
Ordinal numbers (Super) Turing machines The effective topos

Exploring hypercomputation
♥ with the effective topos♥

Ingo Blechschmidt
University of Augsburg

February 8th, 2017 1 / 25

Ordinal numbers (Super) Turing machines The effective topos

1 Crash course on ordinal numbers

2 (Super) Turing machines
Bacics on Turing machines
Bacis on super Turing machines
The power of super Turing machines
Outlook on the larger theory

3 The effective topos
First steps in the effective topos
The wonder of constructive logic
Effective content of classical tautologies
Wrapping up

2 / 25

Ordinal numbers (Super) Turing machines The effective topos

Part I
A crash course on ordinal numbers

3 / 25

The Wikipedia article on ordinal numbers is a good starting point. For
the purposes of this talk, it suffices to have some intuitive grasp of the
ordinal number line:

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω · 2, ω · 2+ 1, . . .

https://en.wikipedia.org/wiki/Ordinal_number

Ordinal numbers (Super) Turing machines The effective topos TM STM Power Outlook

Part II
(Super) Turing machines

4 / 25

Ordinal numbers (Super) Turing machines The effective topos TM STM Power Outlook

Basics on Turing machines

Turing machines are idealised computers operating on an
infinite tape according to a finite list of rules.
The concept is astoundingly robust.
A subset of N is enumerable by a Turing machine if
and only if it’s a Σ1-set.

Alan Turing
(* 1912, † 1954)

worth watching Alison Bechdel
(* 1960)

5 / 25

• There are explicit examples for Turingmachines with a very small
number of states for which their halting behaviour is unknown.
There are other examples for which their halting behaviour is
independent of standard Zermelo–Fraenkel set theory.

• Besides Turing machines, there are alternative models for com-
putation, for instance lambda calculus and register machines.
For functions N → N, these models all yield the same notion of
computabitility. For higher-order functions, where the domain is
a set of functions, the models typically differ in which functions
they deem computable.

• A set M ⊆ N is enumerable by a Turing machines (or recursively
enumerable) if and only if there is a Turingmachinewhich outputs
all the elements of M (in an arbitrary order).

• A set M ⊆ N is a Σ1-set if and only if there is a Σ1-formula φ of
first-order arithmetic containing exactly one free variable such
that M = {n ∈ N |φ(n)}. A formula φ is a Σ1-formula if and
only if it is of the form

∃m1. ∃m2. . . .∃mk. ♡,

where the existential quantifiers range over the natural numbers
and no further unbounded quantifiers (of any kind) may appear
in the subformula ♡.

There is also a deep link between computability and number theory:
A set M ⊆ N is enumerable by a Turing machine if and only if it is a
diophantine set, that is of the form

M = {n ∈ N | the eq. f (n, x1, . . . , xm) = 0 has a solution},

where f is a polynomial with integral coefficients and “solution” means
integral solution.

Just as Logicomix: An Epic Search for Truth illustrates the foundational
quest in mathematics (starring Cantor, Hilbert, Gödel, Turing, and
others), the graphic novel The Thrilling Adventures of Lovelace and
Babbage explores the history of programmable computers.

Ordinal numbers (Super) Turing machines The effective topos TM STM Power Outlook

Super Turing machines

With super Turing machines, the time axis is more interesting:
normal: 0, 1, 2, . . .
super: 0, 1, 2, . . . , ω, ω + 1, . . . , ω · 2, ω · 2+ 1,

On reaching a limit ordinal time step like ω or ω · 2,
the machine is put into a designated state,
the read/write head is moved to the start of the tape, and
the tape is set to the “lim sup” of all its previous contents.

Joel David Hamkins MathOverflow Andy Lewis
6 / 25

We can imagine a super Turing machine to take one second for its
first computational step, half a second for the next step, a quarter of
a second for the step after that, and so on. After two seconds, the
machine will have completed infinitely many steps.

The fine print: This visual illustration only works for those ordinals which can be embedded
into the ordinary real number line R. These are exactly the countable ordinals, those ordinals
for which the set of predecessors is countable. Luckily, the interesting behaviour of a super
Turing machine always takes place in the realm of countable ordinal numbers (even though this
is not a requirement we put on super Turing machines a priori).

Ordinal numbers (Super) Turing machines The effective topos TM STM Power Outlook

A question for you

What’s the behaviour of this super Turing machine?

In the start state and the limit state, check whether
the current cell contains a “1”.

