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This talk has two parts. In the Vrst part, we’ll learn that besides the standard
mathematical universe, in which ordinary mathematics takes place, there is
a host of alternate mathematical universes. In these alternate universes, the
usual objects of mathematics enjoy slightly diUerent properties. For instance,
we’ll encounter universes in which the intermediate value theorem fails or
in which any map R→ R is continuous.

In the second part, we’ll see that these alternate universes, while seeming
strange on Vrst contact, yield concrete applications in algebra and geometry.
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Toposes were invented in the 1960s by Grothendieck in order to solve con-
crete problems in algebraic geometry. Their raison d’être is the following. In
algebraic geometry, we want (and sometimes have to) work over Velds other
than R and C and even over arbitrary commutative rings. For the geometric
objects in such settings, the schemes, the Euclidean topology is not available;
we have to make do with the Zariski topology. However, important tools as
singular cohomology don’t work well with this topology (too few opens).

The problem was solved by inventing étale topology as an enhancement of
the Zariski topology. However, contrary to its name, the étale topology
isn’t actually a topology in the usual sense. Putting the étale topology on a
scheme doesn’t yield a reVned topological space, but a topos.

Toposes generalize topological spaces in two ways: Firstly, the “open sets”
of toposes don’t actually have to be sets of points; they can be more general
kinds of objects such as coverings. Toposes can even have no points at all
and still be nontrivial (this is for instance the case for the topos of random sequencestopos of random
sequences). Secondly, while classically a given open subset is either contained
in a further open subset or not, the opens of toposes can be contained in
further opens in many diUerent ways.

Recently, toposes are being used to help the mythical Veld with one elementVeld with one element
come into being.

https://homepages.inf.ed.ac.uk/als/Talks/ccc09.pdf
https://homepages.inf.ed.ac.uk/als/Talks/ccc09.pdf
https://homepages.inf.ed.ac.uk/als/Talks/ccc09.pdf
http://math.ucr.edu/home/baez/week259.html
http://math.ucr.edu/home/baez/week259.html
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Since the 1960s, many more aspects of toposes were discovered. A popular
reference on toposes starts with a list of 13 ways of viewing toposes.

In this talk, we’ll focus on the view of toposes as alternate mathematical
universes. We can do mathematics inside these alternate universes just as well
as we can do mathematics inside the standard universe (which is represented
by a particular topos called “Set”). Each topos contains own versions of all
the familiar mathematical objects – numbers, functions, manifolds – but the
properties they enjoy can diUer slightly from the properties they enjoy in
the standard topos.

The deVnition of what a topos is, displayed in the lower left of the slide, has
two problems. Firstly, it’s only useful if one knows the relevant category-
theoretic jargon. Secondly, a topos has lots of further vital structure, which is
crucial for a rounded understanding, but not listed in the displayed deVnition
(which is trimmed for minimality). A more comprehensive deVnition is: A
topos is a locally cartesian closed, Vnitely complete and cocomplete Heyting
category which is exact, extensive and has a subobject classiVer. We won’t
need either deVnition in this talk.
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Toposes can also be thought as reifying the “semantic essence” of mathemati-
cal theories (the theory of groups, the theory of rings, the theory of intervals,
. . . ). Given any such theory T, there is a so-called classifying topos Set[T].
Its points are precisely the set-based models of T (the groups, the rings, the
intervals, . . . ), and it contains a generic model which has exactly those prop-
erties which all models have. (This generic model is what mathematicians
implicitly refer to when they say “Let G be a group.”.)

Crucially, two theories T and T′ can have equivalent classifying toposes
even when they are not syntactically related in any way. This observation is
the starting point of Olivia Caramello’s bridge techniquebridge technique, a grand research
program with applications in many diUerent Velds.

Set[T] ' Set[T′]

T T′

https://www.oliviacaramello.com/
https://www.oliviacaramello.com/
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The topos Set is the standard topos. This topos is where ordinary mathemat-
ics takes place.
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Besides Set, there is a proper class’ worth of further toposes. We’ll get to
know some of these better during the course of the talk.

For any topological space X, there is the topos Sh(X) of sheaves over X. They
are useful in analysis for internalizing parameter-dependence. Apart from
pathological cases like X being discrete, the intermediate value theorem in
the form

Let f : R → R be a continuous function. Assume f(−1) < 0 < f(1).
Then there is a number x ∈ R such that f(x) = 0.

fails in these toposes – for very meaningful reasons discussed below. The
following, classically equivalent, version does hold:

Let f : R → R be a continuous function. Assume f(−1) < 0 < f(1).
Then, for every ε > 0, there is a number x ∈ R such that |f(x)| < ε.

