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Flabby sets

Let M be a set. A subset K ⊆ M is . . .
a subterminal i� ∀x, y ∈ K . x = y.
a subsingleton i� ∃a ∈ M.∀x ∈ K . x = a, that is,

i� K ⊆ {a} for some a ∈ M .
Trivially, any subsingleton is a subterminal.
De�nition.

?

A set M is �abby i� any subterminal is a subsingleton.
Any �abby set is inhabited.

Proposition. Any set embeds into a �abby set.
Proof. We have M ↪→ P(M), and P(M) is �abby: Let K ⊆ P(M) be
a subterminal. Then K ⊆ {

⋃
K}, for if A ∈ K , then K = {A} and

hence A ∈ {
⋃
K} = {A}.

Open question. Does any module embed into a �abby module?
? This talk is set in the context of constructive mathematics:

mathematics without ϕ ∨ ¬ϕ, ¬¬ϕ⇒ ϕ, axiom of choice
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Any �abby set is inhabited, for there is always the empty subterminal.

Conversely, given a set M inhabited by some element x0 ∈ M , it might appear that
we have an easy proof that M is �abby: Any subterminal K ⊆ M is empty or of the
form K = {x} for some x ∈ M . In the �rst case, K is a subsingleton for K ⊆ {x0},
and in the second case, K is a subsingleton for K ⊆ {x}.

Hence it might appear that the de�nition doesn’t make much sense, since it might
appear that �abbiness is equivalent to being inhabited.
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However, one always has to look out for the �ne print.
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Any �abby set is inhabited, for there is always the empty subterminal.

Conversely, given a set M inhabited by some element x0 ∈ M , it might appear that
we have an easy proof that M is �abby: Any subterminal K ⊆ M is empty or of the
form K = {x} for some x ∈ M . In the �rst case, K is a subsingleton for K ⊆ {x0},
and in the second case, K is a subsingleton for K ⊆ {x}.

Hence it might appear that the de�nition doesn’t make much sense, since it might
appear that �abbiness is equivalent to being inhabited.

However, one always has to look out for the �ne print.

In constructive mathematics, the condition for a set to be �abby is nontrivial. We’ll
see later that the condition is also interesting for classical mathematics, if interpreted
internally to suitable toposes.
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In constructive mathematics, the condition for a set to be �abby is nontrivial. We’ll
see later that the condition is also interesting for classical mathematics, if interpreted
internally to suitable toposes.

Even though constructively we can’t show that any inhabited set is �abby, we can
still verify that there are enough �abby sets.
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Any �abby set is inhabited, for there is always the empty subterminal.

Conversely, given a set M inhabited by some element x0 ∈ M , it might appear that
we have an easy proof that M is �abby: Any subterminal K ⊆ M is empty or of the
form K = {x} for some x ∈ M . In the �rst case, K is a subsingleton for K ⊆ {x0},
and in the second case, K is a subsingleton for K ⊆ {x}.

Hence it might appear that the de�nition doesn’t make much sense, since it might
appear that �abbiness is equivalent to being inhabited.

However, one always has to look out for the �ne print.

In constructive mathematics, the condition for a set to be �abby is nontrivial. We’ll
see later that the condition is also interesting for classical mathematics, if interpreted
internally to suitable toposes.

Even though constructively we can’t show that any inhabited set is �abby, we can
still verify that there are enough �abby sets.

However it’s unknown whether there are enough �abby modules. (A module is �abby
if and only if its underlying set is.) We’ll see what the signi�cance of this open
question is later on.
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Singular cohomology

Is homeomorphic to ? No:

H 0
sing( ,Z) ∼= Z H 1

sing( ,Z) ∼= 0 H 2
sing( ,Z) ∼= Z

H 0
sing( ,Z) ∼= Z H 1

sing( ,Z) ∼= Z⊕ Z H 2
sing( ,Z) ∼= Z

Given f : X → B, can we compute the cohomology of X if we under-
stand the cohomology of B and the cohomology of the �bers of f ?
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Associated to any topological space X and any abelian group A are the
groups H n

sing(X ,A), the singular cohomology groups of X with coe�cients in A.
They depend functorially on X ; hence one of many of their applications is to verify
that given spaces are not homeomorphic.

Given a space X , we can hope that we can write X as the codomain of a continuous
map f : X → B, in such a way that the base space B and the �bers of f are in some
sense easy to understand. In such a situation we could ask whether the cohomology
of X can be computed from the cohomology of B and the cohomology of the �bers.

