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Motivating test cases

Let A be a ring (commutative, with unit, 1 = 0 allowed).
Assume that A is reduced: If xn = 0, then x = 0.· ·· ·

· ·


A baby application

Let M be a surjective matrix over A
with more rows than columns.
Then 1 = 0 in A.

· · · ·· · · ·
· · · ·


A child application

Let M be an injective matrix over A
with more columns than rows.
Then 1 = 0 in A.

Proof. Assume not. Then there is
a minimal prime ideal p. The ma-
trix is injective over the �eld Ap =
A[(A\p)−1]. This is a contradiction
to basic linear algebra.

Generic freeness
Let B be an A-algebra of �nite type (∼= A[X1, . . . ,Xn]/a).
Let M be a �nitely generated B-module (∼= Bm/U ).
If f = 0 is the only element of A such that

1 B[f −1] and M[f −1] are free modules over A[f −1],
2 A[f −1]→ B[f −1] is of �nite presentation and
3 M[f −1] is �nitely presented as a module over B[f −1],

then 1 = 0 in A.

Proof. See [Stacks Project, Tag 051Q].

1 / 15

The two displayed statements are trivial for �elds. It is therefore natural to
try to reduce the general situation to the �eld situation.
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The two displayed statements are trivial for �elds. It is therefore natural to
try to reduce the general situation to the �eld situation.

The displayed proofs, which could have been taken from any standard text-
book on commutative algebra, succeed in this reduction quite easily by
employing maximal ideals or minimal prime ideals. However, this way of
reducing comes at a cost: It requires the Boolean Prime Ideal Theorem (for
ensuring the existence of a prime ideal and for ensuring that stalks at minimal
prime ideals are �elds) and even the full axiom of choice (for ensuring the
existence of a minimal prime ideal).

It therefore doesn’t work in the internal universe of most toposes, and in any
case it obscures explicit computational content: Statements so simple as the
two displayed ones should admit explicit, computational proofs.

We’ll learn how the internal language of a certain well-chosen topos provides
a way to perform the reduction in an entirely constructive manner. If so
desired, the resulting topos-theoretic proofs can be unwound to yield fully
explicit, topos-free, direct proofs.

Beautiful constructive proofs can also be found in Richman’s note on
nontrivial uses of trivial ringsnontrivial uses of trivial rings and in the recent textbook by Lombardi and Quittérecent textbook by Lombardi and

Quitté on constructive commutative algebra.

https://www.ams.org/journals/proc/1988-103-04/S0002-9939-1988-0954974-5/S0002-9939-1988-0954974-5.pdf
https://www.ams.org/journals/proc/1988-103-04/S0002-9939-1988-0954974-5/S0002-9939-1988-0954974-5.pdf
https://arxiv.org/abs/1605.04832
https://arxiv.org/abs/1605.04832
https://arxiv.org/abs/1605.04832
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We can slightly reduce the requirements of the proof of the �rst statement by
employing not a maximal ideal, but a prime ideal. The existence of maximal
ideals in nontrivial rings is equivalent to the axiom of choice, while the
existence of prime ideals is equivalent to the weaker Boolean Prime Ideal
Theorem. However, this improvement doesn’t change the main point; the
proof is still wildly nonconstructive.
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Grothendieck’s generic freeness lemma is an important theorem in algebraic
geometry, where it is usually stated in the following geometric form:

Let X be a reduced scheme. LetB be anOX -algebra of �nite type. LetM
be a B-module of �nite type. Then over a dense open,

(a) B andM are locally free as sheaves of OX -modules,
(b) B is of �nite presentation as a sheaf of OX -algebras and
(c) M is of �nite presentation as a sheaf of B-modules.
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Grothendieck’s generic freeness lemma is an important theorem in algebraic
geometry, where it is usually stated in the following geometric form:

Let X be a reduced scheme. LetB be anOX -algebra of �nite type. LetM
be a B-module of �nite type. Then over a dense open,

(a) B andM are locally free as sheaves of OX -modules,
(b) B is of �nite presentation as a sheaf of OX -algebras and
(c) M is of �nite presentation as a sheaf of B-modules.

