$$V_n = \int_0^1 \int_0^{2\pi} V_{n-2} (\sqrt{1-r^2})^{n-2} r \, d\theta \, dr$$

The curious world of <u>four-di</u>mensional geometry

Ingo Blechschmidt and Matthias Hutzler with thanks to Sven Prüfer

Universität Augsburg December 29th, 2016

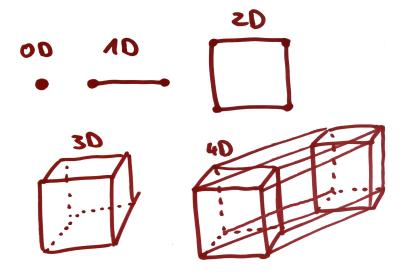
The curious world of <u>four-di</u>mensional geometry

Ingo Blechschmidt and Matthias Hutzler with thanks to Sven Prüfer

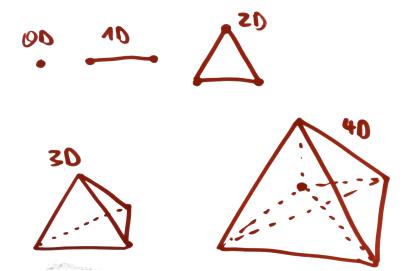
Universität Augsburg December 29th, 2016

- Basics
 - Four dimensions: what is it?
 - Knot theory
 - The Klein bottle
- 2 Sizes in four dimensions
 - Hypervolume of hyperballs
 - Kissing hyperspheres
- **3** General relativity
- **4** Intersection theory
 - A hyperball arrives
 - A tesseract arrives
 - A four-dimensional fractal
- 5 Platonic solids
 - In 3D
 - In 4D
 - In arbitrary dimensions
 - Glueing four-dimensional shapes

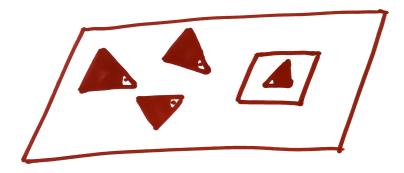
Four dimensions?



Four dimensions?

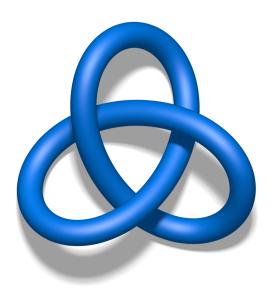


Four dimensions?



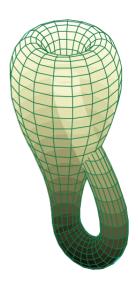
- On the previous slide you see two-dimensional projections of the three-dimensional cube and the four-dimensional hypercube (tesseract).
- We're talking about four spatial dimensions. This is not related to four-dimensional spacetime or eleven-dimensional string theory.
- A flatlander can be imprisoned by enclosing them with a square. But we, as three-dimensional beings, can free them by grabbing them, lifting them up in the third dimension, moving them a little to the side, and putting them back into flatland.
- Similarly, a four-dimensional being could free us if we were imprisoned in a three-dimensional cube.

Tying your shoelaces

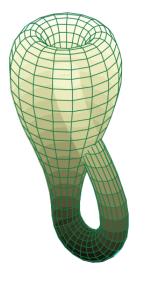


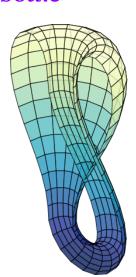
- You can untie any knot in four dimensions. Two linked one-dimensional strings can always be separated in four dimensions.
- But it's possible to tangle an one-dimensional string with the two-dimensional surface of a sphere in four dimensions.
- More generally, in n dimensions, one can tangle a-dimensional objects with b-dimensional objects provided that $a + b \ge n 1$.