The answer, given by Jean Leray in the 1940s, is: Yes, we can, but the framework
of singular cohomology is too rigid for this task. For a positive answer we have to
generalize to sheaf cohomology. And thus, the notion of sheaves was born.
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Sheaf cohomology

Let E be a sheaf of modules over a space X . Let Γ be the global sections
functor. Choose an injective resolution 0 → E → I 0 → I 1 → · · · .
Then the n-th cohomology of E is

Hn(X , E) := n-th cohomology of (0→ ΓI 0 → ΓI 1 → · · · )
= ker(ΓIn → ΓIn+1) / im(ΓIn−1 → ΓIn).

The modules Hn(X , E) are important invariants.
[ χ(X ,OX ) = 1− genusX , (C · C′) = χ(OC ⊗L

OX
O′C), . . . ]

Let A be an abelian group. Let X be semi-locally contractible.
Then Hn(X ,A) = Hn

sing(X ,A) [Sella 2016].

Let f : X → B be continuous. Then there is a spectral sequence
H i(B, Rjf∗(E)) =⇒ H i+j(X , E).
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An injective resolution is a sequence of sheaves of modules and linear morphisms
as indicated such that the sequence is exact (the kernel of any outgoing morphism
equals the image of the respective incoming morphism) and such that the sheaves I n
are injective (a notion recalled below).

The fundamental fact of homological algebra is: Even though the sequence 0→ I 0 →
I 1 → · · · can only fail to be exact at the front, the sequence 0→ ΓI 0 → ΓI 1 → · · ·
of global sections can fail to be exact at any place. Sheaf cohomology measures the
extent of this failure.

The standard proof of the existence of injective resolutions requires Zorn’s lemma
and the law of excluded middle. Injective resolutions are not unique, but the resulting
sheaf cohomology modules are unique up to isomorphism. A primer on these matters
is located herehere.

The positive answer to the question posed on the previous slide is given by the spectral
sequence displayed at the bottom of this slide. The sheaves Rnf∗(E) are called the
higher direct images of E (along f ). Even if E is a constant sheaf, its higher direct
images might not be. This is the reason why singular cohomology is too restrictive.

The higher direct images Rnf∗(E) are de�ned exactly as the sheaf cohomol-
ogy H n(X , E), only with the global sections functor Γ replaced by the pushforward
functor f∗. They are dubbed “relative cohomology”, for instance because under some
conditions, there are isomorphisms (Rnf∗(E))b ∼= H n(Xb, E|Xb) where Xb is the �ber
of b under f . This talk presents a rigorous and general way to regard higher direct
images as sheaf cohomology.

https://arxiv.org/abs/1602.06674
https://rawgit.com/iblech/talk-homological-algebra/master/notes-derived-functors.pdf
https://rawgit.com/iblech/talk-homological-algebra/master/notes-derived-functors.pdf
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Constructive mathematics
mathematics without ϕ ∨ ¬ϕ, ¬¬ϕ⇒ ϕ, axiom of choice

Andrej Bauer at an IAS talk

Axiomatic freedom
“Every map N→ N is computable.”
“Every map R→ R is continuous.”

“Every map A1 → A1 is polynomial.”
“Heyting Arithmetic has exactly one model.”
“The subsets of {♥} form a proper class.”

“There is an injection R→ N.”

...

Applications
program extraction

synthetic di�erential geometry
synthetic algebraic geometry

synthetic domain theory
new reduction techniques in algebra
Bohr topos for quantum mechanics

...
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Constructive mathematics can be studied for philosophical reasons or out of general
mathematical curiosity. But restricting to constructive reasoning in our proofs also
yields concrete gains for classical mathematics.

One of these is program extraction: From any constructive proof, we can mechanically
extract a program witnessing the proven statement. A basic example is that any
constructive proof of the in�nitude of primes yields an algorithm for computing
primes (together with a termination and correctness proof).

Another is that, since constructive mathematics is consistent with a number of anti-
classical dream axioms, constructive mathematics allows to develop synthetic accounts
of several subjects. For instance, in synthetic algebraic geometry, a scheme is just a
set, a morphism of schemes is just a map of sets, and any map of the ground �eld into
itself is polynomial.

There are also reduction techniques which propose interesting deals. For instance,
there is a technique which allows us to pretend that a reduced ring is Noetherian and
in fact a �eld – if in return we switch from classical reasoning to constructive. This
particular technique has been used to turn the slightly convoluted multi-page proof
of Grothendieck’s generic freeness lemma into a simple one-paragraph argument.