All previously known proofs proceed in a series of reduction steps, �nally
culminating in the case where A is a Noetherian integral domain. They are
somewhat convoluted (for instance, the proof in the Stacks Project is three
pages long) and employ several results in commutative algebra which have
not yet been constructivized.

Using the internal language of toposes, we will give a short, conceptual and
constructive proof of Grothendieck’s generic freeness lemma. Again, if so
desired, one can unwind the internal proof to obtain a constructive proof
which doesn’t reference topos theory. The proof obtained in this way is still
an improvement on the previously known proofs, requiring no advanced
prerequisites in commutative algebra, and takes about a pageabout a page.

https://arxiv.org/abs/1807.01231
https://arxiv.org/abs/1807.01231
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The internal language of a topos

For any topos E and any formula ϕ, we de�ne the meaning of

“E |= ϕ” (“ϕ holds in the internal universe of E”)

using (Shulman’s extension of) the Kripke–Joyal semantics.

Set |= ϕ
“ϕ holds in the

usual sense.”

Sh(X) |= ϕ
“ϕ holds

continuously.”

Eff |= ϕ
“ϕ holds

computably.”

Any topos supports mathematical reasoning:

If E |= ϕ and if ϕ entails ψ intuitionistically

no ϕ ∨ ¬ϕ, no ¬¬ϕ⇒ ϕ, no axiom of choice

, then E |= ψ.

2 / 15

The internal language of a topos allows to construct objects and morphisms
of the topos, formulate statements about them and prove such statements in
a naive element-based language. From the internal point of view, objects look
like sets [more precisely, types]; morphisms look like maps; monomorphisms
look like injections; epimorphisms look like surjections; group objects look
like groups; and so on.

To determine whether a statement ϕ holds in the internal universe of a given
topos, we can use the Kripke–Joyal semantics to translate it into an ordinary
external statement and then check the validity of the external translation.

For instance, in the e�ective topos the curious statement “any function
N→ N is computable” holds, for its external meaning is the triviality “there
is a Turing machine which given a Turing machine computing some func-
tion f : N → N outputs a Turing machine computing f ”. In contrast, the
statement “any function N→ N is either the zero function or not” does not
hold in the e�ective topos, since its external meaning is “there exists a Turing
machine which given a Turing machine computing some function f : N→ N
decides whether f is the zero function or not”.
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Any theorem which has an intuitionistic proof holds in the internal universe
of any topos. The restriction to intuitionistic logic is not due to philosophical
concerns; it is a fact of life that only very few toposes validate the law of
excluded middle (for instance, sheaf toposes over discrete topological spaces
do if the law of excluded middle is available in the metatheory). Luckily, vast
amounts of mathematics can be developed in a purely intuitionistic setting.

The internal language machinery itself can be developed in an intuitionistic
setting.

The standard internal language of toposes in not enough for our purposes, as
it misses unbounded quanti�cation (“for all groups”, “for all rings”) and depen-
dent types. Shulman’s stack semanticsstack semantics o�ers what we need. No knowledge
of stacks is necessary to enjoy his paper. Prior work includes Polymorphism is Set Theoretic, ConstructivelyPolymorphism
is Set Theoretic, Constructively by Pitts and Relating �rst-order set theories, toposes and categories of classesRelating �rst-order set theories,
toposes and categories of classes by Awodey, Butz, Simpson and Streicher
(obtained independently and published after Shulman).

