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We can associate to any reduced ring A a forcing model A∼.

• The forcing model has the pleasant property that it is a �eld.

• Reasoning about it requires that we restrict ourselves to intuitionistic
logic.

Details are on the following slides.
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Summary

For any reduced ring A, there is a ring A∼ in a certain topos with
|=
(
∀x :A∼.¬(∃y :A∼. xy = 1)⇒ x = 0

)
.

This semantics is sound with respect to intuitionistic logic.
It has uses in classical and constructive commutative algebra.

A baby example

Let M be an injective matrix with
more columns than rows over a
reduced ring A. Then 1 = 0 in A.· · · · ·· · · · ·

· · · · ·



Proof. Assume not. Then there
is a minimal prime ideal p ⊆ A.
The matrix is injective over the
�eld Ap = A[(A \ p)−1]; contra-
diction to basic linear algebra.

Generic freeness

Generically, any �nitely gen-
erated module over a reduced
ring is free.
(A ring is reduced i� xn = 0 implies x = 0.)

Proof. See [Stacks Project].
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The two displayed statements are trivial for �elds. It is therefore natural to
try to reduce the general situation to that of �elds.

https://stacks.math.columbia.edu/tag/051Q
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The displayed proof, which could have been taken from any standard textbook
on commutative algebra, succeeds in this reduction by employing proof by
contradiction and minimal prime ideals. However, this way of reducing
comes at a cost: It requires the Boolean Prime Ideal Theorem (for ensuring
the existence of a prime ideal and for ensuring that stalks at minimal prime
ideals are �elds) and even the full axiom of choice (for ensuring the existence
of a minimal prime ideal).

We should hope that such a simple statement admits a more informative, ex-
plicit, computational proof not employing trans�nite methods: There should
be an explicit method for transforming the given conditional equations ex-
pressing injectivity into the equation 1 = 0. And indeed there is: Beautiful
constructive proofs can be found in Richman’s note on nontrivial uses of trivial ringsnontrivial uses of triv-
ial rings and in the recent textbook by Lombardi and Quittérecent textbook by Lombardi and Quitté on constructive
commutative algebra.

The new reduction technique presented in this talk provides a way of per-
forming the reduction in an entirely constructive manner, avoiding the axiom
of choice. If so desired, resulting topos-theoretic proofs can be unwound to
yield fully explicit, topos-free, direct proofs.

https://stacks.math.columbia.edu/tag/051Q
https://www.ams.org/journals/proc/1988-103-04/S0002-9939-1988-0954974-5/S0002-9939-1988-0954974-5.pdf
https://www.ams.org/journals/proc/1988-103-04/S0002-9939-1988-0954974-5/S0002-9939-1988-0954974-5.pdf
https://www.ams.org/journals/proc/1988-103-04/S0002-9939-1988-0954974-5/S0002-9939-1988-0954974-5.pdf
https://arxiv.org/abs/1605.04832
https://arxiv.org/abs/1605.04832
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The baby example demonstrates that the reduction technique of this talk is
of interest to constructive commutative algebra. What about classical com-
mutative algebra? This is what the second example aims at. Grothendieck’s
generic freeness lemma is an important theorem in algebraic geometry, where
it is usually stated in the following geometric form:

Let X be a reduced scheme. Let B be an OX -algebra of �nite type.
LetM be a B-module of �nite type. Then over a dense open,

(a) B andM are locally free as sheaves of OX -modules,
(b) B is of �nite presentation as a sheaf of OX -algebras and
(c) M is of �nite presentation as a sheaf of B-modules.

All previously known proofs proceed in a series of reduction steps, �nally
culminating in the case where A is a Noetherian integral domain. They
are somewhat convoluted (spanning several pages) and require nontrivial
prerequisites in commutative algebra.

Using the new reduction technique, there is a short (one-paragraph) and
conceptual proof of Grothendieck’s generic freeness lemma. It is constructive
as a bonus; and if desired, one can unwind the resulting proof to obtain a
constructive proof which doesn’t reference topos theory. The proof obtained
in this way is still an improvement on the previously known proofs, requiring
no advanced prerequisites in commutative algebra, and takes about a pageabout a page.

https://stacks.math.columbia.edu/tag/051Q
https://arxiv.org/abs/1807.01231
https://arxiv.org/abs/1807.01231
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Instead of passing from a given ring A to one of its stalks Ap or quotient
rings A/a, the reduction technique presented in this talk passes from A to a
forcing model A∼.