The eUective topos Eff is a computer scientist’s dream come true: In it, any
function N → N is computable by a Turing machine. The eUective topos
and its close cousins can be used to study the diUerences between the many
models of computation, particularly those diUerences which are only visible
at higher types.
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This talk is still part of ordinary mathematics, that is, of the topos Set.
Therefore a more accurate picture depicts the three examples as part of Set.
(Technically, while they might not be “toposes over Set”, they are still locally-
internal to Set in the sense of Penon.)

Most of the toposes in active use are either toposes of sheaves (over a
topological space or a sitesite), realizability toposes (such as Eff or variants
constructed using diUerent models of computation), or arise from those
using topos-theoretic constructions; but this is not a complete classiVcation.
(The topos Set is equivalent to the topos of sheaves over the one-point space.)

https://ncatlab.org/nlab/show/site
https://ncatlab.org/nlab/show/site
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Any topos supportsmathematical reasoning:

If E |= ϕ and if ϕ entails ψ constructively

no ϕ ∨ ¬ϕ, no ¬¬ϕ⇒ ϕ, no axiom of choice

, then E |= ψ.

3 / 11

We can picture the Kripke–Joyal semantics as a kind of translation engine.
When we’re talking over the phone with Anna, a mathematician who lives
in the effective topos, at Vrst we might feel uncomfortable when she states
“it’s a basic fact of life that any function N → N is computable”. But if we
remember to switch on the Kripke–Joyal translation, we instead hear “it’s a
basic fact of life that there is a Turing machine which, given a Turing machine
computing a function f : N → N, outputs a Turing machine computing f”
which we can easily agree with.

The precise translation rules will be explained by osmosis for the effective
topos, on the next slide, and by a formal deVnition for sheaf toposes and for
the little Zariski topos, further below.
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We can picture the Kripke–Joyal semantics as a kind of translation engine.
When we’re talking over the phone with Anna, a mathematician who lives
in the effective topos, at Vrst we might feel uncomfortable when she states
“it’s a basic fact of life that any function N → N is computable”. But if we
remember to switch on the Kripke–Joyal translation, we instead hear “it’s a
basic fact of life that there is a Turing machine which, given a Turing machine
computing a function f : N → N, outputs a Turing machine computing f”
which we can easily agree with.

The precise translation rules will be explained by osmosis for the effective
topos, on the next slide, and by a formal deVnition for sheaf toposes and for
the little Zariski topos, further below.

When exploring a new topos for the Vrst time, the only way to Vnd out which
statements hold in it is to translate them using the Kripke–Joyal semantics
and check whether the translation holds in the usual mathematical sense.
As soon as we have established a certain stock of statements in this way,
we can switch to a more eXcient procedure: We can just use mathematical
reasoning to deduce new statements from known ones.
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Irrespective of philosophical preferences, it’s a fact of life that most toposes
only support constructive reasoning; in most toposes, proof by contradic-
tion is not valid. (Examples for toposes in which this is possible are sheaf
toposes Sh(X) over discrete topological spaces, but not many more than
that.)

One might fear that most of mathematics breaks down in a constructive
setting. This is only true if interpreted naively: Often, already very small
changes to the deVnitions and statements suXce to make them constructively
valid (and are classically simply equivalent reformulations). In other cases,
we need to add interesting additional hypotheses – hypotheses which are
classically always satisVed. Here are a couple of examples.

1. The usual proof that
√
2 is not rational is perfectly Vne from a construc-

tive point of view. It shows that the assumption that
√
2 is rational

entails a contradiction. This is just the deVnition of what it means to
be not rational. ( There’s a diUerenceThere’s a diUerence between a proof by contradiction
and a proof of a negated statement. Only the former can’t generally be
carried out in constructive mathematics.)

2. Constructively it’s still true that there is no such thing as a statement
which is neither true nor false: That is, we still have ¬¬(ϕ ∨ ¬ϕ).

http://math.andrej.com/2010/03/29/proof-of-negation-and-proof-by-contradiction/
http://math.andrej.com/2010/03/29/proof-of-negation-and-proof-by-contradiction/
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3. Constructively, we can’t show that any inhabited subset of the natural
numbers has a minimal element. [We can also not show the negation
of that statement – any valid constructive proof is a fortiori a valid
classical proof.] But we can show (quite easily, by induction) that any
inhabited and detachable subset of the natural numbers has a minimal
element: A subset U ⊆ N is detachable iU for any number n ∈ N, n ∈ U
or n 6∈ U. Weakening the conclusion, we can also show that any
inhabited subset of the natural numbers does not not have a minimal
element.

