
Modules over principal ideal domains:
the Smith normal form approach

1 Preliminaries from linear algebra

1.1 Generalities about equivalence of matrices
Definition 1.1. Two matrices P,Q ∈ An×m over a commutative ring A are equivalent,
denoted P ≈ Q, if and only if there are invertible matrices S ∈ An×n and R ∈ Am×m such
that Q = SPR.

Remark 1.2. By definition, a matrix S ∈ An×n is invertible if and only if there is a matrix T ∈
An×n such that ST and TS are identity matrices. Using the adjoint matrix construction one
can show that a matrix S is invertible if and only if detS is invertible in A.
Example 1.3. The following row operations yield equivalent matrices (and so do the analogous
column operations):

1. Swapping two rows.

2. Adding a multiple of a row to another.

3. Scaling a row by an invertible element of the ring.

The operation “substitute row i by a times row i plus b times row j”, where i ̸= j, is only
guaranteed to yield an equivalent matrix if a is invertible. This is a difference to linear algebra
over fields, where it would be sufficient that a is not zero.
Example 1.4. Let P ≈ P ′ and Q ≈ Q′. Then we have the equivalence(

P 0
0 Q

)
≈

(
P ′ 0
0 Q′

)
of block diagonal matrices.

Definition 1.5. Let P ∈ An×m be a matrix over a commutative ring A. The cokernel of P is
the A-module

cokP := An/ imP.

Proposition 1.6. Equivalent matrices have isomorphic cokernels: Let P,Q ∈ An×m be matrices
over a commutative ring A. If P ≈ Q, then cokP ∼= cokQ.

Proof. If P ≈ Q, there are invertible matrices S ∈ An×n, R ∈ Am×m such that Q = SPR.
One can check that mapping

cokP −→ cokQ, [x] 7−→ [Sx]

results in a well-defined module isomorphism with inverse given by [y] 7→ [S−1y]. (Well-
definedness is seen as follows: If x ∈ imP , so x = Pv for some v ∈ Am, then Sx = SPv =
SPRR−1v = QR−1v ∈ imQ.)
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Proposition 1.7. Let D ∈ An×m be a diagonal matrix over a commutative ring A. Then the
cokernel of D is canonically isomorphic to the direct sum

X := A/(d1)⊕ . . .⊕ A/(dn),

where d1, . . . , dr with r = min{n,m} are the diagonal entries of D and dr+1, . . . , dn are zero.

Proof. An isomorphism is given by

cokD −→ X, [(a1, . . . , an)] 7−→ ([a1], . . . , [an]).

1.2 Equivalence operations related to greatest common divisors
In this subsection, let the base ring A be a Bézout domain according to the following definition:

Definition 1.8. A Bézout domain is an integral domain in which every finitely generated
ideal is principal.

Example 1.9. Let x, y ∈ A. Let d be a generator of the ideal (x, y), i. e. a gcd of x and y.
Let d = sx+ ty, x = dx′, y = dy′. Then we have the equivalence(

x y
)
≈

(
d 0

)
of (1× 2)-matrices (and similarly with (2× 1)-matrices). If d = 0, this equivalence is trivial
in view of x = y = 0. If d is regular, this equivalence is witnessed by the identity

(
d 0

)
=

(
x y

)(s −y′

t x′

)
,

where the (2 × 2)-matrix is indeed invertible as its determinant is sx′ + ty′ = 1. (Over
Euclidean domains, this equivalence can also be witnessed by a sequence of the elementary
column transformations of Example 1.3.)
Example 1.10. By iterating Example 1.9, every matrix is equivalent to a matrix of the form

d 0 · · · 0
⋆ ⋆ · · · ⋆
...

...
...

⋆ ⋆ · · · ⋆

,

where d is a gcd of the original entries of the first row. Similarly, we can arrange for the first
column to consist entirely of zeros with the exception of the first entry.
Example 1.11. Let x, y ∈ A. Let d be a generator of the ideal (x, y), i. e. a gcd of x and y.
Let d = sx + ty, x = dx′, y = dy′. Let p = xy′ = x′y be the least common multiple of x
and y. Note that d | p. Then we have the equivalence(

x 0
0 y

)
≈

(
d 0
0 p

)
,
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so we can always arrange the first diagonal element to divide the second. If d = 0, this
equivalence is trivial in view of x = y = d = p = 0. If d is regular, this equivalence is
witnessed by the identity(

s t
−y′ x′

)(
x 0
0 y

)(
1 −ty′

1 sx′

)
=

(
d 0
0 p

)
,

where the two (2× 2)-matrices are invertible as their determinant is one.
Example 1.12. By iterating Example 1.11, every diagonal matrix is equivalent to a diagonal
matrix where successive diagonal entries divide each other.

