loaded: Mon Feb 18 16:01:12 2019
## MSnbase version: 2.9.3
## - - - Meta data - - -
## phenoData
## rowNames: dummyiTRAQ.mzXML
## varLabels: sampleNames
## varMetadata: labelDescription
## Loaded from:
## dummyiTRAQ.mzXML
## protocolData: none
## featureData
## featureNames: F1.S1 F1.S2 ... F1.S5 (5 total)
## fvarLabels: spectrum
## fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
Spectra can be extracted as a list of Spectrum2
objects with the
spectra
accessor or as a subset of the original MSnExp
data with
the [
operator. Individual spectra can be accessed with [[
.
length(msexp)
## [1] 5
msexp[1:2]
## MSn experiment data ("MSnExp")
## Object size in memory: 0.07 Mb
## - - - Spectra data - - -
## MS level(s): 2
## Number of spectra: 2
## MSn retention times: 25:1 - 25:2 minutes
## - - - Processing information - - -
## Data loaded: Mon Feb 18 16:01:12 2019
## Data [numerically] subsetted 2 spectra: Mon Feb 18 16:01:12 2019
## MSnbase version: 2.9.3
## - - - Meta data - - -
## phenoData
## rowNames: dummyiTRAQ.mzXML
## varLabels: sampleNames
## varMetadata: labelDescription
## Loaded from:
## dummyiTRAQ.mzXML
## protocolData: none
## featureData
## featureNames: F1.S1 F1.S2
## fvarLabels: spectrum
## fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
msexp[[2]]
## Object of class "Spectrum2"
## Precursor: 546.9586
## Retention time: 25:2
## Charge: 3
## MSn level: 2
## Peaks count: 1012
## Total ion count: 56758067
We can also extract the chromatogram for the acquistion(s) in the
MSnExp
object and visualise it. Here, we use a complete acquisition
from the msdata
package, and read it with on-disk mode and focus
on MS1 data, which is used to generate chromatograms.
f <- msdata::proteomics(pattern = "45stepped_60min_01-20141210", full.names = TRUE)
rw <- readMSData(f, mode = "onDisk", msLevel. = 1L)
chr <- chromatogram(rw)
chr
## Chromatograms with 1 row and 1 column
## TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML.gz
## <Chromatogram>
## [1,] length: 1431
## phenoData with 1 variables
## featureData with 1 variables
plot(chr)
Note that here, as we only loaded a single raw data file, we obtain a
Chromatograms
object with a single chromatogram. When reading
multiple raw data files at once (for example with
readMSData(c("f1.mzML", "f2.mzML"))
), we would get and visualise one
chromatogram per file.
The identification results stemming from the same raw data file can
then be used to add PSM matches. Here, we use the small msexp
test
data with 5 MS2 spectra that we read in further up.
## initial feature variable
fData(msexp)
## spectrum
## F1.S1 1
## F1.S2 2
## F1.S3 3
## F1.S4 4
## F1.S5 5
## find path to a mzIdentML file
identFile <- dir(system.file(package = "MSnbase", dir = "extdata"),
full.name = TRUE, pattern = "dummyiTRAQ.mzid")
basename(identFile)
## [1] "dummyiTRAQ.mzid"
msexp <- addIdentificationData(msexp, identFile)
## additional feature variables
fvarLabels(msexp)
## [1] "spectrum" "acquisition.number"
## [3] "sequence" "chargeState"
## [5] "rank" "passThreshold"
## [7] "experimentalMassToCharge" "calculatedMassToCharge"
## [9] "modNum" "isDecoy"
## [11] "post" "pre"
## [13] "start" "end"
## [15] "DatabaseAccess" "DBseqLength"
## [17] "DatabaseSeq" "DatabaseDescription"
## [19] "scan.number.s." "idFile"
## [21] "MS.GF.RawScore" "MS.GF.DeNovoScore"
## [23] "MS.GF.SpecEValue" "MS.GF.EValue"
## [25] "modName" "modMass"
## [27] "modLocation" "subOriginalResidue"
## [29] "subReplacementResidue" "subLocation"
## [31] "nprot" "npep.prot"
## [33] "npsm.prot" "npsm.pep"
We see that 3 out of 5 MS2 spectra in the msexp
data have been
identified; those that haven’t have missing values for the new,
id-related feature variables.
fData(msexp)$rank
## [1] 1 1 NA NA 1
fData(msexp)$isDecoy
## [1] FALSE FALSE NA NA FALSE
Exercise Load all MS level data from file
MS3TMT11.mzML
available in themsdata
package usingreadMSData
, making sure you setmode = "onDisk"
, and verify which MS levels (accessible with themsLevel
function) are centroided (accessible with thecentroided()
function). See section Raw data processing for data in profile and centroided (processed) modes.
f <- proteomics(full.names = TRUE, pattern = "MS3TMT11.mzML")
ms <- readMSData(f, mode = "onDisk")
table(centroided(ms), msLevel(ms))
##
## 1 2 3
## FALSE 30 0 0
## TRUE 0 482 482
Spectra and (parts of) experiments can be extracted and plotted.
msexp[[1]]
## Object of class "Spectrum2"
## Precursor: 645.3741
## Retention time: 25:1
## Charge: 3
## MSn level: 2
## Peaks count: 2921
## Total ion count: 668170086
plot(msexp[[1]])
As this data was labeled with iTRAQ4 isobaric tags, we can highlight these four peaks of interest on top of the full spectrum with
plot(msexp[[1]], full=TRUE, reporters = iTRAQ4)
msexp[1:3]
## MSn experiment data ("MSnExp")
## Object size in memory: 0.11 Mb
## - - - Spectra data - - -
## MS level(s): 2
## Number of spectra: 3
## MSn retention times: 25:1 - 25:2 minutes
## - - - Processing information - - -
## Data loaded: Mon Feb 18 16:01:12 2019
## Data [numerically] subsetted 3 spectra: Mon Feb 18 16:01:13 2019
## MSnbase version: 2.9.3
## - - - Meta data - - -
## phenoData
## rowNames: dummyiTRAQ.mzXML
## varLabels: sampleNames
## varMetadata: labelDescription
## Loaded from:
## dummyiTRAQ.mzXML
## protocolData: none
## featureData
## featureNames: F1.S1 F1.S2 F1.S3
## fvarLabels: spectrum acquisition.number ... npsm.pep (34 total)
## fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
plot(msexp[1:3], full = TRUE)
In the examples above, we only used a single file as input to
readMSData
, but multiple file can be read into a single MSnExp
object. The origin of the spectra can be accessed with the fromFile
function:
fromFile(msexp)
## F1.S1 F1.S2 F1.S3 F1.S4 F1.S5
## 1 1 1 1 1
Exercise Repeat the previous combination of raw and identification data with the
TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML.gz
andTMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid
files frommsdata
. Retain only MS 2 level data; this can be done either when reading the data in (see themsLevel
argument in?readMSData
) or can be done afterwards by filtering the MS levels withfilterMsLevel
.
## read raw data
rwf <- proteomics(pattern = "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML.gz",
full.names = TRUE)
tmterw <- readMSData(rwf, mode = "onDisk")
## or, only read MS2-leve data
## tmterw <- readMSData(rwf, mode = "onDisk", msLevel = 2L)
## add identification data
idf <- ident(full.names = TRUE)
tmterw <- addIdentificationData(tmterw, idf)
tmterw2 <- filterMsLevel(tmterw, 2L)
## It is also possible to chain operations
library("magrittr")
tmterw2 <- rwf %>%
readMSData(mode = "onDisk") %>%
addIdentificationData(idf) %>%
filterMsLevel(2L)
Exercise Still using the
TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210
data from the previous exercise, identify the index of the MS2 spectrum with the highest precursor intensity (see theprecursorIntensity
feature variable) and plot it as illustrated above.
i <- which.max(precursorIntensity(tmterw2))
sp <- tmterw2[[i]]
plot(sp, full = TRUE)
As seen in the introduction, scans have a hierarchical structure: MS2 spectra stem form a precursor MS1 scan. This also holds for MS3 spectra, that are the result from an additional analysis round of MS2 spectra. When validating quantitative or identification data by referring back to raw data, it is often useful to be able to navigate this structure.
We will use an experiment with 3 MS levels to do this:
ms3f <- proteomics(pattern = "MS3TMT11", full.names = TRUE)
basename(ms3f)
## [1] "MS3TMT11.mzML"
ms3 <- readMSData(ms3f, mode = "onDisk")
Note that it is important to use on-disk mode here, as we want to retain all MS levels, which isn’t possible with in-memory mode.
Exercise Generate a table showing how many MS1, 2, and 3 level scans are available in this data
table(msLevel(ms3))
##
## 1 2 3
## 30 482 482
The filterPrecursorScan
function takes on raw data object, it’s
acquisition number (get them with acquisitionNum
), and returns a new
raw data object containing the children of that spectrum.
Exercise Find the acquisition of the first MS1 spectrum and extract all spectra that originate, directly and indirectly, from it.
head(msLevel(ms3))
## F1.S001 F1.S002 F1.S003 F1.S004 F1.S005 F1.S006
## 1 2 2 3 2 2
head(acquisitionNum(ms3))
## F1.S001 F1.S002 F1.S003 F1.S004 F1.S005 F1.S006
## 21945 21946 21947 21948 21949 21950
(from1 <- filterPrecursorScan(ms3, 21945))
## MSn experiment data ("OnDiskMSnExp")
## Object size in memory: 0.05 Mb
## - - - Spectra data - - -
## MS level(s): 1 2 3
## Number of spectra: 35
## MSn retention times: 45:27 - 45:30 minutes
## - - - Processing information - - -
## Data loaded [Mon Feb 18 16:01:31 2019]
## Filter: select parent/children scans for 21945 [Mon Feb 18 16:01:31 2019]
## MSnbase version: 2.9.3
## - - - Meta data - - -
## phenoData
## rowNames: MS3TMT11.mzML
## varLabels: sampleNames
## varMetadata: labelDescription
## Loaded from:
## MS3TMT11.mzML
## protocolData: none
## featureData
## featureNames: F1.S001 F1.S002 ... F1.S035 (35 total)
## fvarLabels: fileIdx spIdx ... spectrum (30 total)
## fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
msLevel(from1)
## F1.S001 F1.S002 F1.S003 F1.S004 F1.S005 F1.S006 F1.S007 F1.S008 F1.S009
## 1 2 2 3 2 2 3 2 2
## F1.S010 F1.S011 F1.S012 F1.S013 F1.S014 F1.S015 F1.S016 F1.S017 F1.S018
## 3 3 2 3 2 2 2 3 2
## F1.S019 F1.S020 F1.S021 F1.S022 F1.S023 F1.S024 F1.S025 F1.S026 F1.S027
## 2 3 2 2 2 3 2 2 3
## F1.S028 F1.S029 F1.S030 F1.S031 F1.S032 F1.S033 F1.S034 F1.S035
## 3 3 3 3 3 3 3 3
This section illustrates the underlying infrastructure from the mzR
package, that is used by MSnbase
under the hood. It is recommended
to use the high level interfaces, as it supports multiple files and
does data integrity checks throughout data processing.