The Klein bottle



The Klein bottle





- The familiar torus (donut) can be obtained from a cylinder by glueing the two bounding circles together.
- The Klein bottle can be obtained in the same way, but with flipping one of the bounding circles first.
- In three dimensions, the Klein bottle can only be realized with a self-intersection. Only in four dimensions it's possible to exhibit the true Klein bottle.
- Like the Möbius strip, the Klein bottle is not orientable: It has only one side. Unlike the Möbius strip, it doesn't have a boundary.
- A mathematician named Klein
 Thought the Möbius band was divine.
 Said he: "If you glue
 The edges of two,
 You'll get a weird bottle like mine."
 - Leo Moser

Hypervolume of hyperballs

dimension	hypervolume	
n=2	$\pi/4$	≈ 0.785
n = 3	$\pi/6$	≈ 0.524
n=4	$\pi^2/32$	≈ 0.308
n = 5	$\pi^2/60$	≈ 0.164
n = 6	$\pi^3/384$	≈ 0.081
n = 7	$\pi^3/840$	≈ 0.037
$n \to \infty$	$\rightarrow 0$	

Hypervolume of hyperballs

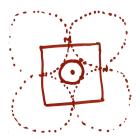
dimension	hypervolume	
n=2	$\pi/4$	≈ 0.785
n = 3	$\pi/6$	≈ 0.524
n=4	$\pi^2/32$	≈ 0.308
n = 5	$\pi^2/60$	≈ 0.164
n=6	$\pi^{3}/384$	≈ 0.081
n = 7	$\pi^3/840$	≈ 0.037
$n \to \infty$	$\rightarrow 0$	
n = 0	1	≈ 1.000
n = 1	1	≈ 1.000

- The portion of the *n*-dimensional unit hypercube which is occupied by the inscribed *n*-dimensional hyperball gets arbitrary small in sufficiently high dimensions.
- The volume of such a hyperball is the answer to the following question: What is the probability that we managed to hit the hyperball with an dart, provided that we managed to hit the enclosing hyperball?
- Wikipedia gives derivations for these formulas.
- You can use the *power of negative thinking* to motivate that the formula for the n-dimensional volume of the n-dimensional hyperball does *not* contain π^n (but rather $\pi^{\lfloor n/2 \rfloor}$): Think about the zero- and one-dimensional case.

A zero-dimensional ball is just a point. Its zero-dimensional volume is 1.

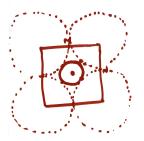
An one-dimensional ball is just a line segment. Its one-dimensional volume is its length.

Love is important.

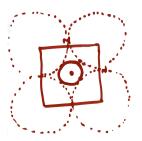


dimension radius of the inner hypersphere

n = 2



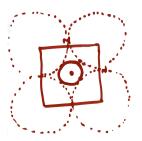
dimension	radius of the inner hypersphere
n=2	$\sqrt{2}-1$



dimension	radius of the inner hypersphere
-----------	---------------------------------

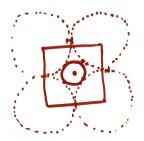
$$n = 2$$
 $\sqrt{2} - 1$

$$n = 3$$



dimension	radius of the inner hypersphere
n=2	$\sqrt{2}-1$
n = 3	$\sqrt{3}-1$

dimension	radius of the inner hypersphere
n=2	$\sqrt{2}-1$
n=3	$\sqrt{3}-1$
n=4	$\sqrt{4}-1$



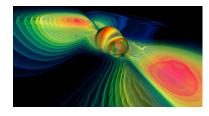
dimension	radius of the inner hypersphere
n=2	$\sqrt{2}-1$
n=3	$\sqrt{3}-1$
n=4	$\sqrt{4}-1$
n	$\sqrt{n}-1$

The distance to the corners gets bigger and bigger.

- In two dimensions, the distance of a point (x, y) to the origin is $\sqrt{x^2 + y^2}$ (by the Pythagorean theorem).
- In three dimensions, the distance of a point (x, y, z) to the origin is $\sqrt{x^2 + y^2 + z^2}$.
 - The pattern continues to arbitrary dimensions.
- In four dimensions, the "small hypersphere in the middle" has exactly the same size as the hyperspheres at the 16 vertices of the hypercube.
- In even greater dimensions, the hyperspheres at the vertices are so small that the "small hypersphere in the middle" is bigger than them and in fact bigger than the hypercube!

General relativity





Einstein's celebrated **field equation** states that

$$G = \kappa \cdot T$$
,

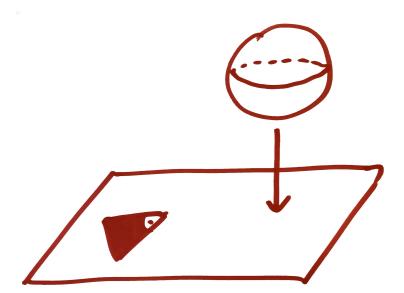
where

- *G* relates to the **curvature** of space,
- *T* measures the **mass distribution**, and
- κ is a constant.