2 The Smith normal form
Definition 2.1. A matrix P = (aij)ij ∈ An×m is in Smith normal form if and only if all off-
diagonal entries are zero and successive diagonal entries divide each other: a11 | a22 | . . . | arr
where r = min{n,m}.

Theorem 2.2. Let A be a principal ideal domain. Let P ∈ An×m be a matrix. Then P is
equivalent to a matrix in Smith normal form.

Proof. By Exercise 1.12, it suffices to show that P is equivalent to a diagonal matrix. We
proceed by induction. The cases n = 0 and m = 0 are trivial. Let n ≥ 1 and m ≥ 1. By
Example 1.10, the matrix P is equivalent to a matrix whose first row consists entirely of zeros,
except at the top left. Applying Example 1.10 again, but transposed, we can then arrange for
the first column to contain only zeros, except at the top left.

However, this second transformation might destroy the zeros obtained in the first step.
We can fix this issue by applying Example 1.10 yet again for the first row—at the cost of
destroying the zeros obtained in the first column. Continuing in this fashion, we would obtain
a chain of equivalences of the form

P ≈


d1 0 · · · 0
⋆ ⋆ · · · ⋆
...

...
...

⋆ ⋆ · · · ⋆


︸ ︷︷ ︸

=:P1

≈


d2 ⋆ · · · ⋆
0 ⋆ · · · ⋆
...

...
...

0 ⋆ · · · ⋆


︸ ︷︷ ︸

=:P2

≈


d3 0 · · · 0
⋆ ⋆ · · · ⋆
...

...
...

⋆ ⋆ · · · ⋆


︸ ︷︷ ︸

=:P3

≈ · · · ,

where d1 is a gcd of the entries of the first row of P , d2 is a gcd of the entries of the first
column of P1, d3 is a gcd of the entries of the first row of P2 and so on. Are we stuck?

No, for (d1) ⊆ (d2) ⊆ (d3) ⊆ . . . is an ascending sequence of ideals. As the base ring A is
Noetherian, this sequence stabilizes, in particular there is an index i such that (di) = (di+1).
So di is a gcd of the entries of both the first row of Pi and the first column of Pi. So the
elementary row or the elementary column operations from Example 1.3 suffice to establish
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the equivalence

P ≈ Pi ≈


di 0 · · · 0
0 ⋆ · · · ⋆
...

...
...

0 ⋆ · · · ⋆

.

The lower right block is equivalent to a diagonal matrix by the induction hypothesis, and
Example 1.4 allows us to conclude.

3 Modules over principal ideal domains
We will use the following facts: Principal ideal domains are Noetherian, and a ring is Noethe-
rian iff every ideal is finitely generated.

Lemma 3.1. Let A be a Noetherian ring. Let n ∈ N. Then every submodule U ⊆ An is finitely
generated.

Proof. By induction on n. In the base case n = 0, the submodule U = {0} is generated by the
empty family.

In the case n ≥ 1, the submodule

N := {(a1, . . . , an−1, 0) | a1, . . . , an−1 ∈ A} ⊆ An

is isomorphic (by the module isomorphism i : (a1, . . . , an−1, 0) 7→ (a1, . . . , an−1)) to An−1.
So U ∩N can be regarded as a submodule of An−1 and is hence, by the induction hypothesis,
finitely generated (more precisely, the submodule i[U ∩ N ] ⊆ An−1 is finitely generated
and U ∩N is isomorphic to i[U ∩N ]).

The isomorphism theorem implies that the injective module homomorphism

U/(U ∩N) −→ A, [(a1, . . . , an)] 7−→ an

induces an isomorphism of U/(U ∩N) with its image. This image is an ideal of A and hence
finitely generated.

As both U ∩ N and U/(U ∩ N) are finitely generated, Exercise 8.3(a) implies that U is
finitely generated as well.