The mzR
package provides an interface to the
proteowizard C/C++ code base
to access various raw data files, such as mzML
, mzXML
, netCDF
,
and mzData
. The data is accessed on-disk, i.e it is not loaded
entirely in memory, and only when explicitly requested. The three main
functions are openMSfile
to create a file handle to a raw data file,
header
to extract metadata about the spectra contained in the file
and peaks
to extract one or multiple spectra of interest. Other
functions such as instrumentInfo
, or runInfo
can be used to gather
general information about a run.
Below, we access the raw data file downloaded in the previous section and open a file handle that will allow us to extract data and metadata of interest.
library("mzR")
basename(mzf)
## [1] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML"
ms <- openMSfile(mzf)
ms
## Mass Spectrometry file handle.
## Filename: TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML
## Number of scans: 7534
The object loaded from AnnotationHub in the previous section is of
the same type, and was also created by the openMSfile
function. All
operations below can equally be applied to it.
The header
function returns the metadata of all available peaks:
hd <- header(ms)
dim(hd)
## [1] 7534 26
names(hd)
## [1] "seqNum" "acquisitionNum"
## [3] "msLevel" "polarity"
## [5] "peaksCount" "totIonCurrent"
## [7] "retentionTime" "basePeakMZ"
## [9] "basePeakIntensity" "collisionEnergy"
## [11] "ionisationEnergy" "lowMZ"
## [13] "highMZ" "precursorScanNum"
## [15] "precursorMZ" "precursorCharge"
## [17] "precursorIntensity" "mergedScan"
## [19] "mergedResultScanNum" "mergedResultStartScanNum"
## [21] "mergedResultEndScanNum" "injectionTime"
## [23] "filterString" "spectrumId"
## [25] "centroided" "ionMobilityDriftTime"
We can extract metadata and scan data for scan 1000 as follows:
hd[1000, ]
## seqNum acquisitionNum msLevel polarity peaksCount totIonCurrent
## 1000 1000 1000 2 1 274 1048554
## retentionTime basePeakMZ basePeakIntensity collisionEnergy
## 1000 1106.916 136.061 164464 45
## ionisationEnergy lowMZ highMZ precursorScanNum precursorMZ
## 1000 0 104.5467 1370.758 992 683.0817
## precursorCharge precursorIntensity mergedScan mergedResultScanNum
## 1000 2 689443.7 0 0
## mergedResultStartScanNum mergedResultEndScanNum injectionTime
## 1000 0 0 55.21463
## filterString
## 1000 FTMS + p NSI d Full ms2 683.08@hcd45.00 [100.00-1380.00]
## spectrumId centroided
## 1000 controllerType=0 controllerNumber=1 scan=1000 TRUE
## ionMobilityDriftTime
## 1000 NA
head(peaks(ms, 1000))
## [,1] [,2]
## [1,] 104.5467 308.9326
## [2,] 104.5684 308.6961
## [3,] 108.8340 346.7183
## [4,] 109.3928 365.1236
## [5,] 110.0345 616.7905
## [6,] 110.0703 429.1975
plot(peaks(ms, 1000), type = "h", xlab = "M/Z", ylab = "Intensity")
See also this short video.
In general, it is highly advised to use the high-level interface
MSnExp
provided by MSnbase
to access and manipulate raw data for
the following reasons:
Below, we illustrate some additional visualisation and animations of raw MS data, taken from the RforProteomics visualisation vignette. On the left, we have a heatmap visualisation of a MS map and, in the centre, a 3 dimensional representation of the same data. On the right, 2 MS1 spectra in blue and the set of interleaves 10 MS2 spectra.
msn <- readMSData(mzf, mode = "onDisk")
## a set of spectra of interest: MS1 spectra eluted
## between 30 and 35 minutes retention time
ms1 <- which(msLevel(msn) == 1)
rtsel <- rtime(msn)[ms1] / 60 > 30 &
rtime(msn)[ms1] / 60 < 35
## the MS map
M <- MSmap(msn, scans = ms1[rtsel],
lowMz = 521, highMz = 523,
resMz = .005)
## custom colours
ff <- colorRampPalette(c("yellow", "steelblue"))
lattice::trellis.par.set(regions=list(col=ff(100)))
## heatmap
m1 <- plot(M, aspect = 1, allTicks = FALSE)
## set 0s to NA for better visualisation
M@map[msMap(M) == 0] <- NA
m2 <- plot3D(M, rgl = FALSE)
## MS map with MS1 and MS2 spectra
i <- ms1[which(rtsel)][1] ## 1st MS1
j <- ms1[which(rtsel)][2] ## 2nd MS1
## All MS 1 and 2 spectra between i and j
M2 <- MSmap(msn, i:j, 100, 1000, 1)
m3 <- plot3D(M2)
gridExtra::grid.arrange(m1, m2, m3, ncol = 3)
Below, we have animations build from extracting successive slices as above.
Let’s use the identification from from msdata
:
idf <- msdata::ident(full.names = TRUE)
basename(idf)
## [1] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid"
The easiest way to read identification data in mzIdentML
(often
abbreviated with mzid
) into R is to read it with readMzIdData
,
that will parse it, process it, and return a data.frame
:
iddf <- readMzIdData(idf)
head(iddf)
## sequence spectrumID
## 1 RQCRTDFLNYLR controllerType=0 controllerNumber=1 scan=2949
## 2 ESVALADQVTCVDWRNRKATKK controllerType=0 controllerNumber=1 scan=6534
## 3 KELLCLAMQIIR controllerType=0 controllerNumber=1 scan=5674
## chargeState rank passThreshold experimentalMassToCharge
## 1 3 1 TRUE 548.2856
## 2 2 1 TRUE 1288.1528
## 3 2 1 TRUE 744.4109
## calculatedMassToCharge modNum isDecoy post pre start end DatabaseAccess
## 1 547.9474 1 FALSE V R 574 585 ECA2006
## 2 1288.1741 1 FALSE G R 69 90 ECA1676
## 3 744.4255 1 TRUE Q R 131 142 XXX_ECA2855
## DBseqLength DatabaseSeq DatabaseDescription
## 1 1295 ECA2006 ATP-dependent helicase
## 2 110 ECA1676 putative growth inhibitory protein
## 3 157
## scan.number.s. acquisitionNum
## 1 2949 2949
## 2 6534 6534
## 3 5674 5674
## spectrumFile
## 1 TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML
## 2 TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML
## 3 TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML
## idFile
## 1 TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid
## 2 TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid
## 3 TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid
## MS.GF.RawScore MS.GF.DeNovoScore MS.GF.SpecEValue MS.GF.EValue
## 1 10 101 4.617121e-08 0.1321981
## 2 12 121 7.255875e-08 0.2087481
## 3 8 74 9.341019e-08 0.2674533
## MS.GF.QValue MS.GF.PepQValue modName modMass modLocation
## 1 0.5254237 0.5490196 Carbamidomethyl 57.02146 3
## 2 0.6103896 0.6231884 Carbamidomethyl 57.02146 11
## 3 0.6250000 0.6363636 Carbamidomethyl 57.02146 5
## subOriginalResidue subReplacementResidue subLocation
## 1 <NA> <NA> NA
## 2 <NA> <NA> NA
## 3 <NA> <NA> NA
## [ reached 'max' / getOption("max.print") -- omitted 3 rows ]
When adding identification data with the addIdentificationData
function as shown above, the data is first read with readMzIdData
,
and is then cleaned up:
## at this stage, we still have all the PSMs
table(iddf$isDecoy)
##
## FALSE TRUE
## 2906 2896
table(iddf$rank)
##
## 1 2 3 4
## 5487 302 12 1
Exercise This behaviour can be replicates with the
filterIdentificationDataFrame
function. Try it out for yourself.
iddf2 <- filterIdentificationDataFrame(iddf)
table(iddf2$isDecoy)
##
## FALSE
## 2710
table(iddf2$rank)
##
## 1
## 2710
Exercise The standard tidyverse tools are fit for data wrangling with identification data. Using the above identification dataframe, calculate the length of each peptide (you can use
nchar
with the peptide sequencesequence
) and the number of peptides for each protein (defined asDatabaseDescription
). Plot the length of the proteins against their respective number of peptides. Optionally, stratify the plot by the peptide e-value score (MS.GF.EValue
) using for examplecut
to define bins.
suppressPackageStartupMessages(library("dplyr"))
iddf2 <- as_tibble(iddf2) %>%
mutate(peplen = nchar(sequence))
npeps <- iddf2 %>%
group_by(DatabaseDescription) %>%
tally
iddf2 <- full_join(iddf2, npeps)
## Joining, by = "DatabaseDescription"
library("ggplot2")
ggplot(iddf2, aes(x = n, y = DBseqLength)) + geom_point()
iddf2$evalBins <- cut(iddf2$MS.GF.EValue, summary(iddf2$MS.GF.EValue))
ggplot(iddf2, aes(x = n, y = DBseqLength, color = peplen)) +
geom_point() +
facet_wrap(~ evalBins)
Along the lines of what is available for raw data, the parsing of this
XML-based format comes from mzR
. A file handle to mzIdentML
files
can be created with the openIDfile
function. As for raw data, the
underlying C/C++ code comes from the
proteowizard.
library("mzR")
id1 <- openIDfile(idf)
id1
## Identification file handle.
## Filename: TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid
## Number of psms: 5759
Various data can be extracted from the identification object. The
peptide spectrum matches (PSMs) and the identification scores can be
accessed as a data.frame with psms
and score
respectively.