If yes, then stop.
If not, then flash that cell: set it to “1”, then
reset it to “0”. Then unremittingly move the
head rightwards.

This machine halts after time step ω2.

Super Turing machines can break out of
(some kinds of) infinite loops.

7 / 25

Ordinal numbers (Super) Turing machines The effective topos TM STM Power Outlook

A question for you

What’s the behaviour of this super Turing machine?

In the start state and the limit state, check whether
the current cell contains a “1”.

If yes, then stop.
If not, then flash that cell: set it to “1”, then
reset it to “0”. Then unremittingly move the
head rightwards.

This machine halts after time step ω2.

Super Turing machines can break out of
(some kinds of) infinite loops.

7 / 25

There is an ASCII video of a run of that machine.

https://asciinema.org/a/66yqvm1qjormhj6tgl2wzyvu8

Ordinal numbers (Super) Turing machines The effective topos TM STM Power Outlook

What can super Turing machines do?

Everything ordinary Turing machines can do.
Verify number-theoretic statements.
Decide whether a given ordinary Turing machine halts.
Simulate super Turing machines.
Decide Π1

1- and Σ1
1-statements:

“For every function N → N it holds that . . . ”
“There is a function N → N such that . . . ”

But: Super Turing machines can’t compute all functions and
can’t write every 0/1-sequence to the tape.

8 / 25

Ordinal numbers (Super) Turing machines The effective topos TM STM Power Outlook

What can super Turing machines do?

Everything ordinary Turing machines can do.
Verify number-theoretic statements.
Decide whether a given ordinary Turing machine halts.
Simulate super Turing machines.
Decide Π1

1- and Σ1
1-statements:

“For every function N → N it holds that . . . ”
“There is a function N → N such that . . . ”

But: Super Turing machines can’t compute all functions and
can’t write every 0/1-sequence to the tape.

8 / 25

Ordinal numbers (Super) Turing machines The effective topos TM STM Power Outlook

Fun facts

Every super Turing machine either halts or gets caught in
an unbreakable infinite loop after countably many steps.
An ordinal number α is clockable iff there is a super
Turing machine which halts precisely after time step α.

Speed-up Lemma: If α+ n is clockable, then so is α.
Big Gaps Theorem
Many Gaps Theorem
Gapless Blocks Theorem

Lost Melody Theorem: There are 0/1-sequences which a
super Turing machine can recognise, but not write to the tape.

9 / 25

• In view of the fact that super Turing machines always halt at
countable ordinal numbers (if they halt at all), the ability of super
Turing machines to decide Π1

1- and Σ1
1-statements is even more

astounding.

• That there are at least some ordinal numbers which are not clock-
able, can be seen by a simple cardinality argument: There are
only countably many super Turing machines, but a proper class
worth of ordinal numbers.

• The Big Gaps Theorem states: For every clockable ordinal α there
is a gap of length ≥ α in the clockable ordinals.

• The seminal paper introducing super Turing machines is a joy
to read. It contains the statements and proofs of all the cited
theorems.

• I’m using the adjectives “super”, “hyper”, and “infinite-time” in-
terchangably.

https://arxiv.org/abs/math/9808093

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Part III
The effective topos

10 / 25

For any model M of computation, such as Turing machines (TM),
super Turing machines (STM), or lambda calculus (λC), there is an
associated effective topos Eff(M). Formally, a topos is a certain kind
of category; intuitively, a topos is an alternate mathematical universe
in which the usual laws of logic may not necessarily hold.

The standard universe, in which most of mathematics happens, is the
topos Set.

One can even employ machines of the real physical world as the
“model”M used for constructing the effective topos (RW). Statements
about the resulting topos are then statements about the real world
instead of formal mathematical statements.

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

The effective topos

“1+ 1 = 2.”

True in Set, true in Eff(TM).

“Every number is either prime or not.”

Trivially true in Set, nontrivially true in Eff(TM).

“Every function N → N is either the zero function or not.”

Trivially true in Set, false in Eff(TM).

“Every function N → N is computable by a Turing machine.”

False in Set, trivially true in Eff(TM).

“Every function R → R is continuous.”

False in Set, nontrivially true in Eff(TM).

11 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

The effective topos

“1+ 1 = 2.”
True in Set, true in Eff(TM).

“Every number is either prime or not.”

Trivially true in Set, nontrivially true in Eff(TM).

“Every function N → N is either the zero function or not.”

Trivially true in Set, false in Eff(TM).

