Exploring hypercomputation with the effective topos

IMJ-PRG, Paris November 7th, 2022

Ingo Blechschmidt University of Augsburg

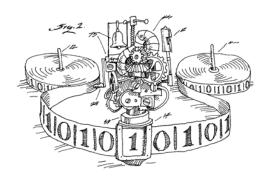
- Crash course on ordinal numbers
- (Super) Turing machines
 - Bacics on Turing machines
 - Bacis on super Turing machines
 - The power of super Turing machines
 - Outlook on the larger theory
- 3 The effective topos
 - First steps in the effective topos
 - Curious size phenomena
 - Wrapping up

Part I

A crash course on ordinal numbers

Part II

(Super) Turing machines



Basics on Turing machines

- Turing machines are idealised computers operating on an **infinite tape** according to a **finite list** of rules.
- The concept is astoundingly robust.
- \blacksquare A subset of $\mathbb N$ is enumerable by a Turing machine if and only if it's a Σ_1 -set.

Alan Turing (* 1912, † 1954)

worth watching

Alison Bechdel (*1960)

Super Turing machines

With super Turing machines, the time axis is more interesting:

- normal: 0, 1, 2, ...
- super: $0, 1, 2, ..., \omega, \omega + 1, ..., \omega \cdot 2, \omega \cdot 2 + 1, ...$

On reaching a limit ordinal time step like ω or $\omega \cdot 2, \dots$

Super Turing machines

With super Turing machines, the time axis is more interesting:

- normal: 0, 1, 2, ...
- super: $0, 1, 2, \ldots, \omega, \omega + 1, \ldots, \omega \cdot 2, \omega \cdot 2 + 1, \ldots$

On reaching a limit ordinal time step like ω or $\omega \cdot 2, \dots$

- the machine is put into a designated state,
- the read/write head is moved to the start of the tape, and
- the tape is set to the "lim sup" of all its previous contents.

Joel David Hamkins

Andy Lewis

MathOverflow

A question for you

What's the behaviour of this super Turing machine?

In the start state and the limit state, check whether the current cell contains a "1".

- If yes, then stop.
- If not, then flash that cell: set it to "1", then reset it to "0". Then unremittingly move the head rightwards.

A question for you

What's the behaviour of this super Turing machine?

In the start state and the limit state, check whether the current cell contains a "1".

- If yes, then stop.
- If not, then flash that cell: set it to "1", then reset it to "0". Then unremittingly move the head rightwards.

This machine halts after time step ω^2 .

Super Turing machines can break out of (some kinds of) infinite loops.

What can super Turing machines do?

- Everything ordinary Turing machines can do.
- Verify number-theoretic statements.
- Decide whether a given ordinary Turing machine halts.
- Simulate super Turing machines.
- Decide Π_1^1 and Σ_1^1 -statements:
 - "For every function $\mathbb{N} \to \mathbb{N}$ it holds that ..."
 - \blacksquare "There is a function $\mathbb{N} \to \mathbb{N}$ such that ..."

What can super Turing machines do?

- Everything ordinary Turing machines can do.
- Verify number-theoretic statements.
- Decide whether a given ordinary Turing machine halts.
- Simulate super Turing machines.
- Decide Π_1^1 and Σ_1^1 -statements:
 - "For every function $\mathbb{N} \to \mathbb{N}$ it holds that ..."
 - "There is a function $\mathbb{N} \to \mathbb{N}$ such that ..."

But: Super Turing machines can't compute all functions and can't write every 0/1-sequence to the tape.

Fun facts

- Every super Turing machine either halts or gets caught in an unbreakable infinite loop after countably many steps.
- An ordinal number α is **clockable** iff there is a super Turing machine which halts precisely after time step α .
 - Speed-up Lemma: If $\alpha + n$ is clockable, then so is α .
 - Big Gaps Theorem
 - Many Gaps Theorem
 - Gapless Blocks Theorem
- Lost Melody Theorem: There are 0/1-sequences which a super Turing machine can recognise, but not write to the tape.

Part III

The effective topos

	statement	in Set	in Eff(TM)	in Eff(STM)
1	Every number is prime or not prime.	✓ (trivially)	√	✓
2	Beyond every number there is a prime.	√	✓	✓
3	Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	✓ (trivially)	X	✓
4	Every map $\mathbb{N} o \mathbb{N}$ is computable.	X	?	?
5	Every map $\mathbb{R} o \mathbb{R}$ is continuous.	X	?	?
6	Markov's principle holds.	✓ (trivially)	?	?
7	Countable choice holds.	✓	?	?
8	There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	?	?

	statement	in Set	in $Eff(TM)$	in Eff(STM)
1	Every number is prime or not prime.	✓ (trivially)	✓	1
2	Beyond every number there is a prime.	1	✓	✓
3	Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	√ (trivially)	X	✓
4	Every map $\mathbb{N} o \mathbb{N}$ is computable.	X	?	?
5	Every map $\mathbb{R} o \mathbb{R}$ is continuous.	X	?	?
6	Markov's principle holds.	√ (trivially)	?	?
7	Countable choice holds.	1	?	?
8	There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	?	?