Both the failure and the two Vxes can be interpreted computationally:
Given just the promise of an inhabited subset, we can’t algorithmically
determine its minimum. But we can do so when given a membership
oracle, or if it’s okay to return the result in the continuation monadokay to return the result in the continuation monad.

4. We can’t constructively prove that any Vnitely generated vector space
admits a basis. We can, however, constructively verify that any Vnitely
generated vector does not not admit a basis, (By exploiting that given a
generating family (x1, . . . , xn), it’s not not the case that either one of
the generators is a linear combination of the others, or not.) We’ll see
below that this particular example entails that any sheaf of Vnite type
over a reduced scheme is locally free on a dense open.

https://rawgit.com/iblech/talk-constructive-mathematics/master/hal2015-notes.pdf
https://rawgit.com/iblech/talk-constructive-mathematics/master/hal2015-notes.pdf
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5. We can’t constructively verify the fundamental theorem of Galois
theory for arbitrary (not necessarily Vnite) Galois extensions in its
usual formulation. But if we pass from the topological Galois group
to the localic Galois group, we can. Some aspects of the proof even get
simpler that way.

6. Similarly, we can’t constructively verify the Gelfand–Neumark corre-
spondence between commutative C∗-algebras with unit and compact
HausdorU spaces. But we can do so if we pass from compact HausdorU
spaces to compact HausdorU locales.

A recommendation for more on constructive mathematics is the informative
and entertaining talk Five Stages of Accepting Constructive Mathematics by
Andrej Bauer ( videovideo, notesnotes).

https://www.youtube.com/watch?v=21qPOReu4FI
https://www.youtube.com/watch?v=21qPOReu4FI
https://www.ams.org/journals/bull/2017-54-03/S0273-0979-2016-01556-4/
https://www.ams.org/journals/bull/2017-54-03/S0273-0979-2016-01556-4/
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First steps in alternate universes

Eff |= “Any number is prime or is not prime.” 3
Meaning: There is a Turing machine which determines of any given
number whether it is prime or not.

Eff |= “There are inVnitely many prime numbers.” 3
Meaning: There is a Turing machine producing arbitrarily many primes.

Eff |= “Any function N→ N is the zero function or not.” 7
Meaning: There is a Turing machine which, given a Turing machine
computing a function f : N→ N, determines whether f is zero or not.

Eff |= “Any function N→ N is computable.” 3

Eff |= “Any function R→ R is continuous.” 3

Sh(X) |= “Any cont. function with opposite signs has a zero.” 7
Meaning: Zeros can locally be picked continuously in continuous
families of continuous functions. (video for counterexample) 4 / 11

There is a variant of the eUective topos which is not built using Turing
machines, but using inVnite-time Turing machines, a popular model for hyper-
computation. In that variant, the statement “any function N→ N is the zero
function or not” is true; the statement “any function N→ N is computable
by a Turing machine” is false; and the statement “any function N → N is
computable by an inVnite-time Turing machine” is true again. Details can be
found in this set of slidesthis set of slides.

https://rawgit.com/iblech/internal-methods/master/images/zeros-in-families.mp4
https://rawgit.com/iblech/mathezirkel-kurs/master/superturingmaschinen/slides-warwick2017.pdf
https://rawgit.com/iblech/mathezirkel-kurs/master/superturingmaschinen/slides-warwick2017.pdf
https://rawgit.com/iblech/mathezirkel-kurs/master/superturingmaschinen/slides-warwick2017.pdf
https://rawgit.com/iblech/mathezirkel-kurs/master/superturingmaschinen/slides-warwick2017.pdf
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We can also build a variant of the eUective topos which uses machines of
the real world instead of idealized Turing machines. In doing so, we leave
the realm of rigorous mathematics, but obtain interesting connections with
philosophy and physics. For instance, in that variant the statement “any
function R→ R is continuous” is true if machines in the real world can only
perform Vnitely many computational steps in Vnite time and if it’s possible
to build hidden communication channels. Details can be found in the book
chapter Intuitionistic Mathematics and Realizability in the Physical WorldIntuitionistic Mathematics and Realizability in the Physical World by
Andrej Bauer.

https://rawgit.com/iblech/internal-methods/master/images/zeros-in-families.mp4
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/
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The applications of the internal language of toposes in several branches of
mathematics are driven by the following fundamental empirical fact:

The external translations of
some easy-to-prove internal statements of suitable toposes

are
nontrivial statements about the subject matter at hand.

