DataBall Betting on the NBA with Data

Kevin Lane

September 14, 2017

. ĸ.	0\/ID	1 3	na
- 1 \		La	

э

Outline

Introduction

- Background
- Process

2 Data

- Data Wrangling
- Data Exploration

3 Model Selection

- Feature Selection
- Parameter Tuning

Results & Future Work

- Model Performance
- Future Work

5 References

ĸ	ev/in	lane

э

Background

- \bullet Sports analytics began in professional baseball, most notably with the work of Bill ${\sf James}^1$
 - James coined the term sabermetrics as "the search for objective knowledge about baseball"
 - James selected the name to honor the Society for American Baseball Research (SABR)
- Gained widespread adoption after Billy Beane implemented James' ideas and led the Oakland Athletics to a record winning streak²
- Analytics has since spread to other sports and its impact is evidenced by several examples:
 - MLB's increased attention to on-base percentage beginning in the Moneyball era of the early 2000s
 - The rise of the three-point shot and subsequent fall of the midrange jumper in the NBA
 - Increased use of short, high percentage passes in the NFL

¹James 1985. ²Lewis 2003.

Background

What makes sports an attractive testbed for machine learning?

According to Nate Silver, "sports nerds have it easy."³

- Sports has awesome data."
- In sports, we know the rules."
- Sports offers fast feedback and clear marks of success."

Why the NBA?

- Easily the most deterministic of the major American sports
- The NBA provides a wealth of advanced stats and player tracking data on their website
- The season is long enough at 82 games that sample size is not as much of a concern as in the NFL, who claim to have parity, but also only play 16 regular season games

³Silver 2015.

< ロト < 同ト < ヨト < ヨト

Process

- I used several algorithms from the popular Python machine learning library scikit-learn⁴ to predict NBA game winners against the spread
 - Logistic Regression
 - Support Vector Machine
 - Random Forest
 - Multilayer Perceptron
- I collected box scores, point spreads, and over/under lines from the 1990-91 season through 2016-17
- I used the 2016-17 season as my test set and trained models with prior seasons
- All models are trained with stats averaged over a rolling window
 - The stats were shifted so that stats were not used to predict the game from which they were obtained
 - This provides a realistic scenario for making predictions in real time, such as in betting

⁴Pedregosa et al. 2011.

Data Wrangling

- I collected stats from the NBA's stats website stats.nba.com
 - The site exposes a wealth of information in JSON format through various web API endpoints
 - $\bullet\,$ I utilized the Python module <code>nba_py</code> to format URLs and collect stats
- I scraped point spreads and over/under lines from covers.com using the Python web scraping framework Scrapy
- I stored all data to a SQLite database using Python's built-in support
- I used the basic box score stats to calculate more advanced stats
 - Offensive/defensive ratings (points scored/allowed per 100 possessions), which requires an estimate for the number of possessions
 - Simple Rating System (SRS), which is a team's average margin of victory adjusted for its strength of schedule
 - Oliver's four factors⁵, which include effective FG%, TOV%, OREB%, and free throw rate
 - Weighted four factors, which is just sum of the four factors weighted according to Oliver's assigned weights

⁵Oliver 2004.

DataBall	September 14, 2017	6 / 18

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の 0 0</p>

Data Exploration

- The top figure shows that the home team winning percentage is remarkably consistent
- Teams only win about half the time against the spread (ATS)
 - This provides a tougher problem than picking game winners straight up
- The bottom figure shows that home point spreads favor the home teams
 - The betting lines indicate home court advantage is about 3.4 points
 - The distribution is bimodal because oddsmakers rarely set a spread of zero

Home teams have the advantage

Histogram of home point spread (negative indicates the home team is favored) with a normal distribution and kernel density estimation

Kevin Lan

Data Exploration

- The plots below show kernel density estimations (KDE) of net rating split between home team wins and losses
- The dark region to the bottom right of the origin for home team wins shows above-average home teams tend to beat below-average visitors
- The opposite appears in the KDE of home team losses