softwareInfo(id1)
## [1] "MS-GF+ Beta (v10072) "
## [2] "ProteoWizard MzIdentML 3.0.501 ProteoWizard"
enzymes(id1)
## name nTermGain cTermGain minDistance missedCleavages
## 1 Trypsin 0 1000
fid1 <- mzR::psms(id1)
head(fid1)
## spectrumID chargeState rank
## 1 controllerType=0 controllerNumber=1 scan=5782 3 1
## 2 controllerType=0 controllerNumber=1 scan=6037 3 1
## 3 controllerType=0 controllerNumber=1 scan=5235 3 1
## 4 controllerType=0 controllerNumber=1 scan=5397 3 1
## 5 controllerType=0 controllerNumber=1 scan=6075 3 1
## passThreshold experimentalMassToCharge calculatedMassToCharge
## 1 TRUE 1080.2325 1080.2321
## 2 TRUE 1002.2089 1002.2115
## 3 TRUE 1189.2836 1189.2800
## 4 TRUE 960.5365 960.5365
## 5 TRUE 1264.3409 1264.3419
## sequence modNum isDecoy post pre start end
## 1 PVQIQAGEDSNVIGALGGAVLGGFLGNTIGGGSGR 0 FALSE S R 50 84
## 2 TQVLDGLINANDIEVPVALIDGEIDVLR 0 FALSE R K 288 315
## 3 TKGLNVMQNLLTAHPDVQAVFAQNDEMALGALR 0 FALSE A R 192 224
## 4 SQILQQAGTSVLSQANQVPQTVLSLLR 0 FALSE - R 264 290
## 5 PIIGDNPFVVVLPDVVLDESTADQTQENLALLISR 0 FALSE F R 119 153
## DatabaseAccess DBseqLength DatabaseSeq
## 1 ECA1932 155
## 2 ECA1147 434
## 3 ECA0013 295
## 4 ECA1731 290
## 5 ECA1443 298
## DatabaseDescription scan.number.s.
## 1 ECA1932 outer membrane lipoprotein 5782
## 2 ECA1147 trigger factor 6037
## 3 ECA0013 ribose-binding periplasmic protein 5235
## 4 ECA1731 flagellin 5397
## 5 ECA1443 UTP--glucose-1-phosphate uridylyltransferase 6075
## acquisitionNum
## 1 5782
## 2 6037
## 3 5235
## 4 5397
## 5 6075
## [ reached 'max' / getOption("max.print") -- omitted 1 rows ]
sc1 <- mzR::score(id1)
head(sc1)
## spectrumID MS.GF.RawScore
## 1 controllerType=0 controllerNumber=1 scan=5782 147
## 2 controllerType=0 controllerNumber=1 scan=6037 214
## 3 controllerType=0 controllerNumber=1 scan=5235 211
## 4 controllerType=0 controllerNumber=1 scan=5397 154
## 5 controllerType=0 controllerNumber=1 scan=6075 188
## 6 controllerType=0 controllerNumber=1 scan=5761 123
## MS.GF.DeNovoScore MS.GF.SpecEValue MS.GF.EValue MS.GF.QValue
## 1 174 3.764831e-27 1.086033e-20 0
## 2 245 6.902626e-26 1.988774e-19 0
## 3 264 1.778789e-25 5.129649e-19 0
## 4 178 1.792541e-24 5.163566e-18 0
## 5 252 1.510364e-23 4.356914e-17 0
## 6 138 1.618941e-23 4.658952e-17 0
## MS.GF.PepQValue
## 1 0
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
The mzID package, has similar functionality to parse identification files, and was the first one to provide such capabilities in R. The main difference with mzR is that is parses the files using the XMLpackage and reads the whole data into memory rather than relying on proteowizard, and is slower.
While searches are generally performed using third-party software
independently of R or can be started from R using a system
call, the
MSGFplus package enables to perform a search using the
MSGF+ engine, as illustrated below.
We search the TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML file against the fasta file from
PXD000001
using MSGFplus
.
We first download the fasta files from ProteomeXchange:
fas <- pxget(px, "erwinia_carotovora.fasta")
## Downloading 1 file
basename(fas)
## [1] "erwinia_carotovora.fasta"
Below, we setup and run the
search5 In the runMSGF
call, the memory allocated to the java virtual machine is limited to 1GB. In general, there is no need to specify this argument, unless you experience an error regarding the maximum heap size..
library("MSGFplus")
msgfpar <- msgfPar(database = fas,
instrument = 'HighRes',
tda = TRUE,
enzyme = 'Trypsin',
protocol = 'iTRAQ')
idres <- runMSGF(msgfpar, mzf, memory=1000)
## '/usr/bin/java' -Xmx1000M -jar '/home/lg390/R/x86_64-pc-linux-gnu-library/3.4/MSGFplus/MSGFPlus/MSGFPlus.jar' -s '/home/lg390/Documents/Teaching/bioc-ms-prot/TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML' -o '/home/lg390/Documents/Teaching/bioc-ms-prot/TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid' -d '/home/lg390/Documents/Teaching/bioc-ms-prot/erwinia_carotovora.fasta' -tda 1 -inst 1 -e 1 -protocol 2
##
## reading TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid... DONE!
idres
## An mzID object
##
## Software used: MS-GF+ (version: Beta (v10072))
##
## Rawfile: /home/lg390/Documents/Teaching/bioc-ms-prot/TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML
##
## Database: /home/lg390/Documents/Teaching/bioc-ms-prot/erwinia_carotovora.fasta
##
## Number of scans: 5343
## Number of PSM's: 5656
## identification file (needed below)
basename(mzID::files(idres)$id)
## [1] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid"
A graphical interface to perform the search the data and explore the results is also available:
library("MSGFgui")
MSGFgui()
The rTANDEM package can be used to perform a search with XTandem software.
The MSnID package can be used for post-search filtering
of MS/MS identifications. One starts with the construction of an
MSnID
object that is populated with identification results that can
be imported from a data.frame
or from mzIdenML
files. Here, we
will use the example identification data provided with the package.
mzids <- system.file("extdata", "c_elegans.mzid.gz", package="MSnID")
basename(mzids)
## [1] "c_elegans.mzid.gz"
We start by loading the package, initialising the MSnID
object, and
add the identification result from our mzid
file (there could of
course be more that one).
library("MSnID")
msnid <- MSnID(".")
## Note, the anticipated/suggested columns in the
## peptide-to-spectrum matching results are:
## -----------------------------------------------
## accession
## calculatedMassToCharge
## chargeState
## experimentalMassToCharge
## isDecoy
## peptide
## spectrumFile
## spectrumID
msnid <- read_mzIDs(msnid, mzids)
## Loaded cached data
show(msnid)
## MSnID object
## Working directory: "."
## #Spectrum Files: 1
## #PSMs: 12263 at 36 % FDR
## #peptides: 9489 at 44 % FDR
## #accessions: 7414 at 76 % FDR
Printing the MSnID
object returns some basic information such as
The package then enables to define, optimise and apply filtering based for example on missed cleavages, identification scores, precursor mass errors, etc. and assess PSM, peptide and protein FDR levels. To properly function, it expects to have access to the following data
## [1] "accession" "calculatedMassToCharge"
## [3] "chargeState" "experimentalMassToCharge"
## [5] "isDecoy" "peptide"
## [7] "spectrumFile" "spectrumID"
which are indeed present in our data:
names(msnid)
## [1] "spectrumID" "scan number(s)"
## [3] "acquisitionNum" "passThreshold"
## [5] "rank" "calculatedMassToCharge"
## [7] "experimentalMassToCharge" "chargeState"
## [9] "MS-GF:DeNovoScore" "MS-GF:EValue"
## [11] "MS-GF:PepQValue" "MS-GF:QValue"
## [13] "MS-GF:RawScore" "MS-GF:SpecEValue"
## [15] "AssumedDissociationMethod" "IsotopeError"
## [17] "isDecoy" "post"
## [19] "pre" "end"
## [21] "start" "accession"
## [23] "length" "description"
## [25] "pepSeq" "modified"
## [27] "modification" "idFile"
## [29] "spectrumFile" "databaseFile"
## [31] "peptide"
Here, we summarise a few steps and redirect the reader to the package’s vignette for more details:
Cleaning irregular cleavages at the termini of the peptides and
missing cleavage site within the peptide sequences. The following two
function call create the new numMisCleavages
and numIrrCleabages
columns in the MSnID
object
msnid <- assess_termini(msnid, validCleavagePattern="[KR]\\.[^P]")
msnid <- assess_missed_cleavages(msnid, missedCleavagePattern="[KR](?=[^P$])")
Now, we can use the apply_filter
function to effectively apply
filters. The strings passed to the function represent expressions that
will be evaluated, this keeping only PSMs that have 0 irregular
cleavages and 2 or less missed cleavages.
msnid <- apply_filter(msnid, "numIrregCleavages == 0")
msnid <- apply_filter(msnid, "numMissCleavages <= 2")
show(msnid)
## MSnID object
## Working directory: "."
## #Spectrum Files: 1
## #PSMs: 7838 at 17 % FDR
## #peptides: 5598 at 23 % FDR
## #accessions: 3759 at 53 % FDR
Using "calculatedMassToCharge"
and "experimentalMassToCharge"
, the
mass_measurement_error
function calculates the parent ion mass
measurement error in parts per million.
summary(mass_measurement_error(msnid))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2184.0640 -0.6992 0.0000 17.6146 0.7512 2012.5178
We then filter any matches that do not fit the +/- 20 ppm tolerance
msnid <- apply_filter(msnid, "abs(mass_measurement_error(msnid)) < 20")
summary(mass_measurement_error(msnid))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -19.7797 -0.5866 0.0000 -0.2970 0.5713 19.6758
Filtering of the identification data will rely on
msnid$msmsScore <- -log10(msnid$`MS-GF:SpecEValue`)
msnid$absParentMassErrorPPM <- abs(mass_measurement_error(msnid))
MS2 filters are handled by a special MSnIDFilter
class objects, where
individual filters are set by name (that is present in names(msnid)
)
and comparison operator (>, <, = , …) defining if we should retain
hits with higher or lower given the threshold and finally the
threshold value itself.
filtObj <- MSnIDFilter(msnid)
filtObj$absParentMassErrorPPM <- list(comparison="<", threshold=10.0)
filtObj$msmsScore <- list(comparison=">", threshold=10.0)
show(filtObj)
## MSnIDFilter object
## (absParentMassErrorPPM < 10) & (msmsScore > 10)
We can then evaluate the filter on the identification data object, which return the false discovery rate and number of retained identifications for the filtering criteria at hand.
evaluate_filter(msnid, filtObj)
## fdr n
## PSM 0 3807
## peptide 0 2455
## accession 0 1009
Rather than setting filtering values by hand, as shown above, these can be set automativally to meet a specific false discovery rate.
filtObj.grid <- optimize_filter(filtObj, msnid, fdr.max=0.01,
method="Grid", level="peptide",
n.iter=500)
show(filtObj.grid)
## MSnIDFilter object
## (absParentMassErrorPPM < 3) & (msmsScore > 7.4)
evaluate_filter(msnid, filtObj.grid)
## fdr n
## PSM 0.004097561 5146
## peptide 0.006447651 3278
## accession 0.021996616 1208
Filters can eventually be applied (rather than just evaluated) using
the apply_filter
function.
msnid <- apply_filter(msnid, filtObj.grid)
show(msnid)
## MSnID object
## Working directory: "."
## #Spectrum Files: 1
## #PSMs: 5146 at 0.41 % FDR
## #peptides: 3278 at 0.64 % FDR
## #accessions: 1208 at 2.2 % FDR
And finally, identifications that matched decoy and contaminant protein sequences are removed
msnid <- apply_filter(msnid, "isDecoy == FALSE")
msnid <- apply_filter(msnid, "!grepl('Contaminant',accession)")
show(msnid)
## MSnID object
## Working directory: "."
## #Spectrum Files: 1
## #PSMs: 5117 at 0 % FDR
## #peptides: 3251 at 0 % FDR
## #accessions: 1179 at 0 % FDR
The resulting filtered identification data can be exported to a
data.frame
or to a dedicated MSnSet
data structure for
quantitative MS data, described below, and further processed and
analyses using appropriate statistical tests.