For instance, Grothendieck’s generic freeness lemma, an important theorem
in commutative algebra and algebraic geometry, is the external translation
of the basic observation “Vnitely generated modules over Vnitely generated
algebras over Velds are not not free over the Veld and not not Vnitely presented
over the algebra” of constructive linear algebra.

Is there a theorem which can only be proven by topos-theoretic methods? No,
for any proof employing the internal language can be unwound to yield an
external proof not referencing topos theory. Just as the translation from in-
ternal statements to external ones is entirely mechanical, so is the translation
from internal proofs to external ones. However, this translation will always
make the proof longer, and, depending on the syntactical complexity of the
involved statements, the resulting external proof might be quite complex.

The next two slides show examples regarding this increase in complexity.
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1. The statement “if the two outer sheaves in a short exact sequence of
sheaves of modules are of Vnite type, then so is the middle one” is the
external translation of the basic fact “if the two outer modules in a
short exact sequence of modules are Vnitely generated, then so is the
middle one” of constructive linear algebra.

The syntactical complexity of the internal statement is quite low (just
one implication sign, at toplevel, no long chains of quantiVers of mixed
types). Therefore the resulting external proof obtained by unwinding
will still be quite short and straightforward. In fact, this external proof
will coincide with what anyone well-versed in scheme theory will
produce, judiciously juggling open subsets.

Using the internal language of toposes in situations like this is therefore
mostly for mental hygiene, making rigorous the intuitive idea that the
two statements are related to each other.



A glimpse of the toposophic landscape Analysis DiUerential geometry Commutative algebra Algebraic geometry

Applications

analysis
internalizing

parameter-dependence

algebraic geometry
reducing geometry to algebra
reducing relative to absolute

synthetic account

diUerential geometry
reWection principles
synthetic account

homotopy theory
synthetic account

computer-assisted proofs
generalizations

commutative algebra
local-to-global principles
reduction techniques
constructive proofs

further subjects
synth. computability th.
synth. measure theory
Bohr topos for QM

5 / 11

2. A version of Hilbert’s basis theorem, “polynomial rings over anony-
mously Noetherian rings are again anonymously Noetherian”, can
be put to use in the proof of Grothendieck’s generic freeness lemma
alluded to above.

This statement has nontrivial syntactical complexity (the Noetherian
condition involves a double negation, therefore nested implications).
For this reason, already the translation of the statement is quite con-
voluted (a part of it is displayed in this set of slidesdisplayed in this set of slides for your viewing
pleasure). The translation of its proof contains a deformed copy of
the standard proof of Hilbert’s basis theorem (in a way which doesn’t
allow to simply apply Hilbert’s basis theorem, one has to actually redo
its proof).

In situations like this, the internal language is of real value.

https://rawgit.com/iblech/internal-methods/master/slides-como2018.pdf
https://rawgit.com/iblech/internal-methods/master/slides-como2018.pdf
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We’re used to the fact that the usual laws of mathematical reasoning apply
to mathematical objects. The internal language of toposes encapsulates and
makes useful the following observation: The usual laws of reasoning apply
to our favorite mathematical objects also in nontrivial ways diUerent from the
accustomed one. I Vnd this quite astonishing.

The next slide shows a basic application of this train of thought in analysis.
The presented example is of a rather simple nature and serves only to ex-
plain the translation process in an explicit and rigorous fashion, contrasting
the previous slides which were somewhat short on details. Details on the
application to homotopy theory can be found in the HoTT bookHoTT book.

A tour of applications in algebraic geometry can be found in these notesthese notes.

https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
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The topos of sheaves over a space
Let X be a topological space. We recursively deVne

U |= ϕ (“ϕ holds on U”)

for open subsets U ⊆ X and statements ϕ. Write “Sh(X) |= ϕ” to
mean X |= ϕ. Let C(U) be the set of continuous functions U→ R.
U |= > iU true
U |= ⊥ iU false U = ∅
U |= s = t iU s(x) = t(x) for all x ∈ U
U |= ϕ ∧ ψ iU U |= ϕ and U |= ψ

U |= ϕ ∨ ψ iU U |= ϕ or U |= ψ there exists an open covering U =
⋃

i Ui

such that for all i: Ui |= ϕ or Ui |= ψ

U |= ϕ⇒ ψ iU for all open V ⊆ U: V |= ϕ implies V |= ψ
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It’s an instructive exercise to verify that Sh(X) |= ¬¬ϕ if and only if there
is a dense open subset U ⊆ X such that U |= ϕ. This equivalence gives
geometric meaning to the failure of classical logic in Sh(X).
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Internalizing parameter-dependence

Let (fx)x∈X be a continuous family of continuous functions (that
is, let a continuous function X × R → R, (x, a) 7→ fx(a) be
given). From the internal point of view of Sh(X), this family
looks like a single function f : R→ R.