“Every function N → N is computable by a Turing machine.”

False in Set, trivially true in Eff(TM).

“Every function R → R is continuous.”

False in Set, nontrivially true in Eff(TM).

11 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

The effective topos

“1+ 1 = 2.”
True in Set, true in Eff(TM).

“Every number is either prime or not.”
Trivially true in Set, nontrivially true in Eff(TM).

“Every function N → N is either the zero function or not.”

Trivially true in Set, false in Eff(TM).

“Every function N → N is computable by a Turing machine.”

False in Set, trivially true in Eff(TM).

“Every function R → R is continuous.”

False in Set, nontrivially true in Eff(TM).

11 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

The effective topos

“1+ 1 = 2.”
True in Set, true in Eff(TM).

“Every number is either prime or not.”
Trivially true in Set, nontrivially true in Eff(TM).

“Every function N → N is either the zero function or not.”
Trivially true in Set, false in Eff(TM).

“Every function N → N is computable by a Turing machine.”

False in Set, trivially true in Eff(TM).

“Every function R → R is continuous.”

False in Set, nontrivially true in Eff(TM).

11 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

The effective topos

“1+ 1 = 2.”
True in Set, true in Eff(TM).

“Every number is either prime or not.”
Trivially true in Set, nontrivially true in Eff(TM).

“Every function N → N is either the zero function or not.”
Trivially true in Set, false in Eff(TM).

“Every function N → N is computable by a Turing machine.”
False in Set, trivially true in Eff(TM).

“Every function R → R is continuous.”

False in Set, nontrivially true in Eff(TM).

11 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

The effective topos

“1+ 1 = 2.”
True in Set, true in Eff(TM).

“Every number is either prime or not.”
Trivially true in Set, nontrivially true in Eff(TM).

“Every function N → N is either the zero function or not.”
Trivially true in Set, false in Eff(TM).

“Every function N → N is computable by a Turing machine.”
False in Set, trivially true in Eff(TM).

“Every function R → R is continuous.”
False in Set, nontrivially true in Eff(TM).

11 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

First steps in the effective topos

Eff(TM) |= “For every number n there is a prime p > n.”
means:

There is a Turing machine which reads a number n as input
and outputs a prime number p > n.

“Realisability Theory”

Eff(TM) |= “Every number has a prime factor decomposition.”
means:

There is a Turing machine which reads a number n as input
and outputs a list of primes the product of which is n.

Eff(TM) |= “Every number is either prime or not prime.”
means:

There is a Turing machine which reads a number n as input
and outputs YES or NO depending on whether n is prime
or not.

12 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

First steps in the effective topos

Eff(TM) |= “For every number n there is a prime p > n.”
means:

There is a Turing machine which reads a number n as input
and outputs a prime number p > n.

Eff(TM) |= “Every number has a prime factor decomposition.”
means:

There is a Turing machine which reads a number n as input
and outputs a list of primes the product of which is n.

Eff(TM) |= “Every number is either prime or not prime.”
means:

There is a Turing machine which reads a number n as input
and outputs YES or NO depending on whether n is prime
or not.

12 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

First steps in the effective topos

Eff(TM) |= “For every number n there is a prime p > n.”
means:

There is a Turing machine which reads a number n as input
and outputs a prime number p > n.

Eff(TM) |= “Every number has a prime factor decomposition.”
means:

There is a Turing machine which reads a number n as input
and outputs a list of primes the product of which is n.

Eff(TM) |= “Every number is either prime or not prime.”
means:

There is a Turing machine which reads a number n as input
and outputs YES or NO depending on whether n is prime
or not.

12 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

What’s true in alternate toposes?

Metatheorem: If a statement has a constructive proof, then
it holds in any topos.

Constructive logic is like classical logic, except we don’t
suppose the law of excluded middle (LEM), which says:

“Every statement is either true or not true.”
“If a statement is not not true, then it’s true.”

13 / 25

• The technical term for “constructive logic” is “intuitionistic logic”.
“Constructive logic” or even “constructive mathematics” is more
of an umbrella term which might mean any of several related,
but not equivalent systems.

• The law of excluded middle is the axiom which allows us to argue
by contradiction. But the word “contradiction” is still allowed in
constructive mathematics; see below.

• The proof of the metatheorem is constructive.

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Nonconstructive proofs

Theorem. There are irrational numbers x und y such that xy
is rational.

Proof. Either
√
2
√
2 is rational or not.

