How space travel is revolutionized with this one weird trick from chaos theory

Ingo Blechschmidt thanking Sven Prüfer and Matthias Hutzler

> Institut für Mathematik Universität Augsburg December 30th, 2016

- A crash course on orbital mechanics
 - Basic facts
 - Changing orbits
 - The tyranny of the rocket equation

- 2 One weird trick from chaos theory
 - Lagrangian points
 - Weak stability boundaries
 - The rescue of the Hiten
 - In nature

Part I

A crash course on orbital mechanics

- Getting to space is easy.

 The hard part is staying there.
- Gravitational acceleration at the height of the ISS is still $\approx 8.7 \text{ m/s}^2$.

SPACE

AIR

Getting to space is easy.The hard part is staying there.

$$F_{
m centripetal} = F_{
m gravitation} \leadsto
u_1 = \sqrt{GM/r}$$
 $E_{
m kinetic} = E_{
m gravitation} \leadsto
u_2 = \sqrt{2}
u_1$

Getting to space is easy.The hard part is staying there.

body	second escape velocity
Earth	$11.2\mathrm{km/s}\approx40000\mathrm{km/h}$
Moon	$2.4\mathrm{km/s}$
Sun	618 km/s
Milky Way	$\approx 550 \mathrm{km/s}$

- Getting to space is easy.The hard part is staying there.
- Velocity is very important.

- Getting to space is easy.The hard part is staying there.
- Velocity is very important.
- In the **one-body problem**, there are only three kinds of orbits: elliptic, parabolic, and hyperbolic.

- Getting to space is easy.The hard part is staying there.
- Velocity is very important.
- In the **one-body problem**, there are only three kinds of orbits: elliptic, parabolic, and hyperbolic.
- Have your models straight: Earth is ...
 - 1 a perfect ball?
 - 2 has atmosphere?
 - 3 rotating?

Changing orbits

"Live demo"

- Changing the phase
- Changing the eccentricity
- Changing the radius
- Changing inclination

The tyranny of the rocket equation

Konstantin Tsiolkovsky (* 1857, † 1935)

$$m_{
m total} = m_{
m payload} \cdot e^{\Delta v/v_{
m eff. \, exhaust}}$$

Lagrangian points

Lagrangian points

Weak stability boundaries

Weak stability boundaries

The rescue of the Hiten

Crash course Chaos theory Lagrangian points Weak stability boundaries Hiten In nature

In nature

Figure 10. Stars stream outward from the Tadpole Galavy (Arp 188) along a tubelike channel that stretches for some 280,000 light-years. This conduit (the galactic equivalent of the tubes making up the interplanetary transport network) arose through gravitational interaction with a compact galaxy that can now be seen lurking behind one of the Tadpole's spiral arms. (Courtesy of ACS Science & Engineering Team and NASA.)