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• On the previous slide you see two-dimensional projections of
the three-dimensional cube and the four-dimensional hypercube
(tesseract).

• We’re talking about four spatial dimensions. This is not related
to four-dimensional spacetime or eleven-dimensional string
theory.

• A �atlander can be imprisoned by enclosing them with a square.
But we, as three-dimensional beings, can free them by grabbing
them, lifting them up in the third dimension, moving them a
little to the side, and putting them back into �atland.

• Similarly, a four-dimensional being could free us if we were
imprisoned in a three-dimensional cube.
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• You can untie any knot in four dimensions. Two linked
one-dimensional strings can always be separated in four
dimensions.

• But it’s possible to tangle an one-dimensional string with the
two-dimensional surface of a sphere in four dimensions.

• More generally, in n dimensions, one can tangle a-dimensional
objects with b-dimensional objects provided that a+ b ≥ n− 1.
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• The familiar torus (donut) can be obtained from a cylinder by
glueing the two bounding circles together.

• The Klein bottle can be obtained in the same way, but with
�ipping one of the bounding circles �rst.

• In three dimensions, the Klein bottle can only be realized with a
self-intersection. Only in four dimensions it’s possible to exhibit
the true Klein bottle.

• Like the Möbius strip, the Klein bottle is not orientable: It has
only one side. Unlike the Möbius strip, it doesn’t have a
boundary.

• A mathematician named Klein
Thought the Möbius band was divine.
Said he: “If you glue
The edges of two,
You’ll get a weird bottle like mine.”

– Leo Moser
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Hypervolume of hyperballs

dimension hypervolume

n = 2 π/4 ≈ 0.785
n = 3 π/6 ≈ 0.524
n = 4 π2/32 ≈ 0.308
n = 5 π2/60 ≈ 0.164
n = 6 π3/384 ≈ 0.081
n = 7 π3/840 ≈ 0.037
n→∞ → 0

n = 0 1 ≈ 1.000
n = 1 1 ≈ 1.000
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• The portion of the n-dimensional unit hypercube which is
occupied by the inscribed n-dimensional hyperball gets arbitrary
small in su�ciently high dimensions.

• The volume of such a hyperball is the answer to the following
question: What is the probability that we managed to hit the
hyperball with an dart, provided that we managed to hit the
enclosing hyperball?

• Wikipedia gives derivations for these formulas.

• You can use the power of negative thinking to motivate that the
formula for the n-dimensional volume of the n-dimensional
hyperball does not contain πn (but rather πbn/2c): Think about
the zero- and one-dimensional case.
A zero-dimensional ball is just a point. Its zero-dimensional
volume is 1.
An one-dimensional ball is just a line segment. Its
one-dimensional volume is its length.

https://en.wikipedia.org/wiki/Volume_of_an_n-ball


Love is
important.

♥
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Kissing hyperspheres

dimension radius of the inner hypersphere

n = 2

√
2− 1

n = 3
√

3− 1
n = 4

√
4− 1

n
√
n− 1

The distance to the corners gets bigger and bigger.
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• In two dimensions, the distance of a point (x, y) to the origin is√
x2 + y2 (by the Pythagorean theorem).

• In three dimensions, the distance of a point (x, y, z) to the origin
is
√

x2 + y2 + z2.

• The pattern continues to arbitrary dimensions.

• In four dimensions, the “small hypersphere in the middle” has
exactly the same size as the hyperspheres at the 16 vertices of
the hypercube.

• In even greater dimensions, the hyperspheres at the vertices are
so small that the “small hypersphere in the middle” is bigger
than them and in fact bigger than the hypercube!
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General relativity

Einstein’s celebrated �eld equation states that
G = κ · T ,

where
G relates to the curvature of space,
T measures the mass distribution, and
κ is a constant.

In 2 + 1 dimensions, the equation implies T = 0. The theory is
nontrivial only in four or more dimensions.
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Details are in the article General relativity in two and
three-dimensional space-times by Peter Collas.

http://www.csun.edu/~vcphy00d/PDFPublications/1977%20GR(2+1).pdf
http://www.csun.edu/~vcphy00d/PDFPublications/1977%20GR(2+1).pdf
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A four-dimensional fractal

You know the Mandelbrot set. Maybe you also know the Julia
sets associated to any point of the plane.

But did you know that these in�nitely many fractals are just
two-dimensional cuts of an unifying four-dimensional fractal?
We invite you to play with it.
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http://rawgit.com/MatthiasHu/FractalsWebGL/4d/page.html
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Platonic solids in 3D
Tetrahedron

4 faces, 4 vertices
Hexahedron

6 faces, 8 vertices
Octahedron

8 faces, 6 vertices

Dodecahedron
12 faces, 20 vertices

Icosahedron
20 faces, 12 vertices
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Platonic solids in 4D
Pentachoron
5v, 10e, 10f, 5c

Octachoron
16v, 32e, 24f, 8c

Hexadecachoron
8v, 24e, 32f, 16c

Hecatonicosachoron
600v, 1200e, 720f, 120c

Hexacosichoron
120v, 720e, 1200f, 600c
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Platonic solids in arbitrary dimensions

dimension number of Platonic solids
n = 1 1 (just the line segment)
n = 2 ∞ (triangle, square, . . . ; any regular polygon)
n = 3 5
n = 4 6
n > 4 3 (just the simplex, the hypercube and its dual)
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• The only platonic solid which can be used to tesselate
three-dimensional space is the cube.

• In four dimensions, both the tesseract and the 24-cell work.

• This has a deeper reason: In any dimension n, the n-dimensional
analogue of the rhombic dodecahedron can be used to tesselate
n-dimensional space. In dimension n = 3 the rhombic
dodecahedron is not a Platonic solid; in dimension n = 4 it is
(and is also called the “24-cell”).
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Image sources

Image sources
Miscellaneous pictures:
https://commons.wikimedia.org/wiki/File:Blue_Trefoil_Knot.png
http://www.gnuplotting.org/figs/klein_bottle.png
http://4.bp.blogspot.com/_TbkIC-eqFNM/S-dK9dd1cUI/AAAAAAAAFjA/d8qdTHhKy1U/s320/
tesseract+unfolded.png
https://en.wikipedia.org/wiki/File:Tetrahedron.svg
https://en.wikipedia.org/wiki/File:Hexahedron.svg
https://en.wikipedia.org/wiki/File:Octahedron.svg
https://en.wikipedia.org/wiki/File:Dodecahedron.svg
https://en.wikipedia.org/wiki/File:Icosahedron.svg

Rendered images of four-dimensional bodies created by Robert Webb with his Stella software:
https://en.wikipedia.org/wiki/File:
Ortho_solid_011-uniform_polychoron_53p-t0.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_5-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_8-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_16-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_24-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_120-cell.png
https://en.wikipedia.org/wiki/File:
Schlegel_wireframe_600-cell_vertex-centered.png
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