1 In the first case we are done.
2 In the second case we set x :=

√
2
√
2 and y :=

√
2.

Then xy =
√
2
√
2·
√
2
=

√
22 = 2 is rational.

14 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Nonconstructive proofs

Theorem. There are irrational numbers x und y such that xy
is rational.

Proof. Either
√
2
√
2 is rational or not.

1 In the first case we are done.
2 In the second case we set x :=

√
2
√
2 and y :=

√
2.

Then xy =
√
2
√
2·
√
2
=

√
22 = 2 is rational.

14 / 25

The proof is nice and short. However, after having seen the proof, we
are still not able to give an example of irrational numbers x, y such
that xy is rational! The proofwas non-constructive. If wewant to extract
explicit witnesses from the proof, the proof has to be constructive,
such as this one:

Set x :=
√
2 and y := log√2 3. Then xy = 3 is rational. The

proof that y is irrational is even easier than the proof that
√
2

is irrational.

It turns out that from all the axioms of classical logic, exactly one is
responsible for non-constructivity: the law of excluded middle.

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Appreciating constructive logic

At first sight, dropping the law of excluded middle looks like a
sad thing to do. It’s a useful axiom! However:

The axiom is not needed as often as one would think.
The abstinence is good for your mental hygiene.
Constructive logic allows for finer distinctions.
From constructive proofs one can mechanically extract pro-
grams which witness the proved statements.
Dropping the law of excluded middle allows to add
curious unconvential axioms.

15 / 25

We’re used to immediately cancel double negations. Since that’s con-
structively not possible, we have to exercise a bit of linguistic caution:

• Proof of a negated statement (constructively acceptable): We want
to verify ¬ψ. Assume that ψ holds. Then . . . , that’s a contradic-
tion. Therefore ¬ψ.
This is a constructively valid argument, since in constructive
(and classical) logic ¬ψ is defined as the implication (ψ ⇒ ⊥),
where ⊥ is the formal logical symbol for falsity, a contradiction.

• Proof by contradiction (constructively not acceptable a priori): We
want to verify φ. Assume that φ is false. Then . . . , that’s a
contradiction. Therefore φ holds.
The constructively valid part of this argument only shows that φ
does not not hold: ¬¬φ.

Several years ago a video showing Kate Moss consuming drugs sur-
faced. From the video it was clear that the drugs were either of some
type A or of some type B, but there was no direct evidence for either
type. Kate Moss was not prosecuted; in this sense, the judicial system
operated on constructive logic. Check out Dan Piponi’s blog post about
this topic.

http://blog.sigfpe.com/2008/06/drugs-kate-moss-and-intuitionistic.html
http://blog.sigfpe.com/2008/06/drugs-kate-moss-and-intuitionistic.html

Constructive logic allows for finer distictions than classical logic. For
instance, if we know that the key to our apartment has to be somewhere
in the apartment (since we used it to enter last night) but we can’t find
it right now, we can constructively only justify

¬¬(∃x. the key is at position x),

not the stronger statement

∃x. the key is at position x,

because for justifying the stronger statement we’d had to give an
explicit witness of the existential statement (the position of the key).

(Both examples do not quite work, since constructive mathematics is (like classical mathematics)
indifferent to our personal state of knowledge.)

Constructive mathematicians do not claim that the law of excluded
middle is false (that is, that its negation holds). In fact, some instances
of the law of excluded middle are true intuitionistically: For example
one can show by induction that any natural number is zero or is not
zero. Constructive mathematicians simply don’t suppose that the law
of excluded holds generally.

The analogous statement about real numbers does not have a construc-
tive proof. This is linked with a familiar fact from programming: It’s
unbeseeming to compare floating point numbers for equality, while
there is no such problem with comparing integers.

Philosophers don’t only study what’s true, but also what should be true,
what’s possible, what’s necessary, what somebody knows or somebody
believes. This is formalised using modal operators.

Mathematicians don’t need to envy that greater scope: In constructive
mathematics there is too a multitude of modal operators. Double
negation is the most prominent example.

Andrej Bauer gave a very insightful talk about the merits of construc-
tive mathematics at the Institute for Advanced Study. His talk is a joy
to watch!

• video

• accompanying article

https://www.youtube.com/watch?v=21qPOReu4FI
http://www.ams.org/journals/bull/0000-000-00/S0273-0979-2016-01556-4/S0273-0979-2016-01556-4.pdf

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

LEM for equality of functions

Eff(TM) |= “Every function f : N → N is either the zero
function or not.”

means:
There is a Turing machine which reads the source of
a Turing machine M computing a function N → N as
input, and finds out whether M always yields zero or
not.