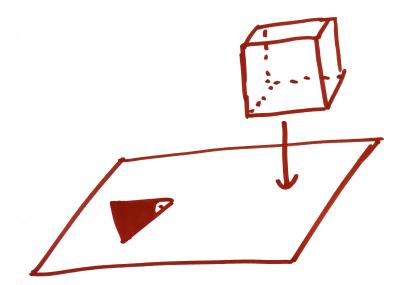
In 2 + 1 dimensions, the equation implies T = 0. The theory is nontrivial only in four or more dimensions.

Details are in the article General relativity in two and three-dimensional space-times by Peter Collas.

A hyperball arrives



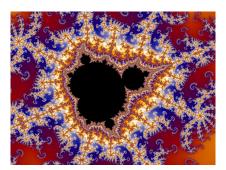
A tesseract arrives



A four-dimensional fractal

You know the Mandelbrot set. Maybe you also know the Julia sets associated to any point of the plane.

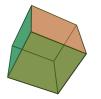
But did you know that these infinitely many fractals are just two-dimensional cuts of an unifying four-dimensional fractal? We invite you to play with it.



Platonic solids in 3D

Tetrahedron 4 faces, 4 vertices

Hexahedron 6 faces, 8 vertices



Dodecahedron12 faces, 20 vertices

Octahedron 8 faces, 6 vertices

Icosahedron 20 faces, 12 vertices

Platonic solids in 4D

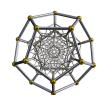
Pentachoron 5v, 10e, 10f, 5c

Octachoron 16v, 32e, 24f, 8c

Hexadecachoron

8v, 24e, 32f, 16c

Hecatonicosachoron 600v, 1200e, 720f, 120c



Hexacosichoron 120v, 720e, 1200f, 600c

Platonic solids in 4D

Pentachoron 5v, 10e, 10f, 5c

Hecatonicosachoron

600v, 1200e, 720f, 120c

Octachoron 16v, 32e, 24f, 8c

Hexacosichoron 120v, 720e, 1200f, 600c

Hexadecachoron

8v, 24e, 32f, 16c

Icositetrachoron

24v, 96e, 96f, 24c

Platonic solids in arbitrary dimensions

dimension	number of Platonic solids
n=1	1 (just the line segment)
n=2	∞ (triangle, square,; any regular polygon)
n=3	5
n=4	6
n > 4	3 (just the simplex, the hypercube and its dual)

• The only platonic solid which can be used to tesselate three-dimensional space is the cube.

(and is also called the "24-cell").

- In four dimensions, both the tesseract and the 24-cell work.
- This has a deeper reason: In any dimension n, the n-dimensional analogue of the rhombic dodecahedron can be used to tesselate n-dimensional space. In dimension n=3 the rhombic dodecahedron is not a Platonic solid; in dimension n=4 it is

Glueing four-dimensional shapes

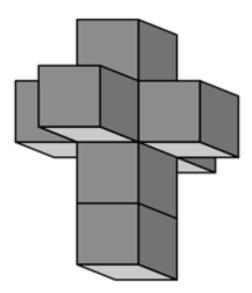


Image sources

Miscellaneous pictures:

```
https://commons.wikimedia.org/wiki/File:Blue_Trefoil_Knot.png
http://www.gnuplotting.org/figs/klein_bottle.png
http://4.bp.blogspot.com/_TbkIC-eqFNM/S-dK9dd1cUI/AAAAAAAFjA/d8qdTHhKy1U/s320/
tesseract+unfolded.png
https://en.wikipedia.org/wiki/File:Tetrahedron.svg
https://en.wikipedia.org/wiki/File:Hexahedron.svg
https://en.wikipedia.org/wiki/File:Octahedron.svg
https://en.wikipedia.org/wiki/File:Dodecahedron.svg
https://en.wikipedia.org/wiki/File:Icosahedron.svg
```

Rendered images of four-dimensional bodies created by Robert Webb with his Stella software:

```
https://en.wikipedia.org/wiki/File:
Ortho_solid_011-uniform_polychoron_53p-t0.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_5-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_8-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_16-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_24-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_120-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_120-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_120-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_120-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_120-cell.png
https://en.wikipedia.org/wiki/File:Schlegel_wireframe_120-cell.png
```