Unlike stalks or quotient rings, which are honest rings, the forcing model A∼
is not a ring in the strict sense of the word: It doesn’t have an underlying set
of elements, but instead an underlying sheaf of elements. It is a ring object
in a certain category, the little Zariski topos of A. But as long as we restrict
to intuitionistic reasoning, this di�erence is immaterial. A metatheorem
displayed on a later slide states that any intuitionistic theorem about rings
applies to A∼ just as if A were a proper, ordinary ring.

Studying A∼ is in fact the same as studying A from a certain di�erent, local
point of view. The precise meaning of this statement will be explained on
slide 3.

https://stacks.math.columbia.edu/tag/051Q


Summary The forcing model Revisiting the test cases

Summary
For any reduced ring A, there is a ring A∼ in a certain topos with

|=
(
∀x :A∼.¬(∃y :A∼. xy = 1)⇒ x = 0

)
.

This semantics is sound with respect to intuitionistic logic.
It has uses in classical and constructive commutative algebra.

A baby example

Let M be an injective matrix with
more columns than rows over a
reduced ring A. Then 1 = 0 in A.

Proof. Assume not. Then there
is a minimal prime ideal p ⊆ A.
The matrix is injective over the
�eld Ap = A[(A \ p)−1]; contra-
diction to basic linear algebra.

Generic freeness

Generically, any �nitely gen-
erated module over a reduced
ring is free.

Proof. See [Stacks Project].

1 / 7

Intuitionistic logic is the same as classical logic, but without:
• the law of excluded middle: ϕ ∨ ¬ϕ
• the law of double negation elimination: ¬¬ϕ⇒ ϕ

• the axiom of choice
If one is unfamiliar with constructive mathematics, then doing without these
three laws seems unmotivated, rather peculiar and overtly restrictive. Here,
the restriction to intuitionistic logic is not by some philosophical choice.
Rather, it’s by mathematical necessity. It’s just a fact that in general, the laws
of classical logic don’t apply to A∼. (Assuming a classical metatheory and
assuming A to be Noetherian, they do i� A is of Krull dimension ≤ 0.)

Luckily, vast amounts of commutative algebra work in the intuitionistic
setting, as for instance evidenced by the recent 1000+-page textbook by Lombardi and Quittétextbook by Lom-
bardi and Quitté. This claim extends to statements which are usually proven
using maximal ideals or minimal ideal prime ideals and hence require Zorn’s
lemma. Indeed, the technique presented in this talk allows to constructivize
some results of this kind.

Background on constructive mathematics can for instance be found in a talk by Andrej Bauertalk
by Andrej Bauer ( written noteswritten notes). The standard proof that

√
2 is not rational

is perfectly �ne in constructive mathematics.

https://stacks.math.columbia.edu/tag/051Q
https://arxiv.org/abs/1605.04832
https://arxiv.org/abs/1605.04832
https://arxiv.org/abs/1605.04832
https://video.ias.edu/members/1213/0318-AndrejBauer
https://video.ias.edu/members/1213/0318-AndrejBauer
https://video.ias.edu/members/1213/0318-AndrejBauer
https://www.ams.org/journals/bull/2017-54-03/S0273-0979-2016-01556-4/S0273-0979-2016-01556-4.pdf
https://www.ams.org/journals/bull/2017-54-03/S0273-0979-2016-01556-4/S0273-0979-2016-01556-4.pdf
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Motivating the semantics

A ring is local i� 1 6= 0 and if x + y = 1 implies
that x is invertible or y is invertible.

Examples: k, k[[X ]], C{z}, Z(p)

Non-examples: Z, k[X ], Z/(pq)

Locally, any ring is local.

Let x + y = 1 in a ring A. Then:
The element x is invertible in A[x−1].
The element y is invertible in A[y−1].

