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Abstract
Constructive mathematicians don’t use the law of excluded middle, which approx-
imately says that for any proposition P, either P is true or ¬P is true. Several ad-
vantages emerge from this rejection, for instance one can mechanically extract algo-
rithms from constructive proofs of existence statements and rigorously work with
non-standard dream axioms which are plainly false in classical mathematics, such as
any function is smooth.

For communicating with classicial mathematicians, constructive mathematicians can
employ the double-negation translation. This device associates to any formula a
translated formula in such a way that a given formula holds classically if and only if
its translation holds constructively.

The talk will give an introduction to these topics and discuss the intriguing relation-
ship of the double-negation translation with the well-known continuation-passing
style transformation: In some sense, they are the same. This is a beautiful facet of
computational trinitarianism.

For the Vrst part of the talk, no background in formal logic or constructive mathe-
matics is required. For the second part of the talk, one should be vaguely familiar
with the continuation-passing style transformation.



Teaser

By the Curry–Howard correspondence intuitionistic
proofs have computational content. By the double-
negation translation, we see that classical proofs too
have computational content.

As long as we stay in the continuation monad, the
required bluXng and cheating will not be apparent.

Care must be taken when leaving the continuation
monad (for instance by supplying the identity contin-
uation), since then we might obtain incorrect results.
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Non-constructive proofs

Theorem. There exist irrational numbers x, y such
that xy is rational.

Proof. Either
√
2
√
2
is rational or not.

In the Vrst case we are done.

In the second case take x :=
√
2
√
2
and y :=

√
2.

Then xy = 2 is rational.
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The proof is nice and short. However, after having seen the proof, we are still
not able to give an example of irrational numbers x, y such that xy is rational!
The proof was non-constructive. If we want to extract explicit witnesses from
the proof, the proof has to be constructive, such as this one:

Set x :=
√
2 and y := log√2 3. Then xy = 3 is rational. The

proof that y is irrational is even easier than the proof that
√
2 is

irrational.

It turns out that from all the axioms of classical logic, exactly one is responsible
for non-constructivity: the law of excluded middle.



The law of excluded middle

“For any formula A, we may deduce A ∨ ¬A.”

Classical logic =
intuitionistic logic + law of excluded middle.

Classical interpretation
⊥ There is a contradiction.

A ∧ B A and B are true.
A ∨ B A is true or B is true.
A⇒ B If A holds, then also B.

∀x:X.A(x) For all x : X it holds that A(x).
∃x:X.A(x) There is an x : X such that A(x).
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The law of excluded middle

“For any formula A, we may deduce A ∨ ¬A.”

Classical logic =
intuitionistic logic + law of excluded middle.

Constructive interpretation
⊥ There is a contradiction.

A ∧ B We have evidence for A and for B.
A ∨ B We have evidence for A or for B.
A⇒ B We can transform evidence for A into one for B.

∀x:X.A(x) Given x : X, we can construct evidence for A(x).
∃x:X.A(x) We have an x : X together with evidence for A(x).
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More precisely, one should say: Classical mathematics = intuitionistic logic +
law of excluded middle + a set theory including the axiom of choice.

The constructive interpretation of the axiom of excluded middle is: For any
formula A, we have evidence for A or for ¬A. This is an absurd statement –
recall that there exist undecidable statements (“Gödel sentences”).

By “we” in the deVnition of the constructive intepretation, we don’t literally
refer to some group of people. It should be read in a generic mathematical way.
Look up Brouwer–Heyting–Kolmogorov interpretation and Realizability Theory
(see for instance Andrej Bauer’s notes) for a formal treatment.

Several years ago a video showing Kate Moss consuming drugs surfaced.
From the video it was clear that the drugs were either of some type A or of
some type B, but there was no direct evidence for either type. Kate Moss
was not prosecuted; in this sense, Great Britain’s judicial system operated
intuitionistically. Check out Dan Piponi’s blog post about this topic.

Note that constructive mathematicians do not claim that the law of excluded
middle is false (that is, that its negation holds). In fact, some instances of
the law of excluded middle are true intuitionistically: For example one can
show by induction that any natural number is zero or is not zero. Constructive
mathematicians simply don’t suppose that the law of excluded holds generally.

http://math.andrej.com/data/c2c.pdf
http://blog.sigfpe.com/2008/06/drugs-kate-moss-and-intuitionistic.html


Negated statements

“¬A” is syntactic sugar for (A⇒ ⊥)
and means: There can’t be any evidence for A.