An informative and entertaining primer on constructive mathematics can be found in
the linked talk recording by Andrej Bauer or his written noteswritten notes on the subject. Don’t
worry, the standard proof that

√
2 is not rational is perfectly �ne in constructive

mathematics.

https://video.ias.edu/members/1213/0318-AndrejBauer
https://www.staff.science.uu.nl/~ooste110/realizability/arithcatsubmit.pdf
http://www1.maths.leeds.ac.uk/~pmtng/Slides/gambino-lisbon-jan2018.pdf
https://rawgit.com/iblech/mathezirkel-kurs/master/superturingmaschinen/slides-warwick2017.pdf
http://math.andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://www.dpmms.cam.ac.uk/~martin/Research/Oldpapers/synthetic91.pdf
https://rawgit.com/iblech/internal-methods/master/slides-bayreuth2018.pdf
https://rawgit.com/iblech/internal-methods/master/
https://www.ams.org/journals/bull/2017-54-03/S0273-0979-2016-01556-4/S0273-0979-2016-01556-4.pdf
https://www.ams.org/journals/bull/2017-54-03/S0273-0979-2016-01556-4/S0273-0979-2016-01556-4.pdf
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Relativization by internalization

Let X be a space. The internal language of the topos Sh(X) allows
us to reason about sheaves on X in naive element-based terms.

Ill
us

tra
tio

n:
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rin
a

W
ill
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ld

externally internally to Sh(X)

sheaf set/type
morphism of sheaves map between sets
sheaf of cont. real-valued functions set of Dedekind reals
over-locale f : Y → X locale I(Y)
sheaf over Y sheaf over I(Y)
higher direct image Rnf∗E ?? sheaf cohomology Hn(I(Y), E)

Every �nite type sheaf of modules is
�nite locally free on a dense open.

Every �nitely generated vector
space is not not �nite free.

In continuous families of continuous
functions with opposite signs, zeros
can locally be picked continuously.

The intermediate value
theorem holds.

Grothendieck’s generic freeness
lemma holds.

(Some trivial observation
about modules over �elds.)

5 / 9
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The internal language of a topos E is a device which de�nes for any formula ϕ of
a certain language (a form of extensional type theory) what it means for ϕ to hold
internally to E , written “E |= ϕ”. This translation process is sound with respect to
intuitionistic logic; hence any theorem of constructive mathematics is valid in any
topos. Only few toposes validate classical logic (for instance Sh(X) does if X is a
discrete space and the law of excluded middle is available in the metatheory).

As a special case, the internal language of the topos Set is just the usual mathematical
language; more formally, Set |= ϕ if and only if ϕ.
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The internal language of a topos E is a device which de�nes for any formula ϕ of
a certain language (a form of extensional type theory) what it means for ϕ to hold
internally to E , written “E |= ϕ”. This translation process is sound with respect to
intuitionistic logic; hence any theorem of constructive mathematics is valid in any
topos. Only few toposes validate classical logic (for instance Sh(X) does if X is a
discrete space and the law of excluded middle is available in the metatheory).

As a special case, the internal language of the topos Set is just the usual mathematical
language; more formally, Set |= ϕ if and only if ϕ.

The intermediate value theorem (“any continuous function with opposite signs has
a zero”) doesn’t admit a constructive proof, because for most spaces X the external
translation Sh(X) |= IVT is not true – it’s not true that in continuous families of
continuous functions with opposite signs, zeros can locally be picked continuously,
as this video showsthis video shows.

Over reduced schemes, every �nite type sheaf of modules is �nite locally free on a
dense open. This statement (“important hard exercise” 13.7.K in [Vakil 2017][Vakil 2017]) is just
the external translation of the easy-to-prove internal statement that every �nitely
generated vector space does not not admit a �nite basis. (A scheme is reduced if and
only if its structure sheaf looks like a �eld from the internal point of view (in the sense
that 1 6= 0 and ¬(x invertible)⇒ x = 0). This is why the reducedness condition is
important.)

https://raw.githubusercontent.com/iblech/internal-methods/master/images/zeros-in-families.mp4
https://raw.githubusercontent.com/iblech/internal-methods/master/images/zeros-in-families.mp4
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
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Excellent references on the internal language include:

We use an extension of the original form of the internal language which allows for
unbounded quanti�cation, Mike Shulman’s stack semanticsstack semantics. (Independently, Steve
Awodey, Carsten Butz, Alex Simpson and Thomas Streicher developed a similar semanticssimilar
semantics.)

https://www.oliviacaramello.com/Papers/Papers.htm
https://www.oliviacaramello.com/Papers/Papers.htm
https://store.doverpublications.com/0486450260.html
https://store.doverpublications.com/0486450260.html
https://www.worldcat.org/title/sheaves-in-geometry-and-logic-a-first-introduction-to-topos-theory/oclc/24428855
https://www.worldcat.org/title/sheaves-in-geometry-and-logic-a-first-introduction-to-topos-theory/oclc/24428855
https://www2.mathematik.tu-darmstadt.de/~streicher/CTCL.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/CTCL.pdf
https://arxiv.org/abs/1004.3802
https://arxiv.org/abs/1004.3802
http://homepages.inf.ed.ac.uk/als/Research/Sources/set-models.pdf
http://homepages.inf.ed.ac.uk/als/Research/Sources/set-models.pdf
http://homepages.inf.ed.ac.uk/als/Research/Sources/set-models.pdf
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Internalizing higher direct images

A set M is injective i� for any injection A→ B, any map A→ M
extends to a map on B.

“A set is injective i� it’s inhabited” is a constructive taboo.
Constructively, there are still enough injective sets.
Any injective set is �abby.

A module M is injective i� for any linear injection A→ B, any linear
map A→ M extends to a linear map on B.

It’s consistent with ZF that there are no injective modules [Blass 1979].
The existence of enough injective modules is constructively neutral.

A sheaf of modules M is injective i� for any linear monomorphism
A→B, any linear morphism A→M extends to a linear morphism on B.

Assuming choice, there are enough injectives over any site.
Assuming Zorn’s lemma, a sheaf of modules over a locale X is injective
i�, from the internal point of view of Sh(X), it is an injective module.

6 / 9

https://www.ams.org/journals/tran/1979-255-00/S0002-9947-1979-0542870-6/S0002-9947-1979-0542870-6.pdf
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Somewhat surprisingly, even though the standard proof that there are enough in-
jective modules requires the axiom of choice and even though it’s consistent with
Zermelo–Fraenkel set theory that the zero module is the only injective Z-module, the
existence of enough injective modules is constructively neutral, that is, does not imply
a fundamentally nonconstructive principle like the law of excluded middle.

Indeed, assuming the axiom of choice in the metatheory, the statement “any module
can be embedded into an injective module” holds in the internal language of any
Grothendieck topos. This is because, assuming the axiom of choice in the metatheory,
any sheaf of modules over a site can be embedded into an injective sheaf of modules
and, somewhat surprisingly, . . .

https://www.ams.org/journals/tran/1979-255-00/S0002-9947-1979-0542870-6/S0002-9947-1979-0542870-6.pdf
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i�, from the internal point of view of Sh(X), it is an injective module.
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Somewhat surprisingly, even though the standard proof that there are enough in-
jective modules requires the axiom of choice and even though it’s consistent with
Zermelo–Fraenkel set theory that the zero module is the only injective Z-module, the
existence of enough injective modules is constructively neutral, that is, does not imply
a fundamentally nonconstructive principle like the law of excluded middle.

Indeed, assuming the axiom of choice in the metatheory, the statement “any module
can be embedded into an injective module” holds in the internal language of any
Grothendieck topos. This is because, assuming the axiom of choice in the metatheory,
any sheaf of modules over a site can be embedded into an injective sheaf of modules
and, somewhat surprisingly, . . .

. . . a sheaf of modules is injective if and only if it is an injective module from the
internal point of view. The “⇒” direction is straightforward; the “⇐” direction is
nontrivial: The external meaning of the internal existential quanti�er is local existence.
Hence linear morphisms into a sheaf of modules which is injective from the internal
point of view can locally be extended. But these extensions need not be compatible,
hence might not glue to a global extension. For the case of sheaves of abelian groups,
this result is due to Roswitha Harting in an 1983 paper of her1983 paper of her. The case of sheaves of
modules is arguably also due to her, even though she states that the result doesn’t hold
for sheaves of modules. (Technology has improved since then, and using �abbiness
as an organizing principle one can give a reasonably straightforward proof of the
general statement.)