(Recall A[f −1] =
{

u
f n | u ∈ A, n ∈ N

}
.)
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In topos theory, we have lots of experience of changing universes in order to
force some statements to become true. However, because the �eld condition
we are aiming at is not a geometric sequent, these techniques do not work
here. Hence we’ll take it more slowly and only devise a semantics which
forces the given ring to be local.

The displayed de�nition of a local ring is, in the presence of the axiom of
choice, equivalent to the more common one (ring with exactly one maximal
ideal). In constructive mathematics, the displayed de�nition usually works
better.

The key insight is that locally (in the sense of topology/geometry), any ring
is a local ring. That is, we may pretend that any given ring is local if we are
prepared to pass to numerous localizations during the course of an argument.
The semantics displayed on the next slide manages this localization-juggling
for us.

By A[f −1], we mean the localization of A away from f . This construction
makes sense even if f is a zero divisor, in which case A[f −1] is the zero ring.
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The Kripke–Joyal semantics
Let A be a ring (commutative, with unit). We recursively de�ne

f |= ϕ (“ϕ holds away from the zeros of f ”)
for elements f ∈ A and statements ϕ. Write “|= ϕ” to mean 1 |= ϕ.

f |= > is true
f |= ⊥ i� f is nilpotent
f |= x = y i� x = y ∈ A[f −1]

f |= ϕ ∧ ψ i� f |= ϕ and f |= ψ

f |= ϕ ∨ ψ i� there exists a partition f n = fg1 + · · ·+ fgm with,
for each i, fgi |= ϕ or fgi |= ψ

f |= ϕ⇒ ψ i� for all g ∈ A, fg |= ϕ implies fg |= ψ

f |= ∀x :A∼. ϕ i� for all g ∈ A and all x0 ∈ A[(fg)−1], fg |= ϕ[x0/x]

f |= ∃x :A∼. ϕ i� there exists a partition f n = fg1 + · · ·+ fgm with,
for each i, fgi |= ϕ[x0/x] for some x0 ∈ A[(fgi)−1]

Monotonicity

If f |= ϕ, then also fg |= ϕ.

Locality

If f n = fg1 + · · ·+ fgm and fgi |= ϕ
for all i, then also f |= ϕ.

Soundness

If ϕ ` ψ and f |= ϕ, then f |= ψ.

Forced properties

|= pA∼ is a local ringq.

3 / 7

The clause for “∨” is made exactly in such a way as to ensure, if x + y = 1,
that 1 |= ((∃z :A∼. xz = 1) ∨ (∃z :A∼. yz = 1)).

The de�nition of the semantics is reminiscent of Kripke and Beth models.
Indeed, it is a fragment of the Kripke–Joyal semantics of the internal language
of a topos, and this general semantics encompasses Kripke and Beth models
as special cases.
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The soundness lemma states: If f |= ϕ, and if ϕ intuitionistically entails a
further statement ψ, then also f |= ψ. In this way we can reason with the
forcing model, similarly as if A∼ would actually exist as a ring instead of
merely being a convenient syntactic �ction.

If we want A∼ to actually exist, not just as a �gure of speech, then we have
to broaden our notion of existence and accept ring objects in toposes. More
on this on the next slide.

The four lemmas displayed on this slide, as well as all the claims on further
slides, can be proven in very weak intuitionistic metatheories.
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Irrespective of whether A is a local ring, its mirror image A∼ is always a
local ring (that is, the axioms of what it means to be a local ring hold under
the translation rules speci�ed by the semantics). A basic application of this
forcing model are local-to-global principles. For instance:

• The statement “the kernel of a surjective matrix over a local ring is
�nite free” admits a constructive proof. It therefore holds for A∼. Its
external meaning is that the kernel of a surjective matrix M over A is
�nite locally free (there exists a partition 1 = f1 + · · · + fn such that
for each i, the localized module (kerM)[f −1

i ] is �nite free).

• The ring A is a Prüfer domain if and only if A∼ is a Bézout domain.
Therefore any constructive theorem about Bézout domains entails a
corresponding theorem about Prüfer domains. Bézout domains are quite
rare, while Prüfer domains abound (for instance the ring of integers of
any number �eld is a Prüfer domain, even constructively so).
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A universal property

The displayed semantics is the �rst-order fragment of the
higher-order internal language of the little Zariski topos.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

1 2 3 4 5 6 7

8 9 10 11 12 13 14

1 2 3 4 5 6 7

8 9 10 11 12 13 14

The usual laws
of logic hold.