https://arxiv.org/abs/1004.3802
https://arxiv.org/abs/1004.3802
https://www.cl.cam.ac.uk/~amp12/papers/polist/polist.pdf
https://www.cl.cam.ac.uk/~amp12/papers/polist/polist.pdf
https://www.cl.cam.ac.uk/~amp12/papers/polist/polist.pdf
http://www.phil.cmu.edu/projects/ast/Papers/Awodey-Butz-Simpson-Streicher-APAL-2013.pdf
http://www.phil.cmu.edu/projects/ast/Papers/Awodey-Butz-Simpson-Streicher-APAL-2013.pdf
http://www.phil.cmu.edu/projects/ast/Papers/Awodey-Butz-Simpson-Streicher-APAL-2013.pdf
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The Kripke–Joyal semantics of Sh(X)

Let X be a topological space. We recursively de�ne
U |= ϕ (“ϕ holds on U ”)

for open subsets U ⊆ X and formulas ϕ. Write “Sh(X) |= ϕ” to mean X |= ϕ.
U |= > i� true
U |= ⊥ i� false U = ∅
U |= s = t : F i� s|U = t|U ∈ F(U )

U |= ϕ ∧ ψ i� U |= ϕ and U |= ψ

U |= ϕ ∨ ψ i� U |= ϕ or U |= ψ there exists a covering U =
⋃

i Ui

such that for all i: Ui |= ϕ or Ui |= ψ

U |= ϕ⇒ ψ i� for all open V ⊆ U : V |= ϕ implies V |= ψ

U |= ∀s : F . ϕ(s) i� for all open V ⊆ U and sections s0 ∈ F(V ): V |= ϕ(s0)

U |= ∀F . ϕ(F) i� for all open V ⊆ U and sheaves F0 over V : V |= ϕ(F0)

U |= ∃s : F . ϕ(s) i� there exists s0 ∈ F(U ) such that U |= ϕ(s0)

there exists a covering U =
⋃

i Ui such that for all i:
there exists s0 ∈ F(Ui) such that Ui |= ϕ(s0)

U |= ∃F . ϕ(F) i� there exists a sheaf F0 on U such that U |= ϕ(F0)

there exists a covering U =
⋃

i Ui such that for all i:
there exists a sheaf F0 on Ui such that Ui |= ϕ(F0) 3 / 15

Many interesting sheaves have few global sections, which is why a de�nition
such as “U |= ∀s : F . ϕ(s) i� U |= ϕ(s0) for all s0 ∈ F(U )” would miss the
point.
Here is an explicit example of the translation procedure. Let α : F → G be
a morphism of sheaves on X . Then (the corner quotes “p. . .q” indicate that
translation into formal language is left to the reader):

X |= pα is injectiveq

⇐⇒ X |= ∀s : F . ∀t : F . α(s) = α(t)⇒ s = t

⇐⇒ for all open U ⊆ X , sections s0 ∈ F(U ):
U |= ∀t : F . α(s0) = α(t)⇒ s0 = t

⇐⇒ for all open U ⊆ X , sections s0 ∈ F(U ):
for all open V ⊆ U , sections t0 ∈ F(V ):

V |= α(s0) = α(t0)⇒ s0 = t0

⇐⇒ for all open U ⊆ X , sections s0 ∈ F(U ):
for all open V ⊆ U , sections t0 ∈ F(V ):

for all open W ⊆ V : αV (s0|W ) = αV (t0|W ) implies s0|W = t0|W
⇐⇒ for all open U ⊆ X , sections s, t ∈ F(U ): αU (s) = αU (t) implies s = t

⇐⇒ α is a monomorphism of sheaves
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Internalizing parameter-dependence

Let X be a space. A continuous family (fx)x∈X of continuous functions
(that is, a continuous function f : X×R→ R; fx(a) = f (x, a)) induces
an endomorphism of the sheaf C of continuous functions:

f̄ : C −→ C, on U : s 7−→ (x 7→ fx(s(x))).

Sh(X) |= pThe set C is the set of (Dedekind) realsq.
Sh(X) |= pThe function f̄ : R→ R is continuousq.