Constructive interpretation
⊥ There is a contradiction.

A ∧ B We have evidence for A and for B.
A ∨ B We have evidence for A or for B.
A⇒ B We can transform evidence for A into one for B.

∀x:X.A(x) Given x : X, we can construct evidence for A(x).
∃x:X.A(x) We have an x : X together with evidence for A(x).
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Note that the word “contradiction” is not generally forbidden in intuitionistic
logic. For instance, the usual proof that

√
2 is not rational, deducing ⊥ from

the assumption that
√
2 were rational, is perfectly Vne intuitionistically.

Colloquially, those proofs are called “proof by contradiction”, but this labeling
is deceptive. A true proof by contradiction runs like this:

We want to show A. Assume ¬A. Then . . ., so⊥. Therefore ¬¬A.
Thus A.

The last step needs the axiom of double negation elimination, ¬¬A ⇒ A,
which is not available in intuitionistic logic. (In fact, the statement that double
negation elimination holds for all A is equivalent to the statement that the law
of excluded middle holds for all A.)



Doubly-negated statements

“¬¬A” means: There can’t be any evidence for ¬A.
Trivially, we have A =⇒ ¬¬A.
We can’t deduce ¬¬A =⇒ A.

Constructive interpretation
⊥ There is a contradiction.

A ∧ B We have evidence for A and for B.
A ∨ B We have evidence for A or for B.
A⇒ B We can transform evidence for A into one for B.

∀x:X.A(x) Given x : X, we can construct evidence for A(x).
∃x:X.A(x) We have an x : X together with evidence for A(x).
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Doubly-negated statements

“¬¬A” means: There can’t be any evidence for ¬A.
Trivially, we have A =⇒ ¬¬A.
We can’t deduce ¬¬A =⇒ A.

Where is the key?

¬¬(∃x. the key is at position x)

versus

∃x. the key is at position x
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If we know that the key to our apartment has to be somewhere in
the apartment (since we used it to enter last night) but we can’t
Vnd it, we can constructively only justify

¬¬(∃x. the key is at position x),

not the stronger statement

∃x. the key is at position x.

(Of course, this example does not quite work, since “we” now
really has to refer to us key-seekers.)



Applications
Intuitionistic logic . . .

can guide to more elegant proofs,
is good for the mental hygiene, and
allows to make Vner distictions.

8 / 16



Applications

We can mechanically extract algorithms from
intuitionistic proofs of existence statements.
The internal language of toposes is intuitionistic.
Dream mathematics only works intuitionistically.
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Regarding intuitionistic logic as an elegance assisting device: In classical logic,
we might have the habit of beginning proofs like this:

If the set X is empty, the claim holds trivially. So suppose that X
is not empty; then consider . . .

Often it’s the case that the second part of the proof applies just as Vne to the
trivial case – if we don’t fear the empty set. In these cases, the proof can be
streamlined by skipping the case distiction.

Intuitionistically, the case distinction is not possible without further hypotheses
on X. Therefore, by trying to make a proof intuitionistically acceptable, we are
nudged to remove unnecessary case distictions and related issues.



Here is a concrete example. Let f : X→ Y be a map and let

ϕ : P(Y) −→ P(X),
U 7−→ f−1[U] := {x ∈ X | f(x) ∈ U}

be the inverse image operation. Then it’s a standard exercise to show that f is
surjective if and only if ϕ is injective.

Can you do it, especially the “⇒” direction? There is a very short and elegant
proof for it! But the proof which might Vrst come to your mind is non-
constructive and unnecessarily cumbersome:

Assume that f fails to be surjective. Then there exists y ∈ Y such
that y is not an element of the image of f. Therefore ϕ({y}) =
∅ = ϕ(∅). This is a contradiction to the injectivity of ϕ.

Spoiler.Wehaveϕ(imf)=X=ϕ(Y),thusimf=Y.



Here is a basic example for extracting algorithms from proofs. Consider the
statement

“There are inVnitely many prime numbers.” or somewhat more
explicitly, “For any Vnite list p1, . . . , pn of prime numbers, there
exists an additional prime number q not on that list.”