That’s false.

The statement is true in Eff(STM), the effective topos
associated to super Turing machines.

16 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

LEM for equality of functions

Eff(TM) |= “Every function f : N → N is either the zero
function or not.”

means:
There is a Turing machine which reads the source of
a Turing machine M computing a function N → N as
input, and finds out whether M always yields zero or
not.

That’s false.

The statement is true in Eff(STM), the effective topos
associated to super Turing machines.

16 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

LEM for the halting problem

Eff(TM) |= “Every Turing machine halts or doesn’t halt.”
means:

There is a Turing machine which reads the source of
a Turing machine M as input and finds out whether
M halts or not.

That’s false.

The statement is true in Eff(STM).

17 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

LEM for the halting problem

Eff(TM) |= “Every Turing machine halts or doesn’t halt.”
means:

There is a Turing machine which reads the source of
a Turing machine M as input and finds out whether
M halts or not.

That’s false.

The statement is true in Eff(STM).

17 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

LEM for equality of real numbers

The statement

“Every real number is either zero or not zero.”

entails in constructive logic

“Every Turing machine halts or doesn’t halt.”,

so it’s not true in Eff(TM). (But it is in Eff(STM).)

For a Turing machine M consider the real number 0.000 . . .
whose n’th decimal digit is a one iff M halts after step n.

18 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

LEM for equality of real numbers

The statement

“Every real number is either zero or not zero.”

entails in constructive logic

“Every Turing machine halts or doesn’t halt.”,

so it’s not true in Eff(TM). (But it is in Eff(STM).)

For a Turing machine M consider the real number 0.000 . . .
whose n’th decimal digit is a one iff M halts after step n.

18 / 25

Is the statement true in Eff(RW), the effective topos associated to
machines of the real world? That means: Is it possible to build a halting
oracle in the real world? A machine which reads the description of a
Turing machine and then outputs whether the Turing machine halts
or not?

Since this is not about the halting problem for machines of the real
world (which is not decidable by machines of the real world, by the
usual argument), but only about the halting problem for Turing ma-
chines, the answer might be “yes”. Tricks using black holes and rela-
tivistic time dilation might be possible.

More details on Eff(RW) are contained in the very accessible book
chapter Intuitionistic Mathematics and Realizability in the Physical
World by Andrej Bauer.

https://en.wikipedia.org/wiki/Halting_problem
http://math.andrej.com/wp-content/uploads/2014/03/real-world-realizability.pdf
http://math.andrej.com/wp-content/uploads/2014/03/real-world-realizability.pdf

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Markov’s principle

Eff(TM) |= “For every function f : N → N which is not
the zero function, there is a number n ∈ N
such that f (n) ̸= 0.”

means:
There is a Turing machine which reads the source of
a Turing machine M computing a function N → N
which is not the zero function as input and outputs a
number n such that M(n) is not zero.

That’s true! By unbounded search.

19 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Markov’s principle

Eff(TM) |= “For every function f : N → N which is not
the zero function, there is a number n ∈ N
such that f (n) ̸= 0.”

means:
There is a Turing machine which reads the source of
a Turing machine M computing a function N → N
which is not the zero function as input and outputs a
number n such that M(n) is not zero.

That’s true! By unbounded search.

19 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

The axiom of choice

A set X ist projective if and only if, for every set Y and any
formula φ(x, y) with parameters x ∈ X , y ∈ Y it holds that:

If for any x ∈ X there is an element y ∈ Y such
that φ(x, y), then there is a map f : X → Y such
that φ(x, f (x)) for all x ∈ X .

∀x ∈ X . ∃y ∈ Y . φ(x, y) =⇒ ∃f ∈ YX . ∀x ∈ X . φ(x, f (x))

The axiom of choice of classical mathematics states that every
set is projective.

In Eff(TM) the set N is projective, but NN is not.
In Eff(STM) the sets N and NN are projective.
In Eff(RW) the set NN is projective if black boxes are
possible.

20 / 25

Finite sets are projective even in constructive mathematics.

By NN, we mean the set of all functions N → N.

A good way to convince oneself that the axiom of choice is indeed a nontrivial statement is to
look at what the statement “NN is projective” means in Eff(TM). It means that the statement

There is a Turing machine M which reads the description of a Turing machine P ,
which computes a function f : N → N, as input and outputs an elementM(P) ∈ Y
together with a witness of φ(f ,M(P)).

implies

There is a computable map g from the set of computable maps f : N → N to the
set Y such that for all such functions f the statement φ(f , g(f)) holds in Eff(TM).