I� fx(−1) < 0 for all x, then Sh(X) |= f̄ (−1) < 0.
I� fx(+1) > 0 for all x, then Sh(X) |= f̄ (+1) > 0.
I� all fx are increasing, then Sh(X) |= pf̄ is increasingq.

I� there is an open cover X =
⋃

i Ui such that for each i there is a
continuous function s : Ui → R with fx(s(x)) = 0 for all x ∈ Ui,
then Sh(X) |= ∃s :R. f̄ (s) = 0.

4 / 15

This slide, unrelated to commutative algebra or algebraic geometry, aims to
illustrate one of the basic uses of the internal language of toposes: Upgrading
any theorem admitting an intuitionistic proof to a parameter-dependent
version.

Constructively, there are several non-equivalent forms of the intermediate
value theorem. The following version doesn’t admit an intuitionistic proof:

Let g : R → R be a function between the (Dedekind) reals which is
continuous in the usual epsilon/delta sense. Assume g(−1) < 0 < g(1).
Then there exists a number x ∈ R such that g(x) = 0.

If there was an intuitionistic proof, the statement would hold in any topos,
so in particular in sheaf toposes over topological spaces. By the translations
shown on the slide, this would amount to the following strengthening of the
intermediate value theorem: In continuous families of continuous functions,
zeros can locally be picked continuously. However, this strengthening is
invalid, as this video showsthis video shows.

https://raw.githubusercontent.com/iblech/internal-methods/master/images/zeros-in-families.mp4
https://raw.githubusercontent.com/iblech/internal-methods/master/images/zeros-in-families.mp4
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In contrast, the following version does admit an intuitionistic proof. We can
therefore interpret it in sheaf toposes over topological spaces and thereby
obtain the strengthening that in continuous families of strictly increasing
continuous functions, zeros can locally be picked continuously. You are
invited to prove this strengthening directly, without reference to the internal
language.

Let g : R → R be a function between the (Dedekind) reals which
is continuous in the usual epsilon/delta sense and which is strictly
increasing (a < b implies g(a) < g(b)). Assume g(−1) < 0 < g(1).
Then there exists a number x ∈ R such that g(x) = 0.
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The little Zariski topos

Let A be a ring. Its little Zariski topos is equivalently

1 the classifying topos of local localizations of A,
2 the classifying locale of prime �lters of A,
3 the locale given by the frame of radical ideals of A,
4 the topos of sheaves over the poset A with f � g i� f ∈

√
(g)

and with (fi → f )i deemed covering i� f ∈
√

(fi)i or
5 the topos of sheaves over Spec(A).

Its associated topological space of points is the classical spectrum

{f ⊆ A | f prime �lter}+ Zariski topology.

It has enough points if the Boolean Prime Ideal Theorem holds.
Prime ideal: 0 ∈ p; x ∈ p ∧ y ∈ p⇒ x + y ∈ p; 1 6∈ p; xy ∈ p⇔ x ∈ p ∨ y ∈ p

Prime �lter: 0 6∈ f; x + y ∈ f⇒ x ∈ f ∨ y ∈ f; 1 ∈ f; xy ∈ f⇔ x ∈ f ∧ y ∈ f

5 / 15

Any geometric theory has a classifying topos; if the theory under consid-
eration is propositional (doesn’t have any sorts), then its classifying topos
can be chosen to be the topos of sheaves over a locale. One can also give a
direct account of classifying locales, as a pedagogical stepping stone to the
full theory of classifying toposes.

The slide contains a small lie: The classical de�nition of the spectrum of a
ring is via the set of prime ideals of A, not prime �lters. If the law of excluded
middle is available, there is no di�erence between these de�nitions since the
complement of a prime ideal is a prime �lter and vice versa.

One can also consider the classifying locale of prime ideals of A. Its associated
topological space of points is the set of prime ideals of A equipped with the
constructible topology.