Every function
is computable.

The intermediate
value theorem fails.

Set EffShX

Is there a free local ring A→ A′ over A?
A

��

α // R
local

A′
local

local

99 For a �xed ring R, the localization
A′ := A[S−1] with S := α−1[R×]
would do the job. (S is a �lter.)

Hence we need the generic �lter.

4 / 7

A topos is a special kind of category. Every topos has an associated internal
language which can be used to do mathematics internally to the topos.

The prototypical example of a topos is the category Set. Doing mathematics
internally to Set amounts to just doing mathematics in the usual sense. A
primer on the topos-theoretic landscape is contained in these slidesthese slides. These
slides also explain the geometric reason why the intermediate value theo-
rem fails in most toposes of sheaves, and why in the e�ective topos any
function N→ N is computable.

https://rawgit.com/iblech/internal-methods/master/slides-leipzig2018.pdf
https://rawgit.com/iblech/internal-methods/master/slides-leipzig2018.pdf
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A free local ring A′ over A is a local ring A′ together with a ring homo-
morphism A → A′ such that any ring homomorphism A → R to a local
ring uniquely factors over a local ring homomorphism A′ → R. (A ring
homomorphism is local i� it re�ects invertibility.)

Assuming the Boolean Prime Ideal Theorem, one can show that there is a
free local ring over A if and only if A has exactly one prime ideal. In this
case A is already local, and we can take A′ := A. If we want every ring to
possess a free local ring over it, we need to accept ring objects of di�erent
toposes than Set.

The little Zariski topos contains the generic �lter of A. Localizing A at this
�lter yields the desired free local ring. It is precisely what was called A∼

before. It is also known as the structure sheaf of Spec(A).
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The little Zariski topos

Let A be a ring. Its little Zariski topos is equivalently
1 the classifying locale of prime �lters of A,
2 the classifying topos of local localizations of A,
3 the locale given by the frame of radical ideals of A,
4 the topos of sheaves over the poset A with f � g i� f ∈

√
(g)

and with (fi → f )i deemed covering i� f ∈
√
(fi)i or

5 the topos of sheaves over Spec(A).

Its associated topological space of points is the classical spectrum

{f ⊆ A | f prime �lter}+ Zariski topology.

It has enough points if the Boolean Prime Ideal Theorem holds.
Prime ideal: 0 ∈ p; x ∈ p ∧ y ∈ p⇒ x + y ∈ p; 1 6∈ p; xy ∈ p⇔ x ∈ p ∨ y ∈ p

Prime �lter: 0 6∈ f; x + y ∈ f⇒ x ∈ f ∨ y ∈ f; 1 ∈ f; xy ∈ f⇔ x ∈ f ∧ y ∈ f

5 / 7

Any geometric theory has a classifying topos which contains the generic model
of that theory (any model in any topos is uniquely the pullback of the generic
one); if the theory under consideration is propositional (doesn’t have any
sorts), then its classifying topos can be chosen to be the topos of sheaves
over a locale. One can also give a direct account of classifying locales, as a
pedagogical stepping stone to the full theory of classifying toposes.

The slide contains a small lie: The classical de�nition of the spectrum of
a ring is via the set of prime ideals of A, not �lters. If the law of excluded
middle is available, there is no di�erence between these de�nitions since the
complement of a prime ideal is a �lter and vice versa. One can also consider
the classifying locale of prime ideals of A. Its associated topological space of
points is the set of prime ideals of A equipped with the constructible topology.

In an intuitionistic (but still impredicative) context, any of the (generalized)
spaces of items 1–4 can be adopted as sensible de�nitions of the spectrum.
Item 5 is then a tautology. The classical de�nition of the spectrum as a
topological space doesn’t work very well, because verifying the universal
property one expects of it requires the Boolean Prime Ideal Theorem. Most
dramatically, in some toposes there are rings which are not trivial yet have
neither prime ideals nor �lters. The classical de�nition yields in this case the
empty space.
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Investigating the forcing model

The little Zariski topos of a ring A is equivalently
the topos of sheaves over Spec(A),
the locale given by the frame of radical ideals of A,
the classifying locale of �lters of A

and contains a mirror image of A, the sheaf of rings A∼.