On first sight, this implications seems to be true: It seems that one could define the looked-for
map g to be simply the map computed by M . But that doesn’t necessarily work: If f : N → N is
a map which is computed by a Turing machine P , then the element M(P) might depend on the
concrete realisation of f by the machine P . Different implementations of f by different Turing
machines P′ might yield different elements M(P′). Therefore the resulting “map” g might be
multi-valued, so not a proper map.

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Searching uncountable sets

“For every function f : N → B from numbers toB = {0, 1}
there either exists a number n such that f (n) = 1 or there
is no such number.”

This statement is false in Eff(TM).

“For every function P : BN → B from infinite sequences of
booleans to booleans, there either exists a list x such that
P(x) = 1 or there is no such list.”

This statement is true in Eff(TM)!

21 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Searching uncountable sets

“For every function f : N → B from numbers toB = {0, 1}
there either exists a number n such that f (n) = 1 or there
is no such number.”

This statement is false in Eff(TM).

“For every function P : BN → B from infinite sequences of
booleans to booleans, there either exists a list x such that
P(x) = 1 or there is no such list.”

This statement is true in Eff(TM)!

21 / 25

It’s somewhat miraculous that the countable setN can not be searched,
but the uncountable set

BN =

∞∏
n=0

B = {(x0, x1, . . .)}

can. There is a deeper topological reason for this fact: The space BN is
compact (by Tychonoff’s theorem) while N is not.

Details are available in a blog post by Martín Escardó.

http://math.andrej.com/2007/09/28/seemingly-impossible-functional-programs/

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

The Church–Turing thesis

The Church–Turing thesis states:

If a function f : N → N is computable in the real
world, then it’s also computable by a Turing machine.

Eff(TM) |= “Every function f : N → N is computable by
a Turing machine.”

means:
There is a Turing machine which reads the source of
a Turing machine computing a function f : N → N
as input and outputs the source of a Turing machine
which computes f .

That’s trivial, echo the input back to the user.

In Eff(STM) the statement is false.

22 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

The Church–Turing thesis

The Church–Turing thesis states:

If a function f : N → N is computable in the real
world, then it’s also computable by a Turing machine.

Eff(TM) |= “Every function f : N → N is computable by
a Turing machine.”

means:
There is a Turing machine which reads the source of
a Turing machine computing a function f : N → N
as input and outputs the source of a Turing machine
which computes f .

That’s trivial, echo the input back to the user.

In Eff(STM) the statement is false.
22 / 25

The statement “any function N → N is computable by a Turing ma-
chine” is the formal Church–Turing thesis. It is wrong in the standard
topos Set.

The meaning of the formal Church–Turing thesis in Eff(STM) is:
“There is a super Turing machine which reads the source of a super
Turing machine computing a function f : N → N as input and outputs
the source of an ordinary Turing machine which computes f .” This is
false.

The statement is also false in Eff(λC), the effective topos associated
to lambda calculus. This is because of different calling conventions; a
higher-order lambda term has no access to the syntactic structure of a
passed argument.

Whether the formal Church–Turing thesis holds in Eff(RW), the effec-
tive topos associated to machines of the real world, depends on the
nature of computation in the real world.

The topos Eff(TM) is a nice context for computer science, since in
it uncomputable functions are not present. By contrast, in classical
mathematics, there are many functions which are not computable.
Two of the most famous ones are the “halting predicate” and the “Busy
Beaver function”:

H(n) =

{
1, if the n’th Turing machine halts,
0, otherwise.

BB(n) = maximal number of steps which a halting Turing machine
with n states performs before halting.

Can’t we use exactly the same definitions in the effective topos, thereby
contradicting the theorem that all functions in the effective topos are
computable?

The apparent paradox is resolved in the following way. The theorem
only states that total functions N → N are computable. However,
to verify that H and BB are indeed such total functions, the law of
excluded middle is necessary:

For H , in order to be able to make the case distinction.

For BB, because implicitly the lemma that every “subfinite” set of
natural numbers contains a maximal element was used. This lemma
depends on the law of excluded middle.

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Automatic continuity

The following statement is wildly false in Set:
“Every function f : R → R is continuous.”