Annotated spectra and comparing spectra.
par(mfrow = c(1, 2))
data(itraqdata)
itraqdata2 <- pickPeaks(itraqdata, verbose = FALSE) ## centroiding
s <- "SIGFEGDSIGR"
plot(itraqdata2[[14]], s, main = s)
plot(itraqdata2[[25]], itraqdata2[[28]], sequences = rep("IMIDLDGTENK", 2))
The annotation of spectra is obtained by simulating fragmentation of a peptide and matching observed peaks to fragments:
calculateFragments("SIGFEGDSIGR")
## mz ion type pos z seq
## 1 88.03931 b1 b 1 1 S
## 2 201.12337 b2 b 2 1 SI
## 3 258.14483 b3 b 3 1 SIG
## 4 405.21324 b4 b 4 1 SIGF
## 5 534.25583 b5 b 5 1 SIGFE
## 6 591.27729 b6 b 6 1 SIGFEG
## 7 706.30423 b7 b 7 1 SIGFEGD
## 8 793.33626 b8 b 8 1 SIGFEGDS
## 9 906.42032 b9 b 9 1 SIGFEGDSI
## 10 963.44178 b10 b 10 1 SIGFEGDSIG
## 11 175.11895 y1 y 1 1 R
## 12 232.14041 y2 y 2 1 GR
## 13 345.22447 y3 y 3 1 IGR
## 14 432.25650 y4 y 4 1 SIGR
## 15 547.28344 y5 y 5 1 DSIGR
## 16 604.30490 y6 y 6 1 GDSIGR
## [ reached 'max' / getOption("max.print") -- omitted 16 rows ]
Visualising a pair of spectra means that we can access them, and that,
in addition to plotting, we can manipulate them and perform
computations. The two spectra corresponding to the IMIDLDGTENK
peptide, for example have
22
common peaks, a correlation of
0.198
and a dot product of
0.21
(see ?compareSpectra
for details).
Exercise Use the
compareSpectra
function to compare spectra 25 and 28 plotted above, calculating the metrics mentioned above. Don’t forget to pick peaks fromitraqdata
first.
data(itraqdata)
itraqdata2 <- pickPeaks(itraqdata, verbose = FALSE)
compareSpectra(itraqdata2[[25]], itraqdata2[[28]], fun = "common")
## [1] 22
compareSpectra(itraqdata2[[25]], itraqdata2[[28]], fun = "cor")
## [1] 0.1983378
compareSpectra(itraqdata2[[25]], itraqdata2[[28]], fun = "dotproduct")
## [1] 0.2101533
There are a wide range of proteomics quantitation techniques that can broadly be classified as labelled vs. label-free, depending whether the features are labelled prior the MS acquisition and the MS level at which quantitation is inferred, namely MS1 or MS2.
Label-free | Labelled | |
---|---|---|
MS1 | XIC | SILAC, 15N |
MS2 | Counting | iTRAQ, TMT |
In terms of raw data quantitation, most efforts have been devoted to MS2-level quantitation. Label-free XIC quantitation has however been addressed in the frame of metabolomics data processing by the xcms infrastructure.
Below is a list of suggested packages for some common proteomics quantitation technologies:
MSnSet
class for quantitative dataQuantitative data is stored in a dedicated data structure called
MSnSet
. The figure below gives a schematics of an MSnSet
instance
and the relation between the assay data and the respective feature and
sample metadata, accessible respectively with the exprs
, fData
and
pData
functions.
Storing quantitative data in an MSnSet
quaranties that the feature
(peptides or proteins) and sample annotations are correctly aligned
with the quantitative data, i.e.
This correspondance is also guaranteed during all data processing and manipulation.
An MSnExp
is converted to an MSnSet
by the quantitation
method. Below, we use the iTRAQ 4-plex isobaric tagging strategy
(defined by the iTRAQ4
parameter; other tags are available: see
?ReporterIons
) and the max
method to calculate the use the maximum
of the reporter peak for quantitation.
plot(msexp[[1]], full=TRUE, reporters = iTRAQ4)
msset <- quantify(msexp, method = "max", reporters = iTRAQ4)
Below, we access the quantitative and metadata slots of the newly
created MSnSet
object.
exprs(msset)
## iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117
## F1.S1 706555.7 685055.1 929016.1 668245.2
## F1.S2 260663.7 212745.0 163782.8 239142.7
## F1.S3 2213566.0 2069209.6 2204032.2 2331846.8
## F1.S4 616043.4 705976.6 671828.8 666845.6
## F1.S5 1736128.2 1787622.5 1795311.8 1825523.0
head(fData(msset))
## spectrum acquisition.number sequence chargeState rank
## F1.S1 1 1 VESITARHGEVLQLRPK 3 1
## F1.S2 2 2 IDGQWVTHQWLKK 3 1
## passThreshold experimentalMassToCharge calculatedMassToCharge modNum
## F1.S1 TRUE 645.3741 645.0375 0
## F1.S2 TRUE 546.9586 546.9633 0
## isDecoy post pre start end DatabaseAccess DBseqLength DatabaseSeq
## F1.S1 FALSE A R 170 186 ECA0984 231
## F1.S2 FALSE A K 50 62 ECA1028 275
## DatabaseDescription
## F1.S1 ECA0984 DNA mismatch repair protein
## F1.S2 ECA1028 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase
## scan.number.s. idFile MS.GF.RawScore MS.GF.DeNovoScore
## F1.S1 1 dummyiTRAQ.mzid -39 77
## F1.S2 2 dummyiTRAQ.mzid -30 39
## MS.GF.SpecEValue MS.GF.EValue modName modMass modLocation
## F1.S1 5.527468e-05 79.36958 <NA> NA NA
## F1.S2 9.399048e-06 13.46615 <NA> NA NA
## subOriginalResidue subReplacementResidue subLocation nprot npep.prot
## F1.S1 <NA> <NA> NA 1 1
## F1.S2 <NA> <NA> NA 1 1
## npsm.prot npsm.pep fileIdx retention.time precursor.mz
## F1.S1 1 1 1 1501.35 645.3741
## F1.S2 1 1 1 1501.59 546.9586
## precursor.intensity charge peaks.count tic ionCount ms.level
## F1.S1 47659400 3 2921 182542000 668170086 2
## F1.S2 26356100 3 1012 16488100 56758067 2
## collision.energy
## F1.S1 40
## F1.S2 40
## [ reached 'max' / getOption("max.print") -- omitted 3 rows ]
pData(msset)
## mz reporters
## iTRAQ4.114 114.1112 iTRAQ4
## iTRAQ4.115 115.1083 iTRAQ4
## iTRAQ4.116 116.1116 iTRAQ4
## iTRAQ4.117 117.1150 iTRAQ4
New columns can be added to the metadata slots.
pData(msset)$groups <- rep(c("Treat", "Cond"), each = 2)
pData(msset)
## mz reporters groups
## iTRAQ4.114 114.1112 iTRAQ4 Treat
## iTRAQ4.115 115.1083 iTRAQ4 Treat
## iTRAQ4.116 116.1116 iTRAQ4 Cond
## iTRAQ4.117 117.1150 iTRAQ4 Cond
Another useful slot is processingData
, accessed with
processingData(.)
, that records all the processing that objects have
undergone since their creation.
processingData(msset)
## - - - Processing information - - -
## Data loaded: Mon Feb 18 16:01:12 2019
## iTRAQ4 quantification by max: Mon Feb 18 16:01:37 2019
## MSnbase version: 2.9.3
Other MS2 quantitation methods available in quantify
include the
(normalised) spectral index SI
and (normalised) spectral abundance
factor SAF
or simply a simple count
method6 The code below is for illustration only - it doesn’t make much sense to perform any of these quantitations on such a multiplexed data.
exprs(si <- quantify(msexp, method = "SIn"))
## dummyiTRAQ.mzXML
## ECA0510 0.0006553518
## ECA0984 0.0035384487
## ECA1028 0.0002684726
exprs(saf <- quantify(msexp, method = "NSAF"))
## dummyiTRAQ.mzXML
## ECA0510 0.4306167
## ECA0984 0.3094475
## ECA1028 0.2599359
Note that spectra that have not been assigned any peptide (NA
) or
that match non-unique peptides (npsm > 1
) are discarded in the
counting process.
As shown above, the MSnID package enables to explore
and assess the confidence of identification data using mzid
files. A
subset of all peptide-spectrum matches, that pass a specific false
discovery rate threshold can them be converted to an MSnSet
, where
the number of peptide occurrences are used to populate the assay data.
MzTab
filesThe Proteomics Standard Initiative (PSI) mzTab
file format is aimed
at providing a simpler (than XML formats) and more accessible file
format to the wider community. It is composed of a key-value metadata
section and peptide/protein/small molecule tabular sections. These
data can be imported with the readMzTabData
function7 We specify version 0.9 (which generates the warning) to fit with the version of that file. For recent files, the version
argument should be ignored to use the importer for the current file version 1.0..
mztf <- pxget(px, "F063721.dat-mztab.txt")
## Downloading 1 file
(mzt <- readMzTabData(mztf, what = "PEP", version = "0.9"))
## Warning: Version 0.9 is deprecated. Please see '?readMzTabData' and '?
## MzTab' for details.
## MSnSet (storageMode: lockedEnvironment)
## assayData: 1528 features, 6 samples
## element names: exprs
## protocolData: none
## phenoData
## sampleNames: sub[1] sub[2] ... sub[6] (6 total)
## varLabels: abundance
## varMetadata: labelDescription
## featureData
## featureNames: 1 2 ... 1528 (1528 total)
## fvarLabels: sequence accession ... uri (14 total)
## fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:
## - - - Processing information - - -
## mzTab read: Mon Jun 19 23:10:32 2017
## MSnbase version: 2.3.6
It is also possible to import arbitrary spreadsheets (such as those
exported by MaxQuant, ProteomeDiscoverer, …) as MSnSet
objects
into R with the readMSnSet2
function. The main 2 arguments of the
function are (1) a text-based spreadsheet and (2) column names of
indices that identify the quantitation data. The latter can be queried
with the getEcols
function.
csv <- dir(system.file ("extdata" , package = "pRolocdata"),
full.names = TRUE, pattern = "pr800866n_si_004-rep1.csv")
getEcols(csv, split = ",")
## [1] "\"Protein ID\"" "\"FBgn\""
## [3] "\"Flybase Symbol\"" "\"No. peptide IDs\""
## [5] "\"Mascot score\"" "\"No. peptides quantified\""
## [7] "\"area 114\"" "\"area 115\""
## [9] "\"area 116\"" "\"area 117\""
## [11] "\"PLS-DA classification\"" "\"Peptide sequence\""
## [13] "\"Precursor ion mass\"" "\"Precursor ion charge\""
## [15] "\"pd.2013\"" "\"pd.markers\""
ecols <- 7:10
res <- readMSnSet2(csv, ecols)
head(exprs(res))
## area.114 area.115 area.116 area.117
## 1 0.379000 0.281000 0.225000 0.114000
## 2 0.420000 0.209667 0.206111 0.163889
## 3 0.187333 0.167333 0.169667 0.476000
## 4 0.247500 0.253000 0.320000 0.179000
## 5 0.216000 0.183000 0.342000 0.259000
## 6 0.072000 0.212333 0.573000 0.142667
head(fData(res))
## Protein.ID FBgn Flybase.Symbol No..peptide.IDs Mascot.score
## 1 CG10060 FBgn0001104 G-ialpha65A 3 179.86
## 2 CG10067 FBgn0000044 Act57B 5 222.40
## 3 CG10077 FBgn0035720 CG10077 5 219.65
## 4 CG10079 FBgn0003731 Egfr 2 86.39
## 5 CG10106 FBgn0029506 Tsp42Ee 1 52.10
## 6 CG10130 FBgn0010638 Sec61beta 2 79.90
## No..peptides.quantified PLS.DA.classification Peptide.sequence
## 1 1 PM
## 2 9 PM
## 3 3
## 4 2 PM
## 5 1 GGVFDTIQK
## 6 3 ER/Golgi
## Precursor.ion.mass Precursor.ion.charge pd.2013 pd.markers
## 1 PM unknown
## 2 PM unknown
## 3 unknown unknown
## 4 PM unknown
## 5 626.887 2 Phenotype 1 unknown
## 6 ER/Golgi ER
However, as we see below, we do not have any metadata about samples, i.e. about the design of the experiment.