In an intuitionistic context, any of the (generalized) spaces of items 1–4 can
be adopted as sensible de�nitions of the spectrum of A. Item 5 is then a
tautology. The classical de�nition of the spectrum as a topological space
doesn’t work very well, because verifying the universal property one expects
of it requires the Boolean Prime Ideal Theorem. Most dramatically, there are
rings which are not trivial yet have neither prime ideals nor prime �lters.
The classical de�nition yields in this case the empty space.
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First steps in the little Zariski topos

Let A be a ring. Let f0 be the generic prime �lter of A; it is a
subobject of the constant sheaf A of the little Zariski topos.

The ring A∼ := A[f−1
0 ] is the generic local localization of A.

Given an A-module M , we have the A∼-module M∼ := M[f−1
0 ].

Assuming the Boolean prime ideal
theorem, a geometric sequent
“∀ . . . ∀. (· · · =⇒ · · ·)”, where the
two subformulas may not con-
tain “⇒” and “∀”, holds for M∼

i� it holds for all stalks Mp.

M∼ inherits any property of M
which is localization-stable.

If A is reduced (xn = 0⇒ x = 0):

A∼ is a �eld (nonunits are zero).
A∼ has ¬¬-stable equality.
A∼ is anonymously Noetherian.

6 / 15

The Kripke–Joyal semantics for the little Zariski topos amounts to the fol-
lowing: Spec(A) |= ϕ i� D(1) |= ϕ, and the clauses for D(f ) |= ϕ, where f
ranges over the elements of A, are given by the following table.

D(f ) |= > i� true
D(f ) |= ⊥ i� f is nilpotent
D(f ) |= x = y i� x = y ∈ M[f −1]

D(f ) |= ϕ ∧ ψ i� D(f ) |= ϕ and D(f ) |= ψ

D(f ) |= ϕ ∨ ψ i� there exists a partition f n = fg1 + · · ·+ fgm with,
for each i, D(fgi) |= ϕ or D(fgi) |= ψ

D(f ) |= ϕ⇒ ψ i� for all g ∈ A, D(fg) |= ϕ implies D(fg) |= ψ

D(f ) |= ∀x :M∼. ϕ(x) i� for all g ∈ A and x0 ∈ M[(fg)−1], D(fg) |= ϕ(x0)

D(f ) |= ∃x :M∼. ϕ(x) i� there exists a partition f n = fg1 + · · ·+ fgm with,
for each i, D(fgi) |= ϕ(x0) for some x0 ∈ M[(fgi)−1]

The generic prime �lter f0 can also be described in explicit terms. For ring
elements f and s, D(f ) |= (s ∈ f0) i� f ∈

√
(s).



Motivation Internal language The little Zariski topos Algebraic geometry The mystery of nongeometric sequents

First steps in the little Zariski topos

Let A be a ring. Let f0 be the generic prime �lter of A; it is a
subobject of the constant sheaf A of the little Zariski topos.

The ring A∼ := A[f−1
0 ] is the generic local localization of A.

Given an A-module M , we have the A∼-module M∼ := M[f−1
0 ].

Robin Hartshorne. Algebraic Geometry. 1977.

Assuming the Boolean prime ideal
theorem, a geometric sequent
“∀ . . . ∀. (· · · =⇒ · · ·)”, where the
two subformulas may not con-
tain “⇒” and “∀”, holds for M∼

i� it holds for all stalks Mp.

M∼ inherits any property of M
which is localization-stable.

If A is reduced (xn = 0⇒ x = 0):

A∼ is a �eld (nonunits are zero).
A∼ has ¬¬-stable equality.
A∼ is anonymously Noetherian.

6 / 15

Our description of M∼ reveals a precise sense in which M∼ and M are
related: M∼ is simply a localization of M (�rst lifted to another universe by
the constant sheaf construction). The classical descriptions don’t make the
relation evident.

As a �rst approximation, the module M∼ can be thought of as a rei�cation
of all the stalks of M as a single object. The metatheorem displayed at the
top left on the next slides makes this precise and also exposes the limits
of this view: It is only correct for geometric sequents. When considering
nongeometric sequents, phenomena appear which are unique to M∼ in the
sense that they are in general not shared by M , its stalks or its quotients.
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The ring A∼ := A[f−1
0 ] is the generic local localization of A.