"Eff(TM) \models 1" amounts to: There is a Turing machine which determines of any given number whether it is prime or not.

	statement	in Set	in $Eff(TM)$	in Eff(STM)
1	Every number is prime or not prime.	✓ (trivially)	✓	1
2	Beyond every number there is a prime.	1	✓	✓
3	Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	√ (trivially)	X	✓
4	Every map $\mathbb{N} o \mathbb{N}$ is computable.	X	?	?
5	Every map $\mathbb{R} o \mathbb{R}$ is continuous.	X	?	?
6	Markov's principle holds.	√ (trivially)	?	?
7	Countable choice holds.	1	?	?
8	There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	?	?

"Eff(TM) \models 2" amounts to: There is a Turing machine which, given a number n, computes a prime larger than n.

in Set	in $Eff(TM)$	in $Eff(STM)$
✓ (trivially)	√	✓
√	√	✓
√ (trivially)	X	✓
X	?	?
X	?	?
√ (trivially)	?	?
√	?	?
X	?	?
	<pre>/ (trivially) / / (trivially) / X X</pre>	✓ (trivially) ✓ ✓ (trivially) ✗ ✗ ?

"Eff(TM) \models "amounts to: There is a Turing machine which, given a Turing machine computing a map $f : \mathbb{N} \to \mathbb{N}$, determines whether f has a zero or not.

	statement	in Set	in $Eff(TM)$	in $Eff(STM)$
1	Every number is prime or not prime.	✓ (trivially)	✓	✓
2	Beyond every number there is a prime.	√	✓	✓
3	Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	√ (trivially)	X	✓
4	Every map $\mathbb{N} o \mathbb{N}$ is computable.	X	√ (trivially)	?
5	Every map $\mathbb{R} o \mathbb{R}$ is continuous.	X	?	?
6	Markov's principle holds.	√ (trivially)	?	?
7	Countable choice holds.	✓	?	?
8	There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	?	?

"Eff(TM) \models "amounts to: There is a Turing machine which, given a Turing machine computing a map $f : \mathbb{N} \to \mathbb{N}$, outputs a Turing machine computing f.

statement	in Set	in $Eff(TM)$	in Eff(STM)
Every number is prime or not prime.	✓ (trivially)	✓	✓
2 Beyond every number there is a prime	e. 🗸	✓	✓
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	✓ (trivially)	X	✓
4 Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	√ (trivially)	X
5 Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	?	?
6 Markov's principle holds.	✓ (trivially)	?	?
7 Countable choice holds.	1	?	?
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	?	?

"Eff(STM) \models "amounts to: There is a super Turing machine which, given a *super* Turing machine computing a map $f : \mathbb{N} \to \mathbb{N}$, outputs an (*ordinary*) Turing machine computing f.

statement	in Set	in $Eff(TM)$	in $Eff(STM)$
Every number is prime or not prime.	✓ (trivially)	✓	✓
2 Beyond every number there is a prime.	. 🗸	✓	✓
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	✓ (trivially)	X	✓
4 Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	√ (trivially)	X
5 Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	✓ (if MP)	?
6 Markov's principle holds.	✓ (trivially)	?	?
7 Countable choice holds.	✓	?	?
\blacksquare There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$	X	2	2

A real number of Eff(TM) is externally represented by a Turing machine M which on input n outputs a rational approximation M(n). These approximations need to be compatible in that $|M(n) - M(m)| \le 2^{-n} + 2^{-m}$ for all n, m.

Two such machines M and M' represent the same real number iff $|M(n)-M'(m)| \le 2^{-n} + 2^{-m}$ for all n, m.

	statement	in Set	in $Eff(TM)$	in Eff(STM)
1	Every number is prime or not prime.	✓ (trivially)	✓	✓
2	Beyond every number there is a prime.	1	✓	✓
3	Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	√ (trivially)	×	✓
4	Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	√ (trivially)	X
5	Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	✓ (if MP)	X
6	Markov's principle holds.	√ (trivially)	?	?
7	Countable choice holds.	1	?	?
8	There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	?	?

A real number of Eff(TM) is externally represented by a Turing machine M which on input n outputs a rational approximation M(n). These approximations need to be compatible in that $|M(n) - M(m)| \le 2^{-n} + 2^{-m}$ for all n, m.

Two such machines M and M' represent the same real number iff $|M(n)-M'(m)| \le 2^{-n} + 2^{-m}$ for all n, m.

	statement	in Set	in $Eff(TM)$	in $Eff(STM)$
1	Every number is prime or not prime.	✓ (trivially)	✓	1
2	Beyond every number there is a prime.	✓	✓	✓
3	Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	√ (trivially)	X	✓
4	Every map $\mathbb{N} o \mathbb{N}$ is computable.	X	√ (trivially)	X
5	Every map $\mathbb{R} o \mathbb{R}$ is continuous.	X	✓ (if MP)	X
6	Markov's principle holds.	√ (trivially)	✓ (if MP)	?
7	Countable choice holds.	1	?	?
8	There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	?	?