pData(res)
## data frame with 0 columns and 4 rows
This can be done manually, or by importing a csv file containing that
design. Below, we define two groups and two operators for the 4
samples of the res
object created above:
pData(res)$group <- rep(c("A", "B"), each = 2)
pData(res)$operator <- rep(1:2, 2)
pData(res)
## group operator
## area.114 A 1
## area.115 A 2
## area.116 B 1
## area.117 B 2
Note that pData(res)$
can be shortened with res$
. This is also
valid when setting new metadata, as shown above.
pData(res)$group
## [1] "A" "A" "B" "B"
res$group
## [1] "A" "A" "B" "B"
Exercise Using
readMSnSet2
, load the following file that was part of the supplementary information of a manuscript.
csvfile <- dir(system.file("extdata", package = "pRolocdata"),
pattern = "hyperLOPIT-SIData-ms3-rep12-intersect.csv",
full.names = TRUE)
basename(csvfile)
## [1] "hyperLOPIT-SIData-ms3-rep12-intersect.csv.gz"
You’ll first need to identify which columns to use as expression data. In this case however, two rows are used as header, and you’ll need to set
n
ingetEcols
to retrieve the appropriate one. There are 20 expresion columns annotated as TMT 10 plex reporter ion M/Z values (if you don’t know these, you can find them out by looking at theTMT10
reporter ion object). You can now usereadMSnSet2
, remembering to skip 1 line and, optionally, use the first column as feature names (see thefnames
argument). What are the number of features and samples in the data?
getEcols(csvfile, split = ",", n = 2)
## [1] ""
## [2] ""
## [3] ""
## [4] "Experiment 1"
## [5] "Experiment 2"
## [6] "Experiment 1"
## [7] "Experiment 2"
## [8] "126"
## [9] "127N"
## [10] "127C"
## [11] "128N"
## [12] "128C"
## [13] "129N"
## [14] "129C"
## [15] "130N"
## [16] "130C"
## [17] "131"
## [18] "126"
## [19] "127N"
## [20] "127C"
## [21] "128N"
## [22] "128C"
## [23] "129N"
## [24] "129C"
## [25] "130N"
## [26] "130C"
## [27] "131"
## [28] "phenoDisco Input"
## [29] "phenoDisco Output"
## [30] "Curated phenoDisco Output"
## [31] "SVM marker set"
## [32] "SVM classification"
## [33] "SVM score"
## [34] "SVM classification (top quartile)"
## [35] "Final Localization Assignment"
## [36] "First localization evidence?"
## [37] "Curated Organelles"
## [38] "Cytoskeletal Components"
## [39] "Trafficking Proteins"
## [40] "Protein Complexes"
## [41] "Signaling Cascades"
## [42] "Oct4 Interactome"
## [43] "Nanog Interactome"
## [44] "Sox2 Interactome"
## [45] "Cell Surface Proteins"
msn <- readMSnSet2(csvfile, ecol = 8:27, fnames = 1, skip = 1)
dim(msn)
## [1] 5032 20
Exercise Add the following experimental design to the
MSnSet
created above. The 10 first samples originate from batch A, and the 10 following from batch B. Sameple 1 to 5 and 11 to 15 belong to the control group, and the others to the condition group. Even samples are female and odd samples are male.
msn$batch <- rep(c("A", "B"), each = 10)
msn$group <- rep(rep(c("CTRL", "COND"), each = 5), 2)
msn$gender <- rep(c("M", "F"), 10)
pData(msn)
## batch group gender
## X126 A CTRL M
## X127N A CTRL F
## X127C A CTRL M
## X128N A CTRL F
## X128C A CTRL M
## X129N A COND F
## X129C A COND M
## X130N A COND F
## X130C A COND M
## X131 A COND F
## X126.1 B CTRL M
## X127N.1 B CTRL F
## X127C.1 B CTRL M
## X128N.1 B CTRL F
## X128C.1 B CTRL M
## X129N.1 B COND F
## X129C.1 B COND M
## X130N.1 B COND F
## X130C.1 B COND M
## X131.1 B COND F
For raw data processing look at MSnbase
’s clean
, smooth
,
pickPeaks
, removePeaks
and trimMz
for MSnExp
and spectra
processing methods.
As an illustration, we show the pickPeaks
function on the
itraqdata
data. Centoiding transforms the distribution of M/Z values
measured for an ion (i.e. a set of M/Z and intensities, first figure
below) into a single M/Z and intensity pair of values (second figure
below).
library("ggplot2") ## for coord_cartesian
data(itraqdata)
plot(itraqdata[[10]], full = TRUE) +
coord_cartesian(xlim = c(915, 925))
itraqdata2 <- pickPeaks(itraqdata)
plot(itraqdata2[[10]], full = TRUE) +
coord_cartesian(xlim = c(915, 925))
The MALDIquant and xcms packages also features a wide range of raw data processing methods on their own ad hoc data instance types.
Each different types of quantitative data will require their own
pre-processing and normalisation steps. Both isobar
and MSnbase
allow to correct for isobaric tag impurities normalise the
quantitative data.
data(itraqdata)
qnt <- quantify(itraqdata, method = "trap", reporters = iTRAQ4)
impurities <- matrix(c(0.929, 0.059, 0.002, 0.000,
0.020, 0.923, 0.056, 0.001,
0.000, 0.030, 0.924, 0.045,
0.000, 0.001, 0.040, 0.923),
nrow = 4, byrow = TRUE)
## or, using makeImpuritiesMatrix()
## impurities <- makeImpuritiesMatrix(4)
qnt <- purityCorrect(qnt, impurities)
processingData(qnt)
## - - - Processing information - - -
## Data loaded: Wed May 11 18:54:39 2011
## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016]
## iTRAQ4 quantification by trapezoidation: Mon Feb 18 16:01:39 2019
## Purity corrected: Mon Feb 18 16:01:39 2019
## MSnbase version: 1.1.22
Various normalisation methods can be applied the MSnSet
instances
using the normalise
method: variance stabilisation (vsn
), quantile
(quantiles
), median or mean centring (center.median
or
center.mean
), …
qnt <- normalise(qnt, "quantiles")
processingData(qnt)
## - - - Processing information - - -
## Data loaded: Wed May 11 18:54:39 2011
## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016]
## iTRAQ4 quantification by trapezoidation: Mon Feb 18 16:01:39 2019
## Purity corrected: Mon Feb 18 16:01:39 2019
## Normalised (quantiles): Mon Feb 18 16:01:39 2019
## MSnbase version: 1.1.22
The combineFeatures
method combines spectra/peptides quantitation
values into protein data. The grouping is defined by the groupBy
parameter, which is generally taken from the feature metadata (protein
accessions, for example).
prt <- combineFeatures(qnt, fcol = "ProteinDescription", fun = "median")
## Your data contains missing values. Please read the relevant
## section in the combineFeatures manual page for details the effects
## of missing values on data aggregation.
processingData(prt)
## - - - Processing information - - -
## Data loaded: Wed May 11 18:54:39 2011
## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016]
## iTRAQ4 quantification by trapezoidation: Mon Feb 18 16:01:39 2019
## Purity corrected: Mon Feb 18 16:01:39 2019
## Normalised (quantiles): Mon Feb 18 16:01:39 2019
## Combined 55 features into 39 using median: Mon Feb 18 16:01:39 2019
## MSnbase version: 2.9.3
Finally, proteomics data analysis is generally hampered by missing values. Missing data imputation is a sensitive operation whose success will be guided by many factors, such as degree and (non-)random nature of the missingness.
Below, we load an MSnSet
with missing values, count the number
missing and non-missing values.
data(naset)
table(is.na(naset))
##
## FALSE TRUE
## 10254 770
The naplot
figure will reorder cells within the data matrix so that
the experiments and features with many missing values will be grouped
towards the top and right of the heatmap, and barplots at the top and
right summarise the number of missing values in the respective samples
(column) and rows (rows).
naplot(naset)
The importance of missing values in a dataset will depend on the quantitation technology employed. Label-free quantitation in particular can suffer from a very high number of missing values.
Missing value in MSnSet
instances can be filtered out with the
filterNA
functions. By default, it removes features that contain at
least NA
value.
## remove features with missing values
tmp <- filterNA(naset)
processingData(tmp)
## - - - Processing information - - -
## Subset [689,16][301,16] Mon Feb 18 16:01:39 2019
## Removed features with more than 0 NAs: Mon Feb 18 16:01:39 2019
## Dropped featureData's levels Mon Feb 18 16:01:39 2019
## MSnbase version: 1.15.6
It is of course possible to impute missing values (?impute
). This is
however not a straightforward thing, as is likely to dramatically fail
when a high proportion of data is missing (10s of
%)8 Note that when using limma for instance, downstream analyses can handle missing values. Still, it is recommended to explore missingness as part of the exploratory data analysis.. But
also, there are two types of mechanisms resulting in missing values in
LC/MSMS experiments.
Missing values resulting from absence of detection of a feature, despite ions being present at detectable concentrations. For example in the case of ion suppression or as a result from the stochastic, data-dependent nature of the MS acquisition method. These missing value are expected to be randomly distributed in the data and are defined as missing at random (MAR) or missing completely at random (MCAR).
Biologically relevant missing values, resulting from the absence or the low abundance of ions (below the limit of detection of the instrument). These missing values are not expected to be randomly distributed in the data and are defined as missing not at random (MNAR).
Different imputation methods are more appropriate to different classes of missing values (as documented in this paper). Values missing at random, and those missing not at random should be imputed with different methods.
Generally, it is recommended to use hot deck methods (nearest neighbour (left), maximum likelihood, …) when data are missing at random.Conversely, MNAR features should ideally be imputed with a left-censor (minimum value (right), but not zero, …) method.