The standard proof, attributed to Euclid, goes like this:

Consider the number N := p1 · · · pn + 1. Since N ≥ 2, there
exists some prime factor q of N. (If N is itself prime, we can
take q := N.) This prime is not equal to any pi, since the
numbers pi don’t divide N whereas q does.

The algorithm for constructing q can be directly read oU from the proof.
DiUerent proofs result in diUerent algorithms; in particular, there exist (more
complex) proofs whose algorithms produce better (smaller) witnesses.

See the wonderful book Applied Proof Theory: Proof Interpretations and their
Use in Mathematics by Kohlenbach for details. Already its introduction is a
very worthwhile reading.



Tangentially, observe that the stated constructive version of Euclid’s proof is
less prone to misunderstandings than its well-known counterpart which uses
proof by contradiction:

Assume that there are only a Vnite number of primes, p1, . . . , pn.
Then consider N := p1 · · · pn + 1. This number is either prime
or composite. Since no prime number divides N (by assumption
the only primes are the pi and these don’t divide N), it cannot be
composite. Therefore N is prime. Since N doesn’t equal any of
the pi, this is a contradiction.

From this proof one might think that for primes p1, . . . , pn the number N :=
p1 · · · pn + 1 is always prime. But this only holds in a counterfactual world
where there are only Vnitely many primes. In fact, the number

N := 2 · 3 · 5 · 7 · 11 · 13+ 1 = 59 · 509

is composite. A smaller example is

N := 2 · 7+ 1 = 3 · 5.



Topos power

Any Vnitely generated vector space
does not not possess a basis.

⇓
Any sheaf of modules of Vnite type
on a reduced scheme is locally free
on a dense open subset.
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Toposes are certain kinds of categories, thought of as mathematical universes.
The usual topos in which we do mathematics in is the category of sets and
maps between sets, but there are many others:

• In the eUective topos, any map is computable.

• In the sheaf topos of a topological space X the objects and morphisms
depend on our position in X.

A metatheorem states that intuitionistically provable statements hold in any
topos. This greatly expands the scope of an intuitionistic theorem.

A side project of mine is to recognize the basic concepts and statements of
algebraic geometry as topos-theoretic interpretations of simple concepts and
statements of ordinary Vrst-year linear algebra. See https://github.com/
iblech/internal-methods for expository notes on this topic (directed at
geometers). The example of the slide is taken from these notes. The simple
statement about vector spaces automatically implies the more complicated
statement about sheaves.

https://github.com/iblech/internal-methods
https://github.com/iblech/internal-methods


Dream mathematics

Synthetic diUerential geometry
Any map R→ R is smooth. There are inVni-
tesimal numbers ε such that ε2 = 0 and ε 6= 0.

Synthetic domain theory
For any set X there exists a map

Vx : (X→ X)→ X
such that f(Vx(f)) = Vx(f) for any f : X→ X.

Synthetic computability theory
There are only countably many subsets of N.
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Dream mathematics is working with dream axioms – axioms which are classi-
cally false, but very convenient:

• If you adopt synthetic diUerential geometry, you can do calculus like 300
hundred years ago, by manipulating inVnitesimals. See a blog post by Andrej Bauer.

• If you adopt synthetic domain theory, you can use the ordinary mathe-
matical notions of sets and maps to give semantics to programming lan-
guages. See slides of a talk by Alex Simpson and a paper by Hyland.

• If you adopt synthetic computability theory, you can use the ordinary
notions of sets and maps to secretly talk about enumerable sets and com-
putable maps. You can drop any of the usual adjectives like “eUectively”
or “enumerable”. See a paper by Andrej Bauer.

All of these dream axioms can be made to work: By dropping the law of
excluded middle. More precisely, there are alternate toposes in which the law
of excluded middle does not hold but the given dream axiom does. Also there
are metatheorems which guarantee that results obtained in the dream universe
also hold in the the usual universe.

Warning. For space reasons, the axioms are not presented faithfully on the
previous slide. Check the references for precise formulations.

http://math.andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/
http://homepages.inf.ed.ac.uk/als/Talks/lfps04.pdf
https://www.dpmms.cam.ac.uk/~martin/Research/Oldpapers/synthetic91.pdf
http://math.andrej.com/data/synthetic.pdf


The doubly-negated LEM

Even intuitionistically “¬¬(A ∨ ¬A)” holds.