In contrast, internally and externally projective modules do not coincide at all.

https://www.ams.org/journals/tran/1979-255-00/S0002-9947-1979-0542870-6/S0002-9947-1979-0542870-6.pdf
https://www.tandfonline.com/doi/pdf/10.1080/00927878308822853
https://www.tandfonline.com/doi/pdf/10.1080/00927878308822853
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Internalizing higher direct images

A set M is injective i� for any injection A→ B, any map A→ M
extends to a map on B.

“A set is injective i� it’s inhabited” is a constructive taboo.
Constructively, there are still enough injective sets.
Any injective set is �abby.
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It’s consistent with ZF that there are no injective modules [Blass 1979].
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i�, from the internal point of view of Sh(X), it is an injective module.
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A consequence of the fact that internal and external injectivity coincides for sheaves
of modules over locales is that we can interpret the higher direct images Rnf∗(Y , E) of
a sheaf E of modules over an over-locale f : Y → X as sheaf cohomology H n(I(Y), E),
where I(Y) is the internal locale of Sh(X) corresponding to Y .

A basic application is the following. Any student in algebraic geometry needs, at some
point in her life, to compute the cohomology of projective space. At a later point she
needs to compute higher direct images along Pn

S → S, where Pn
S is a relative version

of projective space. Since higher direct images are just internal sheaf cohomology,
she can in fact skip the second computation.

Further progress along these lines is hindered by the fact that we don’t yet have a
constructive account of sheaf cohomology.

https://www.ams.org/journals/tran/1979-255-00/S0002-9947-1979-0542870-6/S0002-9947-1979-0542870-6.pdf
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Flabby resolutions

A sheaf E on a space X is �abby i� any local section s ∈ E(U ) on an
open U extends to a global section s̄ ∈ E(X): s̄|U = s.

Assuming Zorn’s lemma:
A sheaf is �abby i�, from the internal point of view, it’s a �abby
set.

Assuming the law of excluded middle:
Any sheaf of modules over a topological space embeds into a
�abby sheaf of modules.

Assuming Zorn’s lemma, �abby sheaves of modules are acyclic
for the global sections functor. Hence, assuming ??, sheaf
cohomology and higher direct images can be computed using
�abby resolutions.
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Since we cannot show the existence of enough injective sheaves of modules (or even
just plain modules) constructively, the de�nition of sheaf cohomology using injective
resolutions doesn’t work in a constructive setting. Classically it’s known that �abby
resolutions can also be used to compute sheaf cohomology. There are more �abby
sheaves than injective ones, they have better stability properties (�abby sheaves are
preserved under pushforward) and the axiom of choice is not needed to construct
�abby resolutions (the standard proof uses only the law of excluded middle, and not
Zorn’s lemma). Hence it seems reasonable to base a constructively sensible de�nition
of sheaf cohomology on �abby resolutions. We tried to do so, and failed.

Assuming Zorn’s lemma, the notion of a �abby sheaf is a local notion, meaning that a
sheaf is �abby if and only if its restrictions to every member of an open covering are,
but this fact is not obvious from the de�nition. In contrast, the notion that a sheaf E
is �abby from the internal point of view is local without any assumptions (as is any
internal notion), hence maybe we should consider adopting internal �abbiness as the
o�cial de�nition of �abbiness. Its external translation is:

A sheaf E is �abby from the internal point of view if and only if for any local section s ∈
E(U ), there is an open covering X =

⋃
i Ui such that for all i, the section s extends to

a section on U ∪ Ui .
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Flabbiness as an organizing principle

Proposition. LetM be a sheaf of modules over a localeX . ThenM is injective
i� it is injective from the point of view of Sh(X).
Proof. (Only “⇐”.) Let i : A→ B be a linear monomorphism. Let f : A→ M
be a linear morphism. We verify, internally, that the set E := {f̄ : B →
M | f̄ ◦ i = f } is �abby.

Let K ⊆ E be a subterminal. We consider the injectivity diagram

i[A] + B′ �
� //

g

��

B

ḡ
uuI

where B′ := {t ∈ B | t = 0 or K is inhabited} ⊆ B and g is de�ned as follows:
Let s ∈ i[A] + B′. Then s = i(a) + t for some a ∈ A and t ∈ B′. Since t ∈ B′,
t = 0 or K is inhabited. If t = 0, we set g(s) := f (a). If K is inhabited, we
set g(s) := f (a) + f̄ (s), where f̄ is any element of K .
Since M is injective, there exists a dotted map ḡ ∈ E. We have K ⊆ {ḡ}.