## impute missing values using knn imputation
tmp <- impute(naset, method = "knn")
## Warning in knnimp(x, k, maxmiss = rowmax, maxp = maxp): 12 rows with more than 50 % entries missing;
## mean imputation used for these rows
processingData(tmp)
## - - - Processing information - - -
## Data imputation using knn Mon Feb 18 16:01:39 2019
## Using default parameters
## MSnbase version: 1.15.6
There are various methods to perform data imputation, as described in
?impute
. The imp4p package contains additional
functionality, including some to estimate the randomness of missing
data.
Exercise Following the example above, apply a mixed imputation, using knn for data missing at random and the deterministic minumum left-cencored imputation for data missing no at random.
impute(naset, "mixed",
randna = fData(naset)$randna,
mar = "knn", mnar = "MinDet")
## MSnSet (storageMode: lockedEnvironment)
## assayData: 689 features, 16 samples
## element names: exprs
## protocolData: none
## phenoData
## sampleNames: M1F1A M1F4A ... M2F11B (16 total)
## varLabels: nNA
## varMetadata: labelDescription
## featureData
## featureNames: AT1G09210 AT1G21750 ... AT4G39080 (689 total)
## fvarLabels: nNA randna
## fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:
## - - - Processing information - - -
## Data imputation using mixed Mon Feb 18 16:01:39 2019
## Using default parameters
## MSnbase version: 1.15.6
Exercise When assessing missing data imputation methods, such as in Lazar et al. (2016), one often replaces values with missing data, imputes these with a method of choice, then quantifies the difference between original (expected) and observed (imputed) values. Here, using the
naset
data, use this strategy to assess the difference between knn and Bayesian PCA imputation.
imp1 <- impute(naset, method = "knn")
## Warning in knnimp(x, k, maxmiss = rowmax, maxp = maxp): 12 rows with more than 50 % entries missing;
## mean imputation used for these rows
imp2 <- impute(naset, method = "bpca")
summary(abs(exprs(imp1)[is.na(naset)] - exprs(imp2)[is.na(naset)]))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.332e-05 6.594e-03 1.535e-02 2.315e-02 2.855e-02 2.579e-01
summary(as.numeric(na.omit(exprs(naset))))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0170 0.1865 0.2440 0.2500 0.3080 0.6587
Exercise When assessing the impact of missing value imputation on real data, one can’t use the strategy above. Another useful approach is to assess the impact of the imputation method on the distribution of the quantitative data. For instance, here is the intensity distribution of the
naset
data. Verify the effect of applyingknn
,zero
,MinDet
andbpca
on this distribution.
plot(density(na.omit(exprs(naset))))
cls <- c("black", "red", "blue", "steelblue", "orange")
plot(density(na.omit(exprs(naset))), col = cls[1])
lines(density(exprs(impute(naset, method = "knn"))), col = cls[2])
## Warning in knnimp(x, k, maxmiss = rowmax, maxp = maxp): 12 rows with more than 50 % entries missing;
## mean imputation used for these rows
lines(density(exprs(impute(naset, method = "zero"))), col = cls[3])
lines(density(exprs(impute(naset, method = "MinDet"))), col = cls[4])
lines(density(exprs(impute(naset, method = "bpca"))), col = cls[5])
legend("topright", legend = c("orig", "knn", "zero", "MinDet", "bpca"),
col = cls, lwd = 2, bty = "n")
The tidyverse
syntax has proved to be versatile and very useful for
generic data analysis, i.e. analysis of data stored in
dataframes. While it is possible to convert dedicated data containers
into dataframes, this leads to loosing data integrity checks and
access to dedicated omics data processing functions.
The tidies enables to use typical dplyr
functions directly on MSnSet
data structures. See the vignette at
http://lgatto.github.io/tidies/ for
details and examples.
library("tidies")
data(msnset)
## Some test sample groups
msnset$group <- c("A", "A", "B", "B")
msnset %>%
dplyr::select(starts_with("Protein")) %>%
fvarLabels
## [1] "ProteinAccession" "ProteinDescription"
msnset %>%
filter(ProteinAccession == "ENO") %>%
exprs
## iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117
## X27 147093.25030 94770.28613 42616.07457 21259.42497
## X46 5369.73246 1148.32171 NA 1313.44599
## X47 7384.83022 3935.30012 2370.02527 1115.75006
## X55 15.11764 15.68074 14.23333 14.03018
msnset %>% group_by(ProteinAccession) %>%
summarise(median(exprs, na.rm = TRUE)) %>%
exprs %>%
head
## iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117
## BSA 1347.616 2247.310 3927.693 7661.1463
## ECA0172 17593.548 18545.620 19361.837 18328.2365
## ECA0435 4923.628 5557.818 5775.203 5079.2952
## ECA0452 1524.148 1399.897 1547.218 1563.2299
## ECA0469 1069.945 1035.689 1029.420 999.6957
## ECA0621 1101.062 1124.167 1140.093 1191.8055
msnset %>% group_by(group) %>%
summarise(mean(exprs, na.rm = TRUE)) %>%
exprs %>%
head
## A B
## X1 1797.4628 5794.4197
## X10 769.6681 826.6388
## X11 30516.1917 29366.5078
## X12 32763.7954 37451.2196
## X13 27910.6161 28495.8100
## X14 6341.1393 6670.0603
msnset %>%
group_by(charge) %>%
summarise(mean(exprs)) %>%
group_by(group) %>%
summarise(max(exprs, na.rm = TRUE)) %>%
exprs
## A B
## 2 13880.38 12660.236
## 3 1477.78 1346.071
msnset %>%
filterNA() %>%
combineFeatures(method = "median", fcol = "ProteinAccession") %>%
group_by(group) %>%
summarise(mean(exprs)) %>%
normalise(method = "quantiles") %>%
filter(ProteinAccession %in% c('ENO', 'BSA')) %>%
exprs
## A B
## BSA 1462.295 4355.662
## ENO 41383.731 11272.133
R in general and Bioconductor in particular are well suited for the statistical analysis of data of quantitative proteomics data. Several packages provide dedicated resources for proteomics data:
MSstats and MSstatsTMT: A set of tools for statistical relative protein significanceanalysis in Data dependent (DDA), SRM, Data independent acquisition (DIA) and TMT experiments.
msmsTests: Statistical tests for label-free LC-MS/MS
data by spectral counts, to discover differentially expressed
proteins between two biological conditions. Three tests are
available: Poisson GLM regression, quasi-likelihood GLM regression,
and the negative binomial of the edgeR
package. All can be readily applied on MSnSet
instances produced,
for example by MSnID
.
isobar also provides dedicated infrastructure for the statistical analysis of isobaric data.
DEP provides an integrated analysis workflow for the analysis of mass spectrometry proteomics data for differential protein expression or differential enrichment.
Others, while not specfic to proteomics, are also recommended, such as
the limma package. When analysing spectral counting
data, methods for high throughput sequencing data are
applicable. Below, we illustrate how to apply a typical edgeR
test
to count data using the msms.edgeR
function from the msmsTests
package.
The data is illustrated below (we will see later how to generate such plots), showing two experimental conditions (red and blue points) processed as two batches (solid and empty points).
nWe first pre-process to remove features containing only 0s and
entries from the reverse database (ending with ‘-R’) (see also the
pp.msms.data
function).
library(msmsTests)
data(msms.dataset)
e <- msms.dataset[rowSums(exprs(msms.dataset)) > 0, ]
e <- e[!grepl("-R$", featureNames(e)), ]
pData(e)
## treat batch
## U2.2502.1 U200 2502
## U2.2502.2 U200 2502
## U2.2502.3 U200 2502
## U2.2502.4 U200 2502
## U6.2502.1 U600 2502
## U6.2502.2 U600 2502
## U6.2502.3 U600 2502
## U6.2502.4 U600 2502
## U2.0302.1 U200 0302
## U2.0302.2 U200 0302
## U2.0302.3 U200 0302
## U6.0302.1 U600 0302
## U6.0302.2 U600 0302
## U6.0302.3 U600 0302
null.f <- "y~batch"
alt.f <- "y~treat+batch"
div <- apply(exprs(e), 2, sum)
res <- msms.edgeR(e, alt.f, null.f, div = div)
head(res)
## LogFC LR p.value
## YJR104C 0.02689713 0.2691959 0.603871680
## YKL060C -0.12645862 5.5833478 0.018132029
## YDR155C -0.18781161 10.2706877 0.001351604
## YGR192C -0.08495735 2.5941276 0.107260484
## YOL086C -0.11853525 5.7568480 0.016424510
## YLR150W -0.09299164 1.3766329 0.240675519
It is best to store the results directly with the quantitative data. Below, we first check that the results rownames match the feature names and then add it to the feature metadata.
identical(rownames(res), featureNames(e))
## [1] TRUE
fData(e) <- cbind(fData(e), res)
And we conclude with a volcano plot of the results of the test.
plot(fData(e)$LogFC, -log10(fData(e)$p.value))
There are numerous packages for machine learing in R, many with specific omics applications and use cases in mind. An excellent general package is mlr that provides a unified interface to many methods. For a general hands-on introduction, An introduction to machine learning with R, as well as many other freely available documents are available.
The MLInterfaces package provides a unified interface
to a wide range of machine learning algorithms. Initially developed
for microarray and ExpressionSet
instances, the r Biocpkg("pRoloc")
package enables application of these algorithms to
MSnSet
data. We will also demonstrate some specific functions of the
pRoloc package.
Dimensionality reduction is very frequently used to summarise
high-dimensional data. Below we will use principal component analysis
(PCA), but other methods can be applied. Below, we will use the
plot2D
function from the pRoloc
package9 While originally developed for the analysis of spatial/organelle proteomics data in mind, it is applicable many use cases.,
that will extract the expression values in the assay data, perform
dimensionality reduction, an produce the scatter plot.
Let’s first use plot2D
to visualise the pattern in 20 protein
quantitation values (initial 20 dimensional data). Here, we use an
example from spatial proteomics, where the quantitative protein
profiles reflect the proteins sub-cellular localisation (from
Christoforou et al, 2016,
see also
Breckels et al, 2016
for more data analysis background). We will use the known localisation
of some proteins (marker proteins) to annotate the plot using the
fcol
argument, that indicates which feature variable (i.e. column un
the feature meta-data) to use.
library("pRoloc")
library("pRolocdata")
data(hyperLOPIT2015)
plot2D(hyperLOPIT2015, fcol = "markers")
addLegend(hyperLOPIT2015, fcol = "markers", cex = .7)
Exercise The results of a clasification analysis (see below) are available in
svm.classification
feature variable. Repeat the PCA plot above, colouring the proints using this variable.
plot2D(hyperLOPIT2015, fcol = "svm.classification")
In other cases, we want to visualise the relation of samples. plot2D
uses the rows of the data to perform dimensionality reduction. To use
the columns, we just need to transpose the MSnSet
. By doing so, the
pData
becomes the fData
and vice versa.
Let’s use a time-course experiment on stem cells
(Mulvey et al. 2015).