Proof. Assume ¬(A ∨ ¬A), we want to show ⊥.
If A, then A ∨ ¬A, thus ⊥.
Therefore ¬A.
Since ¬A, we have A ∨ ¬A, thus ⊥.
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The ¬¬-translation

A� :≡ ¬¬A for atomic formulas A

(A ∧ B)� :≡ ¬¬(A� ∧ B�)

(A ∨ B)� :≡ ¬¬(A� ∨ B�)

(A⇒ B)� :≡ ¬¬(A� ⇒ B�)

(∀x:X.A(x))� :≡ ¬¬(∀x:X.A�(x))

(∃x:X.A(x))� :≡ ¬¬(∃x:X.A�(x))

Theorem. A classically⇐⇒ A� intuitionistically.
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The gray ¬¬’s can be omitted: One can prove by structural induction that
translating with those double negations yields logically equivalent formulas as
translating without those.

The blue ¬¬’s in contrast are crucial.

One could say that the only diUerence between intuitionistic logic and classical
logic is in the meaning of disjunction and existential quantiVcation.

If A does not contain “⇒” and “∀”, then A� ⇔ ¬¬A. Such formulas are
also called geometric, because their truth value is preserved by so-called geo-
metric functors in topos theory. In general, there is no implicational relation
between A� and ¬¬A.

If you can read German, then see these pizza seminar notes for a detailed treat-
ment. Else see Constructivism in Mathematics: An Introduction by Troelstra
and van Dalen. The proof is routine; for each of the logical rules of classical
logic you show that its double-negation translation is valid intuitionistically.

http://pizzaseminar.speicherleck.de/skript2/konstruktive-mathematik.pdf


Note that ⊥� ≡ ¬¬⊥ ⇔ ⊥. Also recall that Heyting arithmetic is the same
as Peano arithmetic, only with intuitionistic instead of classical logic.

Corollary. Peano arithmetic and Heyting arithmetic are equiconsistent.

Proof. It is clear that inconsistency of Heyting arithmetic implies inconsistency
of Peano arithmetic.

For the converse direction, write Ax for the axioms of Peano arithmetic, thought
of as a single formula by conjunction. If Peano arithmetic proves ⊥, that is
if Ax⇒ ⊥ classically, then by the theorem Ax� ⇒ ⊥� intuitionistically. By
inspection Ax⇒ Ax� intuitionistically. Therefore Ax⇒ ⊥ intuitionistically.



A classical logic fairy tale

Narrator. Once upon a time, in a kingdom far, far away, the queen
of the land and of all Möbius strips called for her royal philosopher.

Queen. Philosopher! I ask you to carry out the following order.
Get me the Philosopher’s Stone, or alternatively Vnd out how one
could produce arbitrary amounts of gold with it!

Philosopher. But my queen! I haven’t studied anything useful!
How could I fulVll this order?

Queen. That is not my concern. I’ll see you again tomorrow.
Should you not accomplish the task, I will take your head oU.

Narrator. After a long and wakeful night the philosopher was
called to the queen again.

Queen. Tell me! What do you have to report?

Philosopher. It was not easy and I needed to consult lots of books,
but Vnally I actually found out how to use the Philosopher’s Stone
to produce arbitrary amounts of gold. But only I can conduct this
procedure, your royal highness.

Queen. Alright. So be it.

Narrator. And so years passed by, during which the philosopher
imagined himself to be safe. The queen searched for the stone on
her own, but as long as she hadn’t found it, the philosopher didn’t
need to worry. Yet one day the impossible happened: The queen
has found the stone! And prompty called for her philosopher.

Queen. Philosopher, look! I have found the Philosopher’s Stone!
Now live up to your promise! [She hands over the stone.]

Philosopher. Thank you. [He inspects the stone.] This is indeed
the Philosopher’s Stone. Many years ago you asked me to either
acquire the Philosopher’s Stone or Vnd out how to produce arbi-
trary amounts of gold using it. Now it’s my pleasure to present to
you the Philosopher’s Stone. [He returns the stone.]