A function f is continuous if and only if, for calculating f (x)
to finitely many digits, finitely many digits of x suffice.

continuous

discontinuous

True in Eff(TM). True in Eff(RW), if private communication
channels are possible and only finitelymany computational steps
can be executed in finite time.

23 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Automatic continuity

The following statement is wildly false in Set:
“Every function f : R → R is continuous.”

A function f is continuous if and only if, for calculating f (x)
to finitely many digits, finitely many digits of x suffice.

continuous

discontinuous

True in Eff(TM).

True in Eff(RW), if private communication
channels are possible and only finitelymany computational steps
can be executed in finite time.

23 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Automatic continuity

The following statement is wildly false in Set:
“Every function f : R → R is continuous.”

A function f is continuous if and only if, for calculating f (x)
to finitely many digits, finitely many digits of x suffice.

continuous

discontinuous

True in Eff(TM). True in Eff(RW), if private communication
channels are possible and only finitelymany computational steps
can be executed in finite time.

23 / 25

Don’t there obviously exist discontinuous functions? Like the sign
function?

sgn : R → R, x 7→


−1, if x < 0,
0, if x = 0,
1, if x > 0.

Without the presence of the law of excluded middle, the situation is
not so trivial: Without LEM, one cannot show that this rule defines a
total function R → R, because without LEM, the lemma “every real
number is either < 0, = 0, or > 0” can’t be shown. (This lemma
implies the weaker statement that any real number is either zero or
not zero. We’ve already seen that this statement is false in Eff(TM).)

Without LEM, the rule only defines a function M → R, where M =
{x ∈ R | x < 0 ∨ x = 0 ∨ x > 0}.

The real numbers can be constructed in several different ways, for
instance using Cauchy sequences or Dedekind cuts. Because the axiom
of dependent choice holds in Eff(TM), Eff(STM), and Eff(RW), all
those constructions coincide.

Externally, a real number in any of these toposes is given by a ma-
chine which produces coherent, arbitrarily good approximations. For
instance, one could ask such a machine for approximations which are
correct to three, seven, or ten digits and obtain the answers

3.1417777777, 3.1415926777, and 3.1415926535.

Machines which compute different, but equally good approximations
represent the same real number.

The fine print: By “correct to n digits” we mean “distance at most 10−n to the true value”. We
don’t literally refer to the first n digits after the decimal point (which aren’t well-defined anyway,
0.999 . . . = 1).

For instance, the approximation 0.999 of the number 1 is correct to three digits while 0.998 is
only correct to two digits.

The meaning of the statement “all functions R → R are continuous” in the effective topos is:
There is a machine M which takes

1. a machine A which computes a function f : R → R,

2. a machine X which represents a real number x, and

3. a natural number n
as inputs and outputs a natural number m with the following property: For any real number x̃
which is the same as x to m digits, the numbers f (x) and f (x̃) are the same to n digits.
In the case of real world machines, one can proceed as follows to construct such a machine M .
Given A, X , and n, the machine M should call A with a slight variant X ′ of X : The machine X ′

should exhibit the same input/output behaviour as X , but on each call X ′ should tell M using
a private communication channel how many digits were asked for. Since X ′ has the same
input/output behaviour as X , the machine A is bound by contract to react to X ′ in the same way
as it reacts to X .
If the real world is such that only finitely many computational steps can be performed in
finite time, then M can determine a suitable number m as follows: It just has to wait till A has
computed f (x) to n digits. It can then look at its log to see how many digits of x A used for the
computation. For any number x̃ which is equal to x to this amount of digits, the number f (x̃)
produced by A is the same as f (x) to n digits.

Not a fan of real numbers? The same phenomenon is visible at other
types, for instance for functions f : BN → B, where B = {0, 1} as
before. Such a function is continuous if and only if, for any x ∈ BN

(that is, any function x : N → B) there exists a number m such
that f (x) depends only on the first m values of x.

In Eff(TM), the statement “every function f : BN → B is continuous”
is true.

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Curious size phenomena

There is no surjection N → NN; the set NN of functions N → N
is much larger than N.

A corollary in classical logic is: There is no injection NN → N.
This expresses the same intuition about the relative sizes.

a surjection
“X is greater than Y”

an injection
“X is smaller than Y”

In Eff(STM), there is such an injection.

24 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Curious size phenomena

There is no surjection N → NN; the set NN of functions N → N
is much larger than N.

A corollary in classical logic is: There is no injection NN → N.
This expresses the same intuition about the relative sizes.

a surjection
“X is greater than Y”

an injection
“X is smaller than Y”

In Eff(STM), there is such an injection.