Sh(X) |= (The function f : R→ R is continuous).

IU fx(−1) < 0 for all x ∈ X, then Sh(X) |= f(−1) < 0.

IU fx(+1) > 0 for all x ∈ X, then Sh(X) |= f(+1) > 0.

IU all fx are increasing, then Sh(X) |= (f is increasing).

IU there is an open cover X =
⋃

i Ui such that for each i,
there is a continuous function s : Ui → R with fx(s(x)) = 0
for all x ∈ Ui, then Sh(X) |= ∃s :R. f(s) = 0.
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Hence:

1. The standard formulation of the intermediate value theorem fails
in Sh(X), because its external interpretation is that in continuous fami-
lies of continuous functions, zeros can locally be picked continuously.
That claim is false, as this counterexamplethis counterexample demonstrates.

As a corollary, we deduce that the standard formulation of the interme-
diate value theorem is not constructively provable.

2. The approximative version of the intermediate value theorem (stat-
ing that for any ε > 0, there is a number x such that |f(x)| < ε)

has a constructive proofhas a constructive proof and therefore holds in Sh(X). The external
interpretation is that in continuous families of continuous functions,
approximate zeros can locally be picked continuously.

3. The monotone intermediate value theorem, stating that a strictly in-
creasing continuous function with opposite signs has a unique zero,
admits a constructive proof and therefore holds in Sh(X). The exter-
nal interpretation is that in continuous families of strictly increasing
continuous functions, zeros can globally be picked continuously. You
are invited to prove this fact directly, without reference to the internal
language. This exercise isn’t particularly hard, but it’s not trivial either.

https://rawgit.com/iblech/internal-methods/master/images/zeros-in-families.mp4
https://rawgit.com/iblech/internal-methods/master/images/zeros-in-families.mp4
https://mathoverflow.net/questions/253059/approximate-intermediate-value-theorem-in-pure-constructive-mathematics
https://mathoverflow.net/questions/253059/approximate-intermediate-value-theorem-in-pure-constructive-mathematics
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Synthetic diUerential geometry

The axiom of microaXnity

Let ∆ = {ε ∈ R | ε2 = 0}. For any function f : ∆→ R, there is
a unique number a ∈ R such that f(ε) = f(0)+aε for all ε ∈ ∆.

The derivative of a function f : R→ R at x0 ∈ R is the unique
number a ∈ R such that f(x0 + ε) = f(x0) + aε for all ε ∈ ∆.

Manifolds are just sets.

A tangent vector to M is a map ∆→ M.
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DiUerential geometry abounds with intuition which can’t be formalized in
the standard account of diUerential geometry. For instance, we can’t literally
deVne a tangent vector to be an inVnitesimal piece of a curve – we have
to resort to germs of smooth functions or derivations – or speak about
inVnitesimal deformations of the identity transformation.

Synthetic diUerential geometry was born to provide an account of diUerential
geometry which is both rigorous and closer to intuition than the standard
account, allowing for instance to read the classic works of Sophus Lie in a
literal manner.

Its starting point is the axiom of microaXnity, which is quite useful but wildly
false in classical mathematics. The fundamental theorem about synthetic
diUerential geometry, connecting it with the ordinary world of smooth
manifolds, states that there existwell-adapted models for synthetic diUerential
geometry – toposes E such that:

1. There is a functorial way of associating to any smooth manifold M an object y(M)
of E (something which E believes to be a set) and to any smooth map f : M → N a
morphism y(f) : y(M) → y(N) of E (something which E believes to be map).

2. Any morphism of E of type y(M) → y(N) is of the form y(f) for a smooth map f, and
if E |= y(f) = y(g), then actually f = g.

3. In E , the axiom of microaXnity and related axioms hold for the ring y(R1). [Technical
comment: This ring will usually not be the ring of Dedekind real numbers in E .]
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Here are two examples for synthetic reasoning and synthetic constructions.

• We can compute the derivative of f with f(x) = x2 as follows: For
all ε ∈ ∆, f(x + ε) = (x + ε)2 = x2 + 2xε, hence f′(x) = 2x by the
deVnition on the slide.