A classical logic fairy tale

A intuitionistically ⇐⇒ we can defend A in any dialog.

A classically⇐⇒ we can defend A� in any dialog.

⇐⇒ we can defend A in any dialog
with jumps back in time allowed.
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Recall the usual dialog metaphor for proofs:

Alice. I claim that ∀x : X.A(x)⇒ B(x).
Eve. Really? Take this particular x0 : X!
Alice. Sure. Then I claim that A(x0)⇒ B(x0).
Eve. My x0 satisVes A(x0), see? . . .
Alice. Right. And from this I’m able to show B(x0): . . .

This metaphor can be formalized. Then it’s a theorem that a statement A holds
intuitionistically if and only if the proponent has a winning strategy for dialogs
about A. See the survey article by Helger Rückert in Essays on Non-Classical
Logic for details.

Reading “A” for “Philosopher’s Stone” and “A ⇒ ⊥” for “using the Philoso-
pher’s Stone to produce arbitrary amounts of gold”, the classical logic fairy tale
gives a proof of the law of excluded middle – in dialog form, with time jumps.
See this blog post by Edward Yang for a diUerent rendition of the tale. It was
popularized by Philip Wadler in his CbV is dual to CbN-paper and might be
due to Peter Selinger.

It is not a coincidence that the tale feels “continuation-y”.

http://blog.ezyang.com/2013/04/a-classical-logic-fairy-tale/
http://homepages.inf.ed.ac.uk/wadler/papers/dual/dual.pdf


Curry–Howard correspondence

logic programming
formula A type A

intuitionistic proof p : A term p : A
conjunction A ∧ B product type (A,B)
disjunction A ∨ B sum type Either A B

implication A⇒ B function type A→ B

¬¬-translation CPS transformation
(A⇒ ⊥)⇒ ⊥ (A→ r)→ r
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On the previous slide r should denote the void type (having no inhabitants).
But this is a bit boring; we can also use any type for r and employ a variant
of the double-negation translation: One where we don’t use ¬¬, but ¬r¬r,
where ¬r is deVned as ¬rA :≡ (A⇒ r). For this variant, it still holds that we
can transform classical proofs of A into intuitionistic proofs of A�r .

To see that the double-negation translation corresponds to the CPS transfor-
mation, simply note that the type (a → r) → r is also known under the
name Cont r a.

DiUerent but logically equivalent versions of the double-negation translation
yield diUerent variants of the CPS transformation (call by name, call by value,
. . . ).



Computational content of
classical proofs

type Cont r a = ((a -> r) -> r)

-- Decide an arbitrary statement a.

lem :: Cont r (Either a (a -> Cont r b))

lem k = k $ Right $ \x -> (\k' -> k (Left x))

-- Calculate the minimum of an infinite list

-- of natural numbers.

min :: [Nat] -> Cont r (Int, Int -> Cont r ())

min xs = ...
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To decide an arbitrary statement A, we proceed as follows. When asked
whether A or ¬A holds, we bluU and immediately claim that ¬A holds. Since
¬A is deVned as (A ⇒ ⊥), our opponent has to work in order to rebut our
claim. As soon as our opponent presents evidence for A, we rewind time and
make it look as if we always claimed that A holds from the start.

Similarly, to Vnd the minimum of an inVnite list [x0, x1, . . .] of natural numbers,
we simply claim that the Vrst number x0 of the list is the minimum. This might
actually be true. Should our opponent later present a smaller element xi, we
rewind time (take a previously-stored continuation) and claim that xi is the
minimum. This process of reVning our initial guess will terminate after at
most x0 many time jumps.

The logical analog to this algorithm is the following. Let [x0, x1, . . .] be an
inVnite list of natural numbers. Then we can’t intuitionistically verify that this
list has a minimal element. But we can verify that there is not not a minimal
element.



Food for thought

By the Curry–Howard correspondence intuitionistic
proofs have computational content. By the double-
negation translation, we see that classical proofs too
have computational content.

As long as we stay in the continuation monad, the
required bluXng and cheating will not be apparent.

Care must be taken when leaving the continuation
monad (for instance by supplying the identity contin-
uation), since then we might obtain incorrect results.



See the article Computational content of classical logic by Coquand for details.

