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Non-constructive proofs

Theorem. There exist irrational numbers x, y such
that xy is rational.

Proof. Either
√
2
√
2
is rational or not.

In the Vrst case we are done.

In the second case take x :=
√
2
√
2
and y :=

√
2.

Then xy = 2 is rational.
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The law of excluded middle

“For any formula A, we may deduce A ∨ ¬A.”

Classical logic =
intuitionistic logic + law of excluded middle.

Classical interpretation
⊥ There is a contradiction.

A ∧ B A and B are true.
A ∨ B A is true or B is true.
A⇒ B If A holds, then also B.

∀x:X.A(x) For all x : X it holds that A(x).
∃x:X.A(x) There is an x : X such that A(x).
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Negated statements

“¬A” is syntactic sugar for (A⇒ ⊥)
and means: There can’t be any evidence for A.
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Doubly-negated statements

“¬¬A” means: There can’t be any evidence for ¬A.
Trivially, we have A =⇒ ¬¬A.
We can’t deduce ¬¬A =⇒ A.
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Doubly-negated statements

“¬¬A” means: There can’t be any evidence for ¬A.
Trivially, we have A =⇒ ¬¬A.
We can’t deduce ¬¬A =⇒ A.

Where is the key?

¬¬(∃x. the key is at position x)

versus

∃x. the key is at position x
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Applications
Intuitionistic logic . . .

can guide to more elegant proofs,
is good for the mental hygiene, and
allows to make Vner distictions.
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Applications

We can mechanically extract algorithms from
intuitionistic proofs of existence statements.
The internal language of toposes is intuitionistic.
Dream mathematics only works intuitionistically.
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Topos power

Any Vnitely generated vector space
does not not possess a basis.

⇓
Any sheaf of modules of Vnite type
on a reduced scheme is locally free
on a dense open subset.
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Dream mathematics

Synthetic diUerential geometry
Any map R→ R is smooth. There are inVni-
tesimal numbers ε such that ε2 = 0 and ε 6= 0.

Synthetic domain theory
For any set X there exists a map

Vx : (X→ X)→ X
such that f(Vx(f)) = Vx(f) for any f : X→ X.

Synthetic computability theory
There are only countably many subsets of N.

10 / 16



The doubly-negated LEM

Even intuitionistically “¬¬(A ∨ ¬A)” holds.

Proof. Assume ¬(A ∨ ¬A), we want to show ⊥.
If A, then A ∨ ¬A, thus ⊥.
Therefore ¬A.
Since ¬A, we have A ∨ ¬A, thus ⊥.
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The ¬¬-translation

A� :≡ ¬¬A for atomic formulas A

(A ∧ B)� :≡ ¬¬(A� ∧ B�)

(A ∨ B)� :≡ ¬¬(A� ∨ B�)

(A⇒ B)� :≡ ¬¬(A� ⇒ B�)

(∀x:X.A(x))� :≡ ¬¬(∀x:X.A�(x))

(∃x:X.A(x))� :≡ ¬¬(∃x:X.A�(x))

Theorem. A classically⇐⇒ A� intuitionistically.
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A classical logic fairy tale

A intuitionistically ⇐⇒ we can defend A in any dialog.

A classically⇐⇒ we can defend A� in any dialog.

⇐⇒ we can defend A in any dialog
with jumps back in time allowed.
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Curry–Howard correspondence

logic programming
formula A type A

intuitionistic proof p : A term p : A
conjunction A ∧ B product type (A,B)
disjunction A ∨ B sum type Either A B

implication A⇒ B function type A→ B

¬¬-translation CPS transformation
(A⇒ ⊥)⇒ ⊥ (A→ r)→ r
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Computational content of
classical proofs

type Cont r a = ((a -> r) -> r)

-- Decide an arbitrary statement a.

lem :: Cont r (Either a (a -> Cont r b))

lem k = k $ Right $ \x -> (\k' -> k (Left x))

-- Calculate the minimum of an infinite list

-- of natural numbers.

min :: [Nat] -> Cont r (Int, Int -> Cont r ())

min xs = ...
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Outlook

CPS transformation = Yoneda embedding
What about delimited continuations?
Geometrical interpretation:

Sh(X) |= A� ⇐⇒ Sh(X¬¬) |= A

Generalize from ¬¬ to arbitrary modal
operators (monads): Relevant axioms are

1 A⇒ �A
2 ��A⇒ �A
3 �(A ∧ B)⇔ �A ∧�B

/iblech/talk-constructive-mathematics
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https://github.com/iblech/talk-constructive-mathematics
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