Below, we use the times
(time points) variable to set colours.
data(mulvey2015)
head(pData(mulvey2015))
## rep times cond
## rep1_0hr 1 1 1
## rep1_16hr 1 2 1
## rep1_24hr 1 3 1
## rep1_48hr 1 4 1
## rep1_72hr 1 5 1
## rep1_XEN 1 6 1
plot2D(t(mulvey2015), fcol = "times", cex = 2)
addLegend(t(mulvey2015), fcol = "times")
Exercise The
plot2D
function can use two feature variables to set colours with thefcol
argument (as above) and point characters with thefpch
argument. Use the latter to also highlight the replicate numbersrep
.
plot2D(t(mulvey2015), fcol = "times", fpch = "rep", cex = 2)
Classification is performed in two steps. First, an adequate model and its parameters are learned from labelled training data, then that model is applied on new, unlabelled data.
We are going to apply this strategy to repeat the protein sub-cellular
classification analysis of the hyperLOPIT2015
data above using a k
nearest neighbour classifier, which is generally used as a baseline
method. In the interest of time, we will only repeat the optimisation
step 10 times, even though 100 would be recommended. For details on
this procedure, please see the [main pRoloc
vignette](https://lgatto.github.io/pRoloc/articles/v01-pRoloc-tutorial.html].
p <- knnOptimisation(hyperLOPIT2015, time = 10, verbose = FALSE)
p
## Object of class "GenRegRes"
## Algorithm: knn
## Hyper-parameters:
## k: 3 5 7 9 11 13 15
## Design:
## Replication: 10 x 5-fold X-validation
## Partitioning: 0.2/0.8 (test/train)
## Results
## macro F1:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8761 0.8948 0.9232 0.9223 0.9454 0.9841
## best k: 5 3
## Use getWarnings() to see warnings.
We can now apply out best model (here k = 3) to out dataset, which
will add feature variables with the classification results (knn
) and
scores (knn.scores
).
hyperLOPIT2015 <- knnClassification(hyperLOPIT2015, p)
fvarLabels(hyperLOPIT2015)
## [1] "entry.name" "protein.description"
## [3] "peptides.rep1" "peptides.rep2"
## [5] "psms.rep1" "psms.rep2"
## [7] "phenodisco.input" "phenodisco.output"
## [9] "curated.phenodisco.output" "markers"
## [11] "svm.classification" "svm.score"
## [13] "svm.top.quartile" "final.assignment"
## [15] "first.evidence" "curated.organelles"
## [17] "cytoskeletal.components" "trafficking.proteins"
## [19] "protein.complexes" "signalling.cascades"
## [21] "oct4.interactome" "nanog.interactome"
## [23] "sox2.interactome" "cell.surface.proteins"
## [25] "markers2015" "TAGM"
## [27] "knn" "knn.scores"
Exercise Once you have performed the kNN classification as illustrated above, visualise your results on a PCA plot.
plot2D(hyperLOPIT2015, fcol = "knn")
Below, we show how to use MLInterfaces to perform a classification analysis using k nearest neighbours.
library("MLInterfaces")
library("pRolocdata")
data(dunkley2006)
traininds <- which(fData(dunkley2006)$markers != "unknown")
ans <- MLearn(markers ~ ., data = t(dunkley2006), knnI(k = 5), traininds)
ans
## MLInterfaces classification output container
## The call was:
## MLearn(formula = markers ~ ., data = t(dunkley2006), .method = knnI(k = 5),
## trainInd = traininds)
## Predicted outcome distribution for test set:
##
## ER lumen ER membrane Golgi Mitochondrion Plastid
## 5 138 66 51 29
## PM Ribosome TGN vacuole
## 91 32 6 10
## Summary of scores on test set (use testScores() method for details):
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.4000 1.0000 1.0000 0.9332 1.0000 1.0000
To illustrate how to apply clustering in the frame of what we have
seen so far, we are going to use k-means clustering on the spatial
proteomics data above, visually comparing the clusters obtains with
the results of the classification results (in the svm.classification
feature variable).
We are (1) going to perform k-means setting the number of expected clusters equal to the number of annotations, (2) store clustering results as a new feature variable, and then (3) visualise the results next to each other on two PCA plots.
We can use the kmeans
function, passing the quantiative proteomics
data and the number of anticipated clusters as input:
## number of sub-cellular niches
n <- length(getMarkerClasses(hyperLOPIT2015))
cl <- kmeans(exprs(hyperLOPIT2015), n)
table(cl$cluster)
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14
## 244 452 286 360 450 366 232 352 295 130 610 351 613 291
We can now add these results to our MSnSet
:
fData(hyperLOPIT2015)$cluster <- cl$cluster
And now visualise the classification and clustering results side by side:
setStockcol(paste0(getStockcol(), 40))
par(mfrow = c(1, 2))
plot2D(hyperLOPIT2015, fcol = "svm.classification")
plot2D(hyperLOPIT2015, fcol = "cluster")
A wide range of clustering algorithms are available in
MLInterfaces, as described in the ?MLearn
documentation page, used below. Below, we show how to use it to
perform a k-means clustering.
kcl <- MLearn( ~ ., data = dunkley2006, kmeansI, centers = 12)
kcl
## clusteringOutput: partition table
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 56 98 45 49 28 82 55 28 60 80 85 23
## The call that created this object was:
## MLearn(formula = ~., data = dunkley2006, .method = kmeansI, centers = 12)
plot(kcl, exprs(dunkley2006))
rols
packageAll the Bioconductor annotation infrastructure, such as biomaRt, GO.db, organism specific annotations, … are directly relevant to the analysis of proteomics data. A total of 191 ontologies, including some proteomics-centred annotations such as the PSI Mass Spectrometry Ontology, Molecular Interaction (PSI MI 2.5) or Protein Modifications are available through the rols
library("rols")
res <- OlsSearch(q = "ESI", ontology = "MS", exact = TRUE)
res
## Object of class 'OlsSearch':
## ontolgy: MS
## query: ESI
## requested: 20 (out of 1)
## response(s): 0
There is a single exact match (default is to retrieve 20 results),
that can be retrieved and coerced to a Terms
or data.frame
object
with
res <- olsSearch(res)
as(res, "Terms")
## Object of class 'Terms' with 1 entries
## From the MS ontology
## MS:1000073
as(res, "data.frame")
## id
## 1 ms:class:http://purl.obolibrary.org/obo/MS_1000073
## iri short_form obo_id
## 1 http://purl.obolibrary.org/obo/MS_1000073 MS_1000073 MS:1000073
## label
## 1 electrospray ionization
## description
## 1 A process in which ionized species in the gas phase are produced from an analyte-containing solution via highly charged fine droplets, by means of spraying the solution from a narrow-bore needle tip at atmospheric pressure in the presence of a high electric field. When a pressurized gas is used to aid in the formation of a stable spray, the term pneumatically assisted electrospray ionization is used. The term ion spray is not recommended.
## ontology_name ontology_prefix type is_defining_ontology
## 1 ms MS class TRUE
Data from the Human Protein Atlas is available via the hpar package. Below, we are going to illustrate how to use it with a usec ase retrieving sub-cellular information for a protein, and contrast it with data from the GO.db package.
More HPA data are available, as documented in the package manual at
?hpar
.
Let’s compare the subcellular localisation annotation obtained from the HPA subcellular location data set and the information available in the Bioconductor annotation packages.
library("hpar")
id <- "ENSG00000001460"
getHpa(id, "hpaSubcellularLoc")
## Gene Gene.name Reliability Enhanced Supported Approved
## 8 ENSG00000001460 STPG1 Approved Nucleoplasm
## Uncertain Single.cell.variation.intensity Single.cell.variation.spatial
## 8
## Cell.cycle.dependency GO.id
## 8 Nucleoplasm (GO:0005654)
Below, we first extract all cellular component GO terms available for
id
from the org.Hs.eg.db human annotation and
then retrieve their term definitions using the GO.db
database.
library("org.Hs.eg.db")
library("GO.db")
ans <- AnnotationDbi::select(org.Hs.eg.db, keys = id,
columns = c("ENSEMBL", "GO", "ONTOLOGY"),
keytype = "ENSEMBL")
ans <- ans[ans$ONTOLOGY == "CC", ]
ans
## ENSEMBL GO EVIDENCE ONTOLOGY
## 2 ENSG00000001460 GO:0005622 IMP CC
## 3 ENSG00000001460 GO:0005634 IEA CC
## 4 ENSG00000001460 GO:0005739 IEA CC
sapply(as.list(GOTERM[ans$GO]), slot, "Term")
## GO:0005622 GO:0005634 GO:0005739
## "intracellular" "nucleus" "mitochondrion"
ensembldb
packageTheensembldb allows to query and filter the data from ENSEMBL and integrates smoothly with general Bioconductor infrastructure. Below are a couple of illustrative examples, and more are available in the package vignettes.
Below, we initialise the human database:
library("ensembldb")
library("EnsDb.Hsapiens.v86")
edb <- EnsDb.Hsapiens.v86
edb
## EnsDb for Ensembl:
## |Backend: SQLite
## |Db type: EnsDb
## |Type of Gene ID: Ensembl Gene ID
## |Supporting package: ensembldb
## |Db created by: ensembldb package from Bioconductor
## |script_version: 0.3.0
## |Creation time: Thu May 18 16:32:27 2017
## |ensembl_version: 86
## |ensembl_host: localhost
## |Organism: homo_sapiens
## |taxonomy_id: 9606
## |genome_build: GRCh38
## |DBSCHEMAVERSION: 2.0
## | No. of genes: 63970.
## | No. of transcripts: 216741.
## |Protein data available.
Here are the tables and columns available for that database:
listTables(edb)
## $gene
## [1] "gene_id" "gene_name" "gene_biotype"
## [4] "gene_seq_start" "gene_seq_end" "seq_name"
## [7] "seq_strand" "seq_coord_system" "symbol"
##
## $tx
## [1] "tx_id" "tx_biotype" "tx_seq_start"
## [4] "tx_seq_end" "tx_cds_seq_start" "tx_cds_seq_end"
## [7] "gene_id" "tx_name"
##
## $tx2exon
## [1] "tx_id" "exon_id" "exon_idx"
##
## $exon
## [1] "exon_id" "exon_seq_start" "exon_seq_end"
##
## $chromosome
## [1] "seq_name" "seq_length" "is_circular"
##
## $protein
## [1] "tx_id" "protein_id" "protein_sequence"
##
## $uniprot
## [1] "protein_id" "uniprot_id" "uniprot_db"
## [4] "uniprot_mapping_type"
##
## $protein_domain
## [1] "protein_id" "protein_domain_id" "protein_domain_source"
## [4] "interpro_accession" "prot_dom_start" "prot_dom_end"
##
## $entrezgene
## [1] "gene_id" "entrezid"
##
## $metadata
## [1] "name" "value"
Protein annotations for (protein coding) transcripts can be retrieved
by simply adding the desired annotation columns to the columns
parameter.