Assuming the Boolean Prime Ideal
Theorem, a �rst-order formula
“∀ . . . ∀. (· · · =⇒ · · ·)”, where the
two subformulas may not con-
tain “⇒” and “∀”, holds for A∼ i�
it holds for all stalks Ap.

A∼ inherits any property of A
which is localization-stable.

If A is reduced (xn = 0⇒ x = 0):

A∼ is a �eld.
A∼ has ¬¬-stable equality.
A∼ is anonymously Noetherian.

6 / 7

For working with A∼, it’s important to know how properties of A relate to
properties of A∼.

The �rst displayed metatheorem justi�es that, to a �rst approximation, the
forcing model A∼ is a rei�cation of all the stalks of A into a single coherent
entity. But crucially, this slogan is only correct for properties which can be
put in the displayed syntactical form (called geometric sequents). The reduc-
tive power of passing from A to A∼ results from surprising non-geometric
sequents which are satis�ed by A∼ and not shared by A, its localizations or
its quotients.

A slight generalization of the second metatheorem soups up a number of
basic lemmas of algebraic geometry, there stated in geometric language. For
instance, if M is �nitely generated, then M∼ is of �nite type. If M is �nitely
presented, then M∼ is of �nite presentation. If M is coherent, then M∼ is
coherent.
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Surprisingly and signi�cantly, in case that A is reduced, there are a number
of non-geometric sequents validated by A∼. These are unique features of the
forcing model.

A∼ is a �eld in the sense that zero is the only noninvertible element.

A∼ has ¬¬-stable equality in the sense that

|= ∀x :A∼.∀y :A∼.¬¬(x = y)⇒ x = y.

Classically, every set has ¬¬-stable equality; intuitionistically, this is a spe-
cial property of some sets. It’s quite useful, as some theorems of classical
commutative algebra can only be proven intuitionistically when weakened
by double negation. The stability then allows, in some cases, to obtain the
original conclusion.

A∼ is anonymously Noetherian in the sense that any of its ideals is not not
�nitely generated. A philosophically-motivated constructivist might be of-
fended by this notion, since it runs counter to the maxim that constructive
mathematics should be informative, telling us only that there can’t not be
�nite generating families. However, in the forcing context it is a useful notion:
Hilbert’s basis theorem holds for it, and it can be put to good use in the proof
of (the general case of) Grothendieck’s generic freeness lemma.
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Miles Tierney. On the spectrum of a ringed topos. 1976.
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The �eld property was already observed in the 1970s by Mulvey, but appar-
ently back then its signi�cance for applications was overlooked and no deeper
reason for this property was known. We now know that it’s a shadow of a
forced higher-order property whose external translation expresses that A∼
is quasicoherent (details are in Section 3.3 of these notesthese notes).

https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
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A∼ is anonymously Noetherian.

The external meaning of

|= pA∼[X1, . . . ,Xn] is anonymously Noetherianq

is:

For any element f ∈ A and any (not necessarily quasicoherent)
sheaf of ideals J ↪→ A∼[X1, . . . ,Xn]|D(f ): If

for any element g ∈ A the condition that
the sheaf J is of �nite type on D(g)

implies that g = 0,

then f = 0.

6 / 7

Some properties of the forcing model, which are easy to state and prove as
properties about A∼, have quite complex meanings when unravelled to refer
directly to A. In this way the forcing model unlocks observations which
might otherwise be too unwieldy to manage.
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Revisiting the test cases
Let A be a reduced commutative ring (xn = 0⇒ x = 0).
Let A∼ be its mirror image in the little Zariski topos.

· · · · ·· · · · ·
· · · · ·


A baby example

Let M be an injective matrix
over A with more columns
than rows. Then 1 = 0 in A.

Proof. M is also injective as a
matrix over A∼. Since A∼ is a
�eld, this is a contradiction by
basic linear algebra. Thus |= ⊥.
This amounts to 1 = 0 in A.

Generic freeness

Let M be a �nitely generated A-
module. If f = 0 is the only element
ofA such thatM[f −1] is a freeA[f −1]-
module, then 1 = 0 in A.