• Write “M∆” for the set of all maps ∆→ M. A vector Veld on a manifold
(set) M is just a map X : M→ M∆ such that X(p)(0) = p for all p ∈ M.
A vector Veld X induces an inVnitesimal path γ : ∆→ MM in the space
(set) of transformations of M, by setting γ(ε) = (p 7→ X(p)(ε)).

Conversely, a path γ : ∆→ MM such that γ(0) = idM yields a vector
Veld X : M→ M∆ by setting X(p) = (ε 7→ γ(ε)(p). No continuity or
smoothness checks have to be carried out.

There are also notions in synthetic diUerential geometry which don’t have
a classical counterpart. For instance, in synthetic diUerential geometry it’s
possible to view diUerential forms on M – which are usually thought of as
functionals on (exterior powers of) the tangent bundle – as quantities (maps
from M into a certain nonclassical object).
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The following reWection principle is routinely used in undergraduate calculus:
Even though continuity is oXcially a property which depends only on the
input/output behaviour of a function, reWecting on the term used to deVne a
given function often allows us to quickly conclude that it’s continuous. For
instance, any function deVned by a polynomial expression is continuous.

Synthetic diUerential geometry yields a new reWection principle, for ordinary
manifolds, which improves both on the assumption and on the conclusion:
Any map between manifolds which is deVnable in constructive mathematics
(so in particular, any map which is given by a polynomial expression) is
smooth (so in particular continuous). This is due to item 2 above.

Synthetic diUerential geometry is very well-developed and at your disposal.
References include:

• Synthetische DiUerentialgeometrieSynthetische DiUerentialgeometrie, notes for high school students (in
German)

• Intuitionistic mathematics for physicsIntuitionistic mathematics for physics, a blog post by Andrej Bauer

• A Primer of InVnitesimal Analysis, a short introduction by John Bell

• Synthetic DiUerential GeometrySynthetic DiUerential Geometry, the deVnitive book by Anders Kock

https://rawgit.com/iblech/mathezirkel-kurs/master/thema05-sdg/blatt05.pdf
https://rawgit.com/iblech/mathezirkel-kurs/master/thema05-sdg/blatt05.pdf
http://math.andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/
http://math.andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/
http://home.imf.au.dk/kock/sdg99.pdf
http://home.imf.au.dk/kock/sdg99.pdf
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The little Zariski topos of a ring
Let A be a ring (commutative, with unit). We recursively deVne

D(f) |= ϕ (“ϕ holds away from the zeros of f”)

for f ∈ A and statements ϕ. Write “Spec(A) |= ϕ” to mean D(1) |= ϕ.

D(f) |= > iU true

D(f) |= ⊥ iU f is nilpotent
D(f) |= x = y iU x = y ∈ M[f−1]
D(f) |= ϕ ∧ ψ iU D(f) |= ϕ and D(f) |= ψ

D(f) |= ϕ ∨ ψ iU there exists a partition fn = fg1 + · · ·+ fgm with,

for each i, D(fgi) |= ϕ or D(fgi) |= ψ

D(f) |= ϕ⇒ ψ iU for all g ∈ A, D(fg) |= ϕ implies D(fg) |= ψ

D(f) |= ∀x :M∼. ϕ(x) iU for all g ∈ A and x0 ∈ M[(fg)−1], D(fg) |= ϕ(x0)
D(f) |= ∃x :M∼. ϕ(x) iU there exists a partition fn = fg1 + · · ·+ fgm with,

for each i, D(fgi) |= ϕ(x0) for some x0 ∈ M[(fgi)−1]
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Irrespective of whether A is a local ring, its mirror image A∼ is always a local
ring (that is, the axioms of what it means to be a local ring hold in Spec(A)).

A basic application of the internal language of Spec(A) are local-to-global
principles. For instance:

• The statement “the kernel of a surjective matrix over a local ring is
Vnite free” admits a constructive proof. It therefore holds in Spec(A).
Its external meaning is that the kernel of a surjective matrix M over A
is Vnite locally free (there exists a partition 1 = f1 + · · ·+ fn such that
for each i, the localized module (kerM)[f−1i ] is Vnite free).

• The ring A is a Prüfer domain if and only if A∼ is a Bézout domain.
Therefore any constructive theorem about Bézout domains entails a
corresponding theorem about Prüfer domains. Bézout domains are
quite rare, while Prüfer domains abound (for instance the ring of
integers of any number Veld is a Prüfer domain, even constructively
so).