Corollary 3.2. Let M be a finitely generated module over a Noetherian ring A. Then M is
isomorphic to the cokernel of a matrix.

Proof. As M is finitely generated, there is a finite generating family (x1, . . . , xn) for M . By
one of the isomorphism theorems, the induced surjective module homomorphism

f : An −→ M
(a1, . . . , an) 7−→

∑n
i=1 aixi

gives rise to an isomorphism
An/ ker(f) → M.
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By the lemma, there is a finite generating family (y1, . . . , ym) for the submodule ker(f) ⊆ An.
We conclude by observing that ker(f) = im(P ) with P = (y1 | . . . | ym) ∈ An×m the matrix
which has the yi as its columns.

Theorem 3.3. Let M be a finitely generated module over a principal ideal domain A. Then M
is isomorphic to a direct sum

M ∼= A/(d1)⊕ . . .⊕ A/(dn)

for some number n ∈ N and ring elements d1, . . . , dn such that d1 | . . . | dn.

Proof. By Corollary 3.2, the module M is isomorphic to the cokernel of a matrix P . By
Theorem 2.2, this matrix is equivalent to a matrix D in Smith normal form. By Proposition 1.6,
the cokernel of P is isomorphic to the cokernel of D. By Proposition 1.7, the cokernel of D is
isomorphic to a direct sum of the desired form:

M ∼= cokP ∼= cokD ∼= A/(d1)⊕ . . .⊕ A/(dn).

3.1 Uniqueness
Except for superfluous summands of the form A/(d) = 0 where d is a unit of A in the
decomposition provided by Theorem 3.3, their number n and the ideals (di) are uniquely
determined by M . This fact is a consequence of the following three observations over general
commutative rings.

Proposition 3.4. Let A be a commutative ring. Let n ∈ N. Then the A-module An can be
generated by a family of length less than n only in the case A = 0.

Proof. This statement is a ring analogue of the vector space result that a vector space of
dimension n cannot be generated by a family of length less than n and will be proven later in
the course.

Lemma 3.5. Let A be a commutative ring. Let I1 ⊆ I2 ⊆ . . . ⊆ In ⊊ (1) be proper ideals of A.
Then the number n is uniquely determined as the minimal length of a generating family for the
module

M = A/I1 ⊕ . . .⊕ A/In.

Proof. A generating family of length n is (b1, . . . , bn), where bi = (0, . . . , 0, [1], 0, . . . , 0) with
the entry [1] at position i. So the minimal length of a generating family is at most n.

For the converse inequality, assume that M can be generated by a family of length less
than n. Then so can be the module

A/In ⊕ . . .⊕ A/In = (A/In)
n.

Indeed, if ([x1], . . . , [xk]) is a generating family ofM with x1, . . . , xk ∈ A, then ([x1], . . . , [xk])
is a generating family of (A/In)n, where the equivalence class brackets now all denote
equivalence classes in A/In. The same family also generates (A/In)n as an A/In-module. But
this is only possible if A/In = 0 which amounts to In = (1), a contradiction.
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For the proof of the following proposition it is useful to introduce, for an ideal J ⊆ A and
an element x ∈ A, the notation (J : x) := {a ∈ A | ax ∈ J}. The set (J : x) is a superset
of J and again an ideal of A. It is improper if and only if x ∈ J .

Proposition 3.6. Let M be a module over a commutative ring A. Assume that M is isomorphic
to a module of the form

M ∼= A/I1 ⊕ . . .⊕ A/In

for some ideals I1 ⊆ I2 ⊆ . . . ⊆ In. Then Ik is uniquely determined by the description

Ik = {x ∈ A |xM has a generating family of length less than k}.

Proof. Let x ∈ A. For an arbitrary ideal J ⊆ A, the canonical surjective module homo-
morphism A → x(A/J) given by a 7→ x[a] has kernel (J : x) and hence induces an
isomorphism A/(J : x) ∼= x(A/J). Applying this observation summandwise, we obtain an
isomorphism

xM ∼= A/(I1 : x)⊕ . . .⊕ A/(In : x).

By Lemma 3.5, we obtain the following chain of equivalences: The module xM has a
generating family of length less than k iff (Ik : x) = . . . = (In : x) = (1), iff x ∈ Ik, . . . , In,
iff x ∈ Ik.
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