"Eff(TM) \models "amounts to: There is a Turing machine which, given a Turing machine computing a map $f : \mathbb{N} \to \mathbb{N}$ and given the promise that it is *not not* the case that f has a zero, determines a zero of f.

statement	in Set	in $Eff(TM)$	in $Eff(STM)$
1 Every number is prime or not prime.	✓ (trivially)	1	✓
2 Beyond every number there is a prime.	√	✓	✓
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	√ (trivially)	X	✓
4 Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	√ (trivially)	X
5 Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	✓ (if MP)	X
6 Markov's principle holds.	√ (trivially)	✓ (if MP)	√ (if MP)
7 Countable choice holds.	√	?	?
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	?	?

"Eff(TM) \models "amounts to: There is a Turing machine which, given a Turing machine computing a map $f : \mathbb{N} \to \mathbb{N}$ and given the promise that it is *not not* the case that f has a zero, determines a zero of f.

statement	in Set	in $Eff(TM)$	in $Eff(STM)$
1 Every number is prime or not prime.	✓ (trivially)	1	✓
2 Beyond every number there is a prime.	1	✓	✓
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	√ (trivially)	X	✓
4 Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	√ (trivially)	X
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	X	✓ (if MP)	X
6 Markov's principle holds.	√ (trivially)	√ (if MP)	✓ (if MP)
7 Countable choice holds.	1	✓ (always!)	?
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	?	?

"Eff(TM) \models " amounts to: There is a Turing machine which, given a Turing machine computing for every $x \in \mathbb{N}$ some $y \in A$ together with a witness of $\varphi(x, y)$, outputs a Turing machine computing a suitable choice function $\mathbb{N} \to A$.

	statement	in Set	in Eff(TM)	in Eff(STM)
1	Every number is prime or not prime.	✓ (trivially)	✓	1
2	Beyond every number there is a prime.	√	✓	✓
3	Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	√ (trivially)	X	✓
4	Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	√ (trivially)	X
5	Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	✓ (if MP)	X
6	Markov's principle holds.	✓ (trivially)	√ (if MP)	√ (if MP)
7	Countable choice holds.	✓	✓ (always!)	✓ (always!)
8	There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	?	?

"Eff(TM) \models " amounts to: There is a Turing machine which, given a Turing machine computing for every $x \in \mathbb{N}$ some $y \in A$ together with a witness of $\varphi(x, y)$, outputs a Turing machine computing a suitable choice function $\mathbb{N} \to A$.

statement	in Set	in $Eff(TM)$	in Eff(STM)
1 Every number is prime or not prime.	✓ (trivially)	1	✓
2 Beyond every number there is a prim	e. 🗸	✓	✓
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	✓ (trivially)	X	✓
4 Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	√ (trivially)	X
5 Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	✓ (if MP)	X
6 Markov's principle holds.	✓ (trivially)	√ (if MP)	√ (if MP)
7 Countable choice holds.	1	✓ (always!)	✓ (always!)
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	X	?

statement	in Set	in $Eff(TM)$	in Eff(STM)
1 Every number is prime or not prime.	✓ (trivially)	1	✓
2 Beyond every number there is a prime	. 🗸	✓	✓
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	√ (trivially)	X	✓
4 Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	√ (trivially)	X
5 Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	✓ (if MP)	X
6 Markov's principle holds.	√ (trivially)	√ (if MP)	√ (if MP)
7 Countable choice holds.	√	✓ (always!)	✓ (always!)
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	X	X	✓

Curious size phenomena

 $\mbox{Eff}(\mbox{STM}) \models \mbox{``There exists an injection } \mathbb{R} \hookrightarrow \mathbb{N}.\mbox{'`}$ means:

There is a super Turing machine which inputs the source of a super Turing machine A representing a real number and outputs a natural number n(A) such that n(A) = n(B) if and only if A and B represent the same real.

Curious size phenomena

 $Eff(STM) \models "There \ exists \ an \ injection \ \mathbb{R} \hookrightarrow \mathbb{N}."$ means:

There is a super Turing machine which inputs the source of a super Turing machine A representing a real number and outputs a natural number n(A) such that n(A) = n(B) if and only if A and B represent the same real.

This statement is witnessed by following super Turing machine:

Read the source of a super Turing machine A from the tape. Simulate all super Turing machines in a dovetailing fashion. As soon a machine is found which represents the same real as A, output the index of this machine and halt.

- Effective toposes are a good vehicle for studying the nature of computation.
- Effective toposes build links between constructive mathematics and programming.
- Toposes allow for curious dream axioms.
- Toposes also have a geometric flavour: points, subtoposes, continuous maps between toposes.

- Effective toposes are a good vehicle for studying the nature of computation.
- Effective toposes build links between constructive mathematics and programming.
- Toposes allow for curious dream axioms.
- Toposes also have a geometric flavour: points, subtoposes, continuous maps between toposes.

There is more to mathematics than the standard topos.