Proof. The claim amounts to
|= “M∼ is not not free”. Since A∼ is
a �eld, this follows from basic linear
algebra.

7 / 7

With the baby example, we see that the new reduction technique presented
in this talk allows to reinterpret the core content of the classical proof shown
on slide 1 in a constructive fashion. Since the forcing model was set up in a
constructive way, we could mechanically extract an explicit procedure from
the new proof.

For the second example, a remark might be in order. A basic theorem of
undergraduate linear algebra is that any �nitely generated vector space has
a basis. In this form, the theorem cannot quite be proven intuitionistically.
Indeed, the standard proof uses the law of excluded middle in the �rst step:

Let (x1, . . . , xn) be a given �nite generating family. It might be the case that one of
the vectors xi can be expressed as a linear combination of the others, or not. In the
second case, the family is linearly independent and thus the vector space is shown
to have a basis. In the �rst case, we continue with the smaller generating fam-
ily (x1, . . . , xi−1, xi+1, . . . , xn) in an inductive fashion.

Intuitionistically, the law of excluded middle is not available; however its
double negation (¬¬(ϕ∨¬ϕ)) is. Threading the double negation through the
rest of the proof yields the following theorem of intuitionistic linear algebra:
Any �nitely generated vector space is not not free. It is this theorem which
the proof on the slide refers to.
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The Zariski topos and related toposes have applications in:

classical algebra and classical algebraic geometry
constructive algebra and constructive algebraic geometry
synthetic algebraic geometry (“schemes are just sets”)

Connections with:

understanding quasicoherence
the age-old mystery of nongeometric sequents

8 / 7

Summarizing, we can associate to any reduced ring A the forcing model A∼.

• The forcing model has the pleasant property that it is a �eld.

• Reasoning about it requires that we restrict ourselves to intuitionistic
logic.

Depending on the application, this trade-o� can not be useful at all, or be quite
valuable. It certainly is so for proving Grothendieck’s generic freeness lemma,
simplifying a multi-page argument to a single and conceptual paragraph.
(The previous slide only showed a fragment of the general statement of
Grothendieck’s generic freeness lemma. The technique outlined in these
slides is amenable to the full version. Details are in Section 11.5 of these notesthese
notes.)

The ideas underlying this new reduction technique can also be used for
di�erent purposes: for understanding, in a rigorous way, notions of algebraic
geometry as notions of algebra, and for developing a synthetic account of
algebraic geometry. This is very brie�y touched upon on the next two slides.

https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
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Further reading

https://pizzaseminar.speicherleck.de/skript2/zariski-topos-klein.pdf
https://pizzaseminar.speicherleck.de/skript2/zariski-topos-klein.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
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Applications in algebraic geometry
Understand notions of algebraic geometry over a
scheme X as notions of algebra internal to Sh(X).

externally internally to Sh(X)

sheaf of sets set
sheaf of modules module
sheaf of �nite type �nitely generated module
tensor product of sheaves tensor product of modules
sheaf of rational functions total quotient ring of OX
dimension of X Krull dimension of OX
spectrum of a sheaf of OX -algebras ordinary spectrum [with a twist]
higher direct images sheaf cohomology

Let 0→ F ′ → F → F ′′ → 0 be
a short exact sequence of sheaves
ofOX -modules. If F ′ and F ′′ are
of �nite type, so is F .

⇐
Let 0 → M ′ → M → M ′′ → 0
be a short exact sequence of
modules. If M ′ and M ′′ are
�nitely generated, so is M . 9 / 7

One doesn’t need to be an expert in topos theory in order to know that many
notions in algebraic geometry are inspired by notions in algebra and that
proofs in algebraic geometry often proceed by reducing to algebra.

If X is a scheme, the internal language of the topos Sh(X) is a way of making
this connection precise: In many cases, the former are simply interpretations
of the latter internal to Sh(X). Because this connection is precise instead
of informal, additional value is gained: We can skip many basic proofs in
algebraic geometry because they’re just externalizations of proofs in algebra
carried out internally to Sh(X).
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A basic example is as follows. A short exact sequence of sheaves of modules
looks like a short exact sequence of plain modules from the internal point
of view of Sh(X). If the two outer sheaves are of �nite type, then from the
internal point of view, the two outer modules will look like �nitely generated
modules. Because the standard proof of the proposition quoted on the lower
right is intuitionistically valid, it follows that, from the internal point of view,
the middle module is too �nitely generated. Consulting the dictionary a
second time, this amounts to saying that the middle sheaf is of �nite type.