## Get protein information for ZBTB16 transcripts
txs <- transcripts(edb, filter = GeneNameFilter("ZBTB16"),
columns = c("protein_id", "uniprot_id", "tx_biotype"))
txs
## GRanges object with 11 ranges and 5 metadata columns:
## seqnames ranges strand | protein_id
## <Rle> <IRanges> <Rle> | <character>
## ENST00000335953 11 114059593-114250676 + | ENSP00000338157
## ENST00000335953 11 114059593-114250676 + | ENSP00000338157
## ENST00000541602 11 114059725-114189764 + | <NA>
## ENST00000544220 11 114059737-114063646 + | ENSP00000437716
## ENST00000535700 11 114060257-114063744 + | ENSP00000443013
## ENST00000392996 11 114060507-114250652 + | ENSP00000376721
## ENST00000392996 11 114060507-114250652 + | ENSP00000376721
## ENST00000539918 11 114064412-114247344 + | ENSP00000445047
## ENST00000545851 11 114180766-114247296 + | <NA>
## ENST00000535379 11 114237207-114250557 + | <NA>
## ENST00000535509 11 114246790-114250476 + | <NA>
## uniprot_id tx_biotype tx_id
## <character> <character> <character>
## ENST00000335953 Q05516 protein_coding ENST00000335953
## ENST00000335953 A0A024R3C6 protein_coding ENST00000335953
## ENST00000541602 <NA> retained_intron ENST00000541602
## ENST00000544220 F5H6C3 protein_coding ENST00000544220
## ENST00000535700 F5H5Y7 protein_coding ENST00000535700
## ENST00000392996 Q05516 protein_coding ENST00000392996
## ENST00000392996 A0A024R3C6 protein_coding ENST00000392996
## ENST00000539918 H0YGW2 nonsense_mediated_decay ENST00000539918
## ENST00000545851 <NA> processed_transcript ENST00000545851
## ENST00000535379 <NA> processed_transcript ENST00000535379
## ENST00000535509 <NA> retained_intron ENST00000535509
## gene_name
## <character>
## ENST00000335953 ZBTB16
## ENST00000335953 ZBTB16
## ENST00000541602 ZBTB16
## ENST00000544220 ZBTB16
## ENST00000535700 ZBTB16
## ENST00000392996 ZBTB16
## ENST00000392996 ZBTB16
## ENST00000539918 ZBTB16
## ENST00000545851 ZBTB16
## ENST00000535379 ZBTB16
## ENST00000535509 ZBTB16
## -------
## seqinfo: 1 sequence from GRCh38 genome
Below, we download the protein sequences for the ZBTB16 gene.
prts <- proteins(edb, filter = GeneNameFilter("ZBTB16"),
return.type = "AAStringSet")
prts
## A AAStringSet instance of length 5
## width seq names
## [1] 673 MDLTKMGMIQLQNPSHPTGLL...PEEIPPDWRIEKTYLYLCYV ENSP00000338157
## [2] 115 MDLTKMGMIQLQNPSHPTGLL...AEDLDDLLYAAEILEIEYLE ENSP00000437716
## [3] 148 MDLTKMGMIQLQNPSHPTGLL...DDNDTEATMADGGAEEEEDR ENSP00000443013
## [4] 673 MDLTKMGMIQLQNPSHPTGLL...PEEIPPDWRIEKTYLYLCYV ENSP00000376721
## [5] 55 XGGLLPQGFIQRELFSKLGEL...CSVCGVELPDNEAVEQHRVF ENSP00000445047
We can also get the associated meta-data with the mcols
function.
mcols(prts)
## DataFrame with 5 rows and 3 columns
## tx_id protein_id gene_name
## <character> <character> <character>
## ENSP00000338157 ENST00000335953 ENSP00000338157 ZBTB16
## ENSP00000437716 ENST00000544220 ENSP00000437716 ZBTB16
## ENSP00000443013 ENST00000535700 ENSP00000443013 ZBTB16
## ENSP00000376721 ENST00000392996 ENSP00000376721 ZBTB16
## ENSP00000445047 ENST00000539918 ENSP00000445047 ZBTB16
After the workshop, the best place to ask questions about MS-based proteomics and relevant Bioconductor package is the Bioconductor support forum. Tagging you question with Proteomics or specific package names will alert the respective maintainers.
sessionInfo()
## R version 3.5.2 Patched (2019-01-24 r76018)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Manjaro Linux
##
## Matrix products: default
## BLAS: /usr/lib/libblas.so.3.8.0
## LAPACK: /usr/lib/liblapack.so.3.8.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] EnsDb.Hsapiens.v86_2.99.0 GO.db_3.7.0
## [3] org.Hs.eg.db_3.7.0 magrittr_1.5
## [5] knitr_1.21 msmsTests_1.20.1
## [7] msmsEDA_1.20.1 tidies_0.0.3
## [9] imputeLCMD_2.0 impute_1.56.0
## [11] pcaMethods_1.74.0 norm_1.0-9.5
## [13] tmvtnorm_1.4-10 gmm_1.6-2
## [15] sandwich_2.5-0 Matrix_1.2-15
## [17] mvtnorm_1.0-8 ggplot2_3.1.0
## [19] bindrcpp_0.2.2 dplyr_0.7.8
## [21] msdata_0.22.0 hpar_1.25.1
## [23] rols_2.11.0 MSGFplus_1.15.1
## [25] pRolocdata_1.21.1 rpx_1.18.1
## [27] MSnID_1.16.1 mzID_1.20.1
## [29] ensembldb_2.6.5 AnnotationFilter_1.6.0
## [31] GenomicFeatures_1.34.3 GenomicRanges_1.34.0
## [33] GenomeInfoDb_1.18.1 AnnotationHub_2.14.3
## [35] pRoloc_1.23.2 MLInterfaces_1.62.0
## [37] cluster_2.0.7-1 annotate_1.60.0
## [39] XML_3.98-1.17 AnnotationDbi_1.44.0
## [41] IRanges_2.16.0 gridExtra_2.3
## [43] lattice_0.20-38 RforProteomics_1.20.0
## [45] BiocInstaller_1.32.1 BiocParallel_1.16.5
## [47] MSnbase_2.9.3 ProtGenerics_1.14.0
## [49] S4Vectors_0.20.1 mzR_2.16.1
## [51] Rcpp_1.0.0 Biobase_2.42.0
## [53] BiocGenerics_0.28.0 BiocStyle_2.10.0
##
## loaded via a namespace (and not attached):
## [1] rtracklayer_1.42.1 prabclus_2.2-7
## [3] ModelMetrics_1.2.2 R.methodsS3_1.7.1
## [5] coda_0.19-2 tidyr_0.8.2
## [7] bit64_0.9-7 DelayedArray_0.8.0
## [9] R.utils_2.7.0 data.table_1.12.0
## [11] rpart_4.1-13 hwriter_1.3.2
## [13] RCurl_1.95-4.11 doParallel_1.0.14
## [15] generics_0.0.2 preprocessCore_1.44.0
## [17] callr_3.1.1 RSQLite_2.1.1
## [19] proxy_0.4-22 bit_1.1-14
## [21] webshot_0.5.1 xml2_1.2.0
## [23] lubridate_1.7.4 httpuv_1.4.5.1
## [25] SummarizedExperiment_1.12.0 assertthat_0.2.0
## [27] viridis_0.5.1 gower_0.1.2
## [29] xfun_0.4 hms_0.4.2
## [31] evaluate_0.12 promises_1.0.1
## [33] DEoptimR_1.0-8 progress_1.2.0
## [35] caTools_1.17.1.1 dendextend_1.9.0
## [37] igraph_1.2.3 DBI_1.0.0
## [39] htmlwidgets_1.3 purrr_0.3.0
## [41] crosstalk_1.0.0 rda_1.0.2-2.1
## [43] trimcluster_0.1-2.1 biomaRt_2.38.0
## [45] caret_6.0-81 withr_2.1.2
## [47] sfsmisc_1.1-3 robustbase_0.93-3
## [49] GenomicAlignments_1.18.1 prettyunits_1.0.2
## [51] mclust_5.4.2 segmented_0.5-3.0
## [53] lazyeval_0.2.1 crayon_1.3.4
## [55] genefilter_1.64.0 edgeR_3.24.3
## [57] recipes_0.1.4 pkgconfig_2.0.2
## [59] labeling_0.3 nlme_3.1-137
## [61] nnet_7.3-12 bindr_0.1.1
## [63] rlang_0.3.1 diptest_0.75-7
## [65] pls_2.7-0 LaplacesDemon_16.1.1
## [67] affyio_1.52.0 randomForest_4.6-14
## [69] matrixStats_0.54.0 graph_1.60.0
## [71] zoo_1.8-4 base64enc_0.1-3
## [73] whisker_0.3-2 processx_3.2.1
## [75] viridisLite_0.3.0 bitops_1.0-6
## [77] R.oo_1.22.0 KernSmooth_2.23-15
## [79] Biostrings_2.50.2 blob_1.1.1
## [81] qvalue_2.14.1 stringr_1.4.0
## [83] R.cache_0.13.0 ggvis_0.4.4
## [85] scales_1.0.0 lpSolve_5.6.13
## [87] memoise_1.1.0 plyr_1.8.4
## [89] hexbin_1.27.2 gplots_3.0.1.1
## [91] gdata_2.18.0 zlibbioc_1.28.0
## [93] threejs_0.3.1 compiler_3.5.2
## [95] RColorBrewer_1.1-2 Rsamtools_1.34.1
## [97] affy_1.60.0 XVector_0.22.0
## [99] ps_1.3.0 MASS_7.3-51.1
## [101] tidyselect_0.2.5 vsn_3.50.0
## [103] stringi_1.2.4 highr_0.7
## [105] yaml_2.2.0 locfit_1.5-9.1
## [107] MALDIquant_1.18 biocViews_1.50.10
## [109] grid_3.5.2 tools_3.5.2
## [111] foreach_1.4.4 prodlim_2018.04.18
## [113] digest_0.6.18 BiocManager_1.30.4
## [115] FNN_1.1.2.2 shiny_1.2.0
## [117] lava_1.6.4 fpc_2.1-11.1
## [119] later_0.7.5 ncdf4_1.16
## [121] httr_1.4.0 kernlab_0.9-27
## [123] colorspace_1.4-0 splines_3.5.2
## [125] RBGL_1.58.1 flexmix_2.3-14
## [127] xtable_1.8-3 jsonlite_1.6
## [129] mlbench_2.1-1 timeDate_3043.102
## [131] modeltools_0.2-22 ipred_0.9-8
## [133] R6_2.3.0 RUnit_0.4.32
## [135] pillar_1.3.1 htmltools_0.3.6
## [137] mime_0.6 glue_1.3.0
## [139] DT_0.5 class_7.3-15
## [141] interactiveDisplayBase_1.20.0 codetools_0.2-16
## [143] tibble_2.0.1 mixtools_1.1.0
## [145] gbm_2.1.5 curl_3.3
## [147] gtools_3.8.1 survival_2.43-3
## [149] limma_3.38.3 rmarkdown_1.11
## [151] sampling_2.8 munsell_0.5.0
## [153] e1071_1.7-0.1 GenomeInfoDbData_1.2.0
## [155] iterators_1.0.10 reshape2_1.4.3
## [157] gtable_0.2.0