Also note that the double-negation translation of the axiom of choice is not valid
intuitionistically. Therefore one has to work harder to extract computational
content from classical proofs which use this particular axiom.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.3492&rep=rep1&type=pdf


Here is a practical example from algorithmic number theory for the use of the
“computational law of excluded middle”. Let x be an algebraic number, that
is a complex number which is a zero of a normed polynomial f(X) ∈ Q[X].
Consider the Veld extension Q(x) of Q generated by x; this Veld contains the
rational numbers, the number x, and every number which can be obtained
from these by addition, subtraction, multiplication, and division.

We want to describe an algorithm for computing the inverse of a nonzero
element in Q(x) and expressing this inverse as a polynomial in x. In principle,
this can be done as follows.

Factor f(X) into irreducible polynomials. One of the factors, say g(X), will
be zero at x. This factor is called the minimal polynomial of x and general
theory tells us that Q(x) ∼= Q[X]/(g(X)); so working in Q(x) is the same
as working in the polynomial ring Q[X] modulo g(X). Since the extended
Euclidean algorithm provides an eXcient method for Vnding modular inverses,
it looks like we are done.

However, factoring f(X) into irreducible polynomials is computationally ex-
pensive. Is there a way to avoid that?



Yes! Let [h(X)] ∈ Q[X]/(f(X)). We want to compute a modular inverse to h(x)
in Q(x). Note that since f(X) might not be irreducible, the ring Q[X]/(f(X))
might not be a Veld (any factor of f(X) is a zero divisor in this ring). Never-
theless, we can use the extended Euclidean algorithm to compute the (monic)
greatest common divisor d(X) of f(X) and h(X) and a Bézout representation

d(X) = a(X)f(X) + b(X)h(X).

Three cases can occur:

1. d(X) = 1. Then the equation shows that b(X) is inverse to h(X) modulo f(X) (and
therefore, a fortiori, modulo the inaccessible g(X)). In particular, b(x) is inverse to h(x)
in Q(x).

2. d(X) = f(X). Then the equation shows that h(X) is a multiple of f(X) and therefore h(x)
is zero. In this case we don’t need (and can’t) compute an inverse.

3. Else d(X) is a nontrivial factor of f(X). At least one of the polynomials d(X) and f(X)/d(X)
still has x as a zero. Call this polynomial f̃(X). Then restart the calculation using f̃(X)
instead of f(X).

In this way we can work in Q[X]/(g(X)) without having to explicitly com-
pute g(X). “Leaving the continuation monad” is not a problem, since inverses

modulo f(X) or f̃(X) or ˜̃f(X) are also inverses modulo the proper g(X).



Outlook

CPS transformation = Yoneda embedding
What about delimited continuations?
Geometrical interpretation:

Sh(X) |= A� ⇐⇒ Sh(X¬¬) |= A

Generalize from ¬¬ to arbitrary modal
operators (monads): Relevant axioms are

1 A⇒ �A
2 ��A⇒ �A
3 �(A ∧ B)⇔ �A ∧�B

/iblech/talk-constructive-mathematics
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Generalize from ¬¬ to arbitrary modal
operators (monads): Relevant axioms are

1 A⇒ �A
2 ��A⇒ �A
3 �(A ∧ B)⇔ �A ∧�B
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Recommended reading:

• Oleg Kiselyov on the law of excluded middle.

• Chetan Murthy’s PhD thesis
Extracting Constructive Content from Classical Proofs.

• The blog of Andrej Bauer, especially the posts tagged
constructive-math.

Not directly related to the topic of these slides, but if you haven’t read yet
Andrej Bauer’s short book contribution Intuitionistic mathematics and real-
izability in the physical world or don’t follow Dan Piponi’s blog, you totally
should. Actually I envy you, because you can look forward to some great
reading!

If you want to know more about the geometrical interpretation, check out
https://github.com/iblech/internal-methods for expository notes
(prerequisites for the relevant sections: general topology, but not algebraic
geometry).

http://okmij.org/ftp/Computation/lem.html
http://ecommons.library.cornell.edu/bitstream/1813/6991/1/90-1151.pdf
http://math.andrej.com
http://math.andrej.com/wp-content/uploads/2014/03/real-world-realizability.pdf
http://blog.sigfpe.com/
https://github.com/iblech/internal-methods
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