A more advanced example is: The theorem “any �nitely generated vector
space does not not have a basis” of constructive linear algebra entails, by
interpretation in Sh(X), that any sheaf of �nite type over a reduced scheme
is �nite locally free on a dense open subset.

More details on this research program can be found in these notesthese notes, partly
reported on at the 2015 IHÉS topos theory conference2015 IHÉS topos theory conference. Even though many
important dictionary entries are still missing (for instance pertaining to
derived categories and intersection theory), I believe that it is already in its
current form useful to working algebraic geometers.

The next slide illustrates a further, di�erent way of approaching algebraic
geometry using topos theory.

https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://www.youtube.com/watch?v=7S8--bIKaWQ
https://www.youtube.com/watch?v=7S8--bIKaWQ


Summary The forcing model Revisiting the test cases

Synthetic algebraic geometry

Usual approach to algebraic geometry: layer schemes above
ordinary set theory using either

locally ringed spaces

set of prime ideals of Z[X , Y ,Z ]/(Xn + Yn − Zn) +

Zariski topology + structure sheaf
or Grothendieck’s functor-of-points account, where a
scheme is a functor Ring→ Set.

A 7−→ {(x, y, z) ∈ A3 | xn + yn − zn = 0}

Synthetic approach: model schemes directly as sets in a
certain nonclassical set theory, the internal universe of the
big Zariski topos of a base scheme.

{(x, y, z) : (A1)3 | xn + yn − zn = 0}

10 / 7

At the Secret Blogging SeminarSecret Blogging Seminar, there was an insightful long-running dis-
cussion on the merits of the two approaches to algebraic geometry. Two
disadvantages of the approach using locally ringed spaces is that the un-
derlying topological spaces don’t actually parametrize “honest”, “geometric”
points, but the more complex notion of irreducible closed subsets; and that
they don’t work well in a constructive setting. (For this, they would have to
be replaced by locally ringed locales.)
The functorial approach is more economical, philosophically rewarding, and
works constructively. Given a functor F : Ring→ Set, we imagine F(A) to
be the set of “A-valued points” of the hypothetical scheme described by F ,
the set of “points with coordinates in A”. These sets have direct geometric
meaning. However, typically only �eld-valued points are easy to describe.
For instance, the functor representing projective n-space is given on �elds by

K 7−→ the set of lines through the origin in Kn+1

∼= {[x0 : · · · : xn] | xi 6= 0 for some i},
whereas on general rings it is given by

A 7−→ the set of quotients An+1 � P , where P is projective,
modulo isomorphism.

It is these more general kinds of points which impart a sense of cohesion on
the �eld-valued points, so they can’t simply be dropped from consideration.

https://sbseminar.wordpress.com/2009/08/06/algebraic-geometry-without-prime-ideals/
https://sbseminar.wordpress.com/2009/08/06/algebraic-geometry-without-prime-ideals/
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This tension is resolved by observing that the category of functors Ring→ Set
is a topos (the big Zariski topos of Spec(Z)) and that we can therefore employ
its internal language. This language takes care of juggling stages behind
the scenes. For instance, projective n-space can be described by the naive
expression

{(x0, . . . , xn) : (A1)n+1 | x0 6= 0 ∨ · · · ∨ xn 6= 0}/(A1)×.

This example illustrates the goal: to develop a synthetic account of algebraic
geometry, in which schemes are plain sets and morphisms between schemes
are maps between those sets. It turns out that there are many similarities
with the well-developed synthetic account of di�erential geometry, but also
important di�erences, and it also turns out that synthetic algebraic geometry
has close connections to a certain age-old unsolved problem in topos theory,
the mystery of nongeometric sequents.

Details are in this set of slidesthis set of slides.

https://rawgit.com/iblech/internal-methods/master/slides-como2018.pdf
https://rawgit.com/iblech/internal-methods/master/slides-como2018.pdf
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