8 / 9

The notion of being �abby from the internal point of view turns out to have valuable
organizing power. For instance, both of the following statements can be proven by
�rst verifying that a certain sheaf is internally �abby (which can be done entirely
constructively) and then appealing to Zorn’s lemma in order to obtain a global section
of that sheaf.

• Flabby sheaves are acyclic for the global sections functor: Let 0→ E → F →
G → 0 be a short exact sequence of sheaves of modules and let E be �abby.
Then the sequence remains exact after taking global sections.
(Verify that the sheaf of local preimages of a given section s ∈ G(X) is �abby.)

• Internally injective modules are externally injective.
(See proof on the slide.)
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Flabbiness in the effective topos

A set M is �abby i� any subterminal

∀x, y ∈ K . x = y

K ⊆ M is a subsingleton

∃a ∈ M.K ⊆ {a}

.

Proposition. Let X be an effective object in the effective topos. Then
“If X is �abby, any endomap on X has a �xed point.”

from the point of view of the effective topos.
Proof (sketch). We have a procedure which computes for any subtermi-
nal K ⊆ X an element aK such that K ⊆ {aK}. Let f : X → X be a map.
Construct K := {f (aK)}. Then K ⊆ {aK}, so f (aK) = aK .

Corollary. The only effective �abby module M is the zero module.
Proof. Let x ∈ M . Then x + a = a for some a ∈ M; hence x = 0.
Proposition. Assuming the law of excluded middle, any ¬¬-separated mod-
ule in the e�ective topos can be embedded into a �abby module.
Proof. We have M ↪→ ∆ΓM .

Question. Are there enough �abby modules in the effective topos?
9 / 9

The notion of �abby sets was conceived to model the notion of �abby sheaves and is
therefore closely connected to Grothendieck toposes. Hence it is instructive to study
�abby objects in elementary toposes which are not Grothendieck toposes, away from
their original conceptual home.

In particular, we hope to prove the conjecture that the statement “any module embeds
into a �abby module” is not constructively provable by verifying that it doesn’t hold
in the effective topos.

To this end, the slide displays two results.

Details on the self-referential construction “K := {f (aK)}” are in this draft paperthis draft paper. A
module is ¬¬-separated if and only if ¬¬(x = 0) implies x = 0. References on the
effective topos include Martin Hyland’s survey papersurvey paper and the canonical book by one
of our honoraries:

https://rawgit.com/iblech/internal-methods/master/paper-flabby-objects.pdf
https://rawgit.com/iblech/internal-methods/master/paper-flabby-objects.pdf
https://webdpmms.maths.cam.ac.uk/~martin/Research/Oldpapers/hyland-effectivetopos.pdf
https://webdpmms.maths.cam.ac.uk/~martin/Research/Oldpapers/hyland-effectivetopos.pdf
https://www.staff.science.uu.nl/~ooste110/boekbegin.pdf
https://www.staff.science.uu.nl/~ooste110/boekbegin.pdf
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State of a�airs

,
The existence of enough injective modules is constructively neutral.
Higher direct images can be understood as internal sheaf cohomology.

/
Flabby sheaves can fail to be acyclic, constructively.

There is still no general constructive framework for sheaf cohomology.
Even though:

Basic homological algebra is entirely constructive.
There are algorithms for computing cohomology [Barakat, . . . ].
Čech methods work constructively, even in a synthetic context.
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Even if we could constructively prove that there are enough �abby modules, there
is still the problem that the proof that �abby sheaves of modules are acyclic for the
global sections functor (appears to) require Zorn’s lemma.

Hence it appears that the simple idea of basing a constructive account of sheaf
cohomology on �abby resolutions doesn’t work.

More work is needed. I hope that some day, we can study the cohomology of the
smallest dense sublocale of the one-point space.?

? Assuming the law of excluded middle, this locale is just the one-point space again.
Hence cohomology of this locale should measure the extent to which we’re nonclassi-
cal, being zero if and only if the law of excluded middle holds.

An alternative way of putting this question is as follows. Let Set¬¬ be the smallest
dense subtopos of Set, the topos of double negation sheaves. The forgetful func-
tor Ab(Set¬¬)→ Ab is left-exact, but might not be right-exact, since a map f : A→ B
is an epimorphism in Ab(Set¬¬) if and only if ∀y ∈ B.¬¬(∃x ∈ A. f (x) = y), which
is weaker than being surjective. What do its right derived functors look like?
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