Bad teams lose at home more often

Kernel density estimations of home and away net rating for home team wins and losses

Data Exploration

- The plot to the right shows a kernel density estimation (KDE) comparing home point spread with the difference in net rating between the two teams playing in the game
- The highest density of points occurs at a positive net rating difference and a negative point spread
 - A positive net rating difference indicates the home team is stronger
 - A negative point spread means the home team is favored

Favorites are easy to spot

Home team point spreads compared to the difference in home and away team net ratings

A E > A E >

Feature Selection

- Picking winners ATS is much harder than picking winners straight up
- Simply picking the favorite wins ATS will only be right half the time

Figure 1: Comparison of Betting on Games Straight Up and ATS

	•	미 에 너희 에 어떤 에 관에 가 좋아하는 것	$\mathcal{O}\mathcal{A}\mathcal{O}$
vin Lane	DataBall	September 14, 2017	10 / 18

Feature Selection

- The plots below show cross-validation ROC and precision/recall curves for various metrics
- None of the models perform particularly well

Figure 2: ROC and Precision/Recall Curve Feature Comparison

~	01/10	1 2 2 2 2
- r \	eviii	Lane

< ロト < 同ト < ヨト < ヨト

Parameter Tuning

- I used the Python module hyperopt to optimize model parameters
- It provides a flexible framework for optimizing any scikit-learn classifier

Figure 3: Logistic Regression Hyperopt Parameter Tuning

		ㅁ › 《檀 › 《콜 › 《콜 › []	$\mathcal{O} \land \mathcal{O}$
Kevin Lane	DataBall	September 14, 2017	12 / 18

Parameter Tuning

- Parameter tuning yielded marginal benefits for logistic regression
- None of the optimized models performed substantially better than models with default parameters

Figure 4: Logistic Regression Accuracy History

Kevin Lane	DataBall	September 14, 2017	13 / 18

Model Performance

- Logistic regression does a decent job at predicting home wins, but struggles with home losses
 - The confusion matrix shows the model tends to predict the home team wins
- None of the models performed particularly well
 - The maximum accuracy was below 55%
- Any accuracy above 50% will result in a profit
 - A 1% improvement over the course of a season results in about \$2,500 extra when betting \$100 on every game

Logistic regression struggles with losses

Logistic regression confusion matrix for predicting home team results against the spread for the 2016 seson

Figure 5: Logistic Regression Confusion Matrix

< ロト < 同ト < ヨト < ヨト

DataBall

Model Performance

- The neural network was the highest earning model
- All models with optimized parameters returned a profit

Figure 6: Model Performance Comparison

	4		E nac
Kevin Lane	DataBall	September 14, 2017	15 / 18

Model Performance

- The hyperparameters optimized prior to the 2016 season did not work well for the logistic regression model
- Logistic regression with default parameters earned almost double

Figure 7: Default Model Performance Comparison

Future Work

- Incorporate player stats to adjust predictions as rosters fluctuate and players sit for rest or injury
- Test how well models generalize by predicting other seasons
- Calculate stats relative to league average to control for opponent strength and league-wide changes in game strategy
- Include a dummy variable indicating if teams are playing the second game of a back-to-back
- Predict games against over/under lines

References

- [1]James, Bill. The Bill James Historical Baseball Abstract. Villard, 1985.
- [2] Lewis, Michael. Moneyball: The Art of Winning an Unfair Game. W. W. Norton & Company, 2003.
- [3] Silver, Nate. Rich Data, Poor Data. Feb. 2015. URL: https: //fivethirtyeight.com/features/rich-data-poor-data/.
- [4] Pedregosa, F. et al. "Scikit-learn: Machine Learning in Python". In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.
- [5] Oliver, Dean. Basketball on Paper: Rules and Tools for Performance Analysis. Potomac Books, 2004.

3