24 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Curious size phenomena

a surjection
“X is greater than Y”

an injection
“X is smaller than Y”

Eff(STM) |= “There exists an injection NN → N.”
means:

There is a super Turing machine which inputs the
source of a super Turing machine A computing a
function N → N and outputs a number n(A) such
that n(A) = n(B) if and only if A and B compute the
same function.

24 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Curious size phenomena

Eff(STM) |= “There exists an injection NN → N.”
means:

There is a super Turing machine which inputs the
source of a super Turing machine A computing a
function N → N and outputs a number n(A) such
that n(A) = n(B) if and only if A and B compute the
same function.

This statement is witnessed by following super Turing machine:

Read the source of a super Turing machine A from
the tape. Simulate all super Turing machines in a
dovetailing fashion. As soon a machine is found
which has the same input/output behaviour as A,
output the number of this machine and halt.

24 / 25

The number computed by that super Turing machine depends on the
input/output behaviour of A, the chosen order of all super Turing
machines, and on details on the way the interleaving simulation works
– but it does not depend on the implementation of A.

The search terminates since there is at least one super Turing ma-
chine which halts on any natural number input and shows the same
input/output behaviour as A: A itself.

This injection was found by Andrej Bauer.

http://math.andrej.com/2011/06/15/constructive-gem-an-injection-from-baire-space-to-natural-numbers/

Just because it is so nice, here is a constructively valid proof that there
is no surjection N → NN:

Let s : N → NN be an arbitrary map. We want to verify that s is not
surjective. For this, we consider the map f : N → N given by

f (n) := s(n)(n) + 1.

This element f ∈ NN is not in the image of s: If there existed a
number m such that s(m) = f , then

s(m)(m) = f (m) = s(m)(m) + 1.

When thinking about size issues, it’s important to not mix up the exter-
nal and internal point of view – else one encounters Skolem’s paradox:
How is it possible that Eff(TM) doesn’t contain a surjection N → NN,
even though the object NN of the effective topos contains only com-
putable functions and there are only countably many of those?

It’s true that the underlying set of the object NN of Eff(TM) is count-
able, so that there is a surjection (even bijection) N → NN.

But any such surjection is either not computable, therefore not con-
tained in Eff(TM), or is computable, but in a way that there is no
computable witness of its surjectivity. Therefore NN looks like an un-
countable set from the internal point of view Eff(TM), just as Cantor’s
theorem predicts.

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Wrapping up

Effective toposes are a good vehicle for studying the
nature of computation.
Effective toposes build links between constructive
mathematics and programming.
Toposes allow for curious dream axioms.
Toposes also have a geometric flavour: points, subtoposes,
continuous maps between toposes.

There is more to mathematics
than the standard topos.

25 / 25

Ordinal numbers (Super) Turing machines The effective topos First steps Constructive logic Tautologies Wrapping up

Wrapping up

Effective toposes are a good vehicle for studying the
nature of computation.
Effective toposes build links between constructive
mathematics and programming.
Toposes allow for curious dream axioms.
Toposes also have a geometric flavour: points, subtoposes,
continuous maps between toposes.

There is more to mathematics
than the standard topos.

25 / 25

Any topos has a largest dense subtopos. The largest dense subtopos
of Eff(TM) is Set, the standard topos. It is related to the double negation
modality.

For instance, the statement “for any number n there is a prime p > n”
holds in Eff(TM) for the nontrivial reason that there exists a Turing
machine which can find arbitrarily large prime numbers. The weaker
statement “for any number n there is not not a prime p > n” holds
in Eff(TM) as well, but doesn’t require a witness by a machine.

If one prefixes all occurences of “∃” and “∨” in a formula φwith “¬¬”’s,
then it loses its computational content. This modified formula holds
in Eff(TM) if and only if the original formula holds in Set.

For any oracle L (as studied in computer science), the effective topos
associated to Turingmachines with access to L is a subtopos of Eff(TM).
It too corresponds to a certain modal operator.

In the smooth topos, employed in synthetic differential geometry, the
following statement holds:

Axiom of microaffinity: For any function f : ∆ → R,
where ∆ = {ε ∈ R | ε2 = 0}, there exists a unique
pair (a, b) of real numbers such that

f (ε) = a+ bε

for all ε ∈ ∆.

	Crash course on ordinal numbers
	(Super) Turing machines
	The effective topos