There are general metatheoremsgeneral metatheorems which state a precise connection between A
and A∼, allowing in some cases to quickly pass from one to the other.

https://rawgit.com/iblech/internal-methods/master/slides-munich2018.pdf
https://rawgit.com/iblech/internal-methods/master/slides-munich2018.pdf


A glimpse of the toposophic landscape Analysis DiUerential geometry Commutative algebra Algebraic geometry

The little Zariski topos of a ring
Let A be a ring (commutative, with unit). We recursively deVne

D(f) |= ϕ (“ϕ holds away from the zeros of f”)

for f ∈ A and statements ϕ. Write “Spec(A) |= ϕ” to mean D(1) |= ϕ.

D(f) |= > iU true

D(f) |= ⊥ iU f is nilpotent
D(f) |= x = y iU x = y ∈ M[f−1]
D(f) |= ϕ ∧ ψ iU D(f) |= ϕ and D(f) |= ψ

D(f) |= ϕ ∨ ψ iU there exists a partition fn = fg1 + · · ·+ fgm with,

for each i, D(fgi) |= ϕ or D(fgi) |= ψ

D(f) |= ϕ⇒ ψ iU for all g ∈ A, D(fg) |= ϕ implies D(fg) |= ψ

D(f) |= ∀x :M∼. ϕ(x) iU for all g ∈ A and x0 ∈ M[(fg)−1], D(fg) |= ϕ(x0)
D(f) |= ∃x :M∼. ϕ(x) iU there exists a partition fn = fg1 + · · ·+ fgm with,

for each i, D(fgi) |= ϕ(x0) for some x0 ∈ M[(fgi)−1]

9 / 11

More advanced applications are rendered possible by the observation that,
if A is a reduced ring (xn = 0⇒ x = 0), its mirror image A∼ is anonymously
Noetherian (every ideal is not not Vnitely generated) and a Veld. This fact
doesn’t have a classical counterpart – in general, neither A nor its stalks nor
its quotients nor its subrings are Noetherian or Velds.

This reduction technique allows to give a new proof of Grothendieck’s
generic freeness lemma which substantially improves on the previously
known proofs in length and clarity: from approximately three pages (re-
quiring several advanced prerequisites in commutative algebra) to a single
paragraph (requiring only the tiny bit of topos theory needed in order to
setup the internal language).

Sometimes, the eUects of this topos-theoretic reduction technique can be
mimicked by classical techniques in commutative algebra such as passing to
quotient rings or stalks. To the best of my knowledge, that’s not the case for
Grothendieck’s generic freeness lemma. (In other cases, where they can, the
classical techniques require the axiom of choice, while the topos-theoretic
technique doesn’t and therefore yields a more calculational, informative
proof.)

Details can be found in this set of slidesin this set of slides.

https://rawgit.com/iblech/internal-methods/master/slides-munich2018.pdf
https://rawgit.com/iblech/internal-methods/master/slides-munich2018.pdf
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As mentioned before, any proof involving the internal language can be
unwound to yield a direct proof not referencing toposes. Depending on the
logical complexity of the statements appearing in the internal proof, this
process can substantially lengthen the proof.

In the case of the new proof of Grothendieck’s generic freeness lemma, we
were lucky to obtain a one-page proofobtain a one-page proof using this process. (That the resulting
external proof was so short is because it was possible to eliminate the use of
the Noetherian property from the internal proof; without that elimination,
the unwound proof was much longer.)

https://arxiv.org/abs/1807.01231
https://arxiv.org/abs/1807.01231
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Understanding algebraic geometry
Understand notions of algebraic geometry over a scheme X
as notions of algebra internal to Sh(X).
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externally internally to Sh(X)

sheaf of sets set
sheaf of modules module
Vnite locally free sheaf Vnite free module
tensor product of sheaves tensor product of modules
sheaf of rational functions total quotient ring of OX
dimension of X Krull dimension of OX
spectrum of a sheaf of OX-algebras ordinary spectrum [with a twist]
higher direct image sheaf cohomology

Let 0 → F ′ → F → F ′′ → 0 be
a short exact sequence of sheaves
of OX-modules. If F ′ and F ′′ are of
Vnite type, so is F .

⇐
Let 0→ M′ → M→ M′′ → 0 be a
short exact sequence of modules.
If M′ and M′′ are Vnitely gener-
ated, so is M.
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One doesn’t need to be an expert in topos theory in order to know that
many notions in algebraic geometry are inspired by notions in algebra and
that proofs in algebraic geometry often proceed by reducing to algebra. The
internal language is a way of making this connection precise: In many cases,
the former are simply interpretations of the latter internal to Sh(X). Because
this connection is precise instead of informal, additional value is gained:
We can skip many basic proofs in algebraic geometry because they’re just
externalizations of proofs in algebra carried out internally to Sh(X).
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A basic example is as follows. A short exact sequence of sheaves of modules
looks like a short exact sequence of plain modules from the internal point
of view of Sh(X). If the two outer sheaves are of Vnite type, then from the
internal point of view, the two outer modules will look like Vnitely generated
modules. Because the standard proof of the proposition quoted on the lower
right is constructively valid, it follows that, from the internal point of view,
the middle module is too Vnitely generated. Consulting the dictionary a
second time, this amounts to saying that the middle sheaf is of Vnite type.

A more advanced example is: The theorem “any Vnitely generated vector
space does not not have a basis” of constructive linear algebra entails, by
interpretation in Sh(X), that any sheaf of Vnite type over a reduced scheme
is Vnite locally free on a dense open subset.

More details on this research program can be found in these notesthese notes, partly
reported on at the 2015 IHÉS topos theory conference2015 IHÉS topos theory conference. Even though many
important dictionary entries are still missing (for instance pertaining to
derived categories and intersection theory), I believe that it is already in its
current form useful to working algebraic geometers.

The next slide illustrates a further, diUerent way of approaching algebraic
geometry using topos theory.

https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://www.youtube.com/watch?v=7S8--bIKaWQ
https://www.youtube.com/watch?v=7S8--bIKaWQ
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Synthetic algebraic geometry

Usual approach to algebraic geometry: layer schemes above
ordinary set theory using either

locally ringed spaces

set of prime ideals of Z[X, Y,Z]/(Xn + Yn − Zn) +

Zariski topology + structure sheaf

or Grothendieck’s functor-of-points account, where a
scheme is a functor Ring→ Set.

A 7−→ {(x, y, z) ∈ A3 | xn + yn − zn = 0}

Synthetic approach: model schemes directly as sets in the
internal universe of the big Zariski topos of a base scheme.

{(x, y, z) : (A1)3 | xn + yn − zn = 0}
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At the Secret Blogging SeminarSecret Blogging Seminar, there was an insightful long-running discus-
sion on the merits of the two approaches. Two disadvantages of the approach
using locally ringed spaces is that the underlying topological spaces don’t ac-
tually parametrize “honest”, “geometric” points, but the more complex notion
of irreducible closed subsets; and that they don’t work well in a constructive
setting. (For this, they would have to be replaced by locally ringed locales.)

The functorial approach is more economical, philosophically rewarding, and
works constructively. Given a functor F : Ring → Set, we imagine F(A) to
be the set of “A-valued points” of the hypothetical scheme described by F,
the set of “points with coordinates in A”. These sets have direct geometric
meaning. However, typically only Veld-valued points are easy to describe.
For instance, the functor representing projective n-space is given on Velds by

K 7−→ the set of lines through the origin in Kn+1

∼= {[x0 : · · · : xn] | xi 6= 0 for some i},

whereas on general rings it is given by

A 7−→ the set of quotients An+1 � P, where P is projective,
modulo isomorphism.

It is these more general kinds of points which impart a sense of cohesion on
the Veld-valued points, so they can’t simply be dropped from consideration.

https://sbseminar.wordpress.com/2009/08/06/algebraic-geometry-without-prime-ideals/
https://sbseminar.wordpress.com/2009/08/06/algebraic-geometry-without-prime-ideals/
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This tension is resolved by observing that the category of functors Ring→
Set is a topos (the big Zariski topos of Spec(Z)) and that we can therefore
employ its internal language. This language takes care of juggling stages
behind the scenes. For instance, projective n-space can be described by the
naive expression

{(x0, . . . , xn) : (A1)n+1 | x0 6= 0 ∨ · · · ∨ xn 6= 0}/(A1)×.

This example illustrates the goal: to develop a synthetic account of algebraic
geometry, in which schemes are plain sets and morphisms between schemes
are maps between those sets. It turns out that there are many similarities
with the well-developed synthetic account of diUerential geometry, but also
important diUerences, and it also turns out that synthetic algebraic geometry
has close connections to a certain age-old unsolved problem in topos theory,
the mystery of nongeometric sequents.

Details are in this set of slidesthis set of slides.

https://rawgit.com/iblech/internal-methods/master/slides-como2018.pdf
https://rawgit.com/iblech/internal-methods/master/slides-como2018.pdf