Given an A-module M , we have the A∼-module M∼ := M[f−1
0 ].

Assuming the Boolean prime ideal
theorem, a geometric sequent
“∀ . . . ∀. (· · · =⇒ · · ·)”, where the
two subformulas may not con-
tain “⇒” and “∀”, holds for M∼

i� it holds for all stalks Mp.

M∼ inherits any property of M
which is localization-stable.

If A is reduced (xn = 0⇒ x = 0):

A∼ is a �eld (nonunits are zero).
A∼ has ¬¬-stable equality.
A∼ is anonymously Noetherian.
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One can show, assuming that the little Zariski topos is overt, that the mod-
ule M in Set and the module M of the little Zariski topos share all �rst-order
properties. This observation explains the metatheorem displayed at the bot-
tom left. The assumption is satis�ed if any element of A is nilpotent or not
nilpotent, so it’s always satis�ed if the law of excluded middle is available
in the metatheory. In an intuitionistic context, it’s still “morally satis�ed”.
Details are in Section 12.9 of these notesthese notes.

The metatheorem soups up a number of lemmas of algebraic geometry, there
stated in geometric language. For instance, if M is �nitely generated, then M∼

is of �nite type. If M is �nitely presented, then M∼ is of �nite presentation.
If M is coherent, then M∼ is coherent.

As an aside, the little Zariski topos is rarely Boolean (validates the law of
excluded middle). A necessary condition is that A is of dimension ≤ 0.

https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
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Miles Tierney. On the spectrum of a ringed topos. 1976.
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Assuming that A is reduced, the following nongeometric sequents hold in
the little Zariski topos (among others):

A∼ is a �eld in the sense that zero is the only noninvertible element. This �eld
property was already observed in the 1970s by Mulvey, who didn’t know a
deeper reason for this property. We now know that it’s a shadow of an internal
property whose external translation expresses that A∼ is quasicoherent.

A∼ has ¬¬-stable equality in the sense that

Spec(A) |= ∀s :A∼.¬¬(s = 0)⇒ s = 0.

Classically, every set has ¬¬-stable equality; intuitionistically, this is a spe-
cial property of some sets. It’s quite useful, as some theorems of classical
commutative algebra can only be proven intuitionistically when weakened
by double negation. The stability then allows, in some cases, to obtain the
original conclusion.

A∼ is anonymously Noetherian in the sense that any of its ideals is not not
�nitely generated. A philosophically-motivated constructivist might be of-
fended by this notion, since it runs counter to the maxim that constructive
mathematics should be informative. However, in the internal context it is a
useful notion: Hilbert’s basis theorem holds for it, and we’ll put it to good
use in our proof of Grothendieck’s generic freeness lemma.
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Complexity reduction
The external meaning of

Spec(A) |= pA∼[X1, . . . ,Xn] is anonymously Noetherianq

is:

For any element f ∈ A and any (not necessarily quasicoherent)
sheaf of ideals J ↪→ A∼[X1, . . . ,Xn]|D(f ): If

for any element g ∈ A the condition that
the sheaf J is of �nite type on D(g)

implies that g = 0,
then f = 0.
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Are there theorems which can only be proven using the internal language
and not be proven without?

No. Just as the translation from internal statements to external statements
is entirely mechanical, so is the translation from internal proofs to external
proofs. Any proof employing the internal language can be unwound to yield
an external proof not referencing the internal language.

However, depending on the logical complexity of the statements occurring in
a given proof, the resulting external proof might be (much) more complex than
the internal proof. This is particularly the case if the proof involves double
negation, for much the same reason as that in computer science, continuations
can twist the control �ow in nontrivial ways which are sometimes hard to
understand. It is in these cases where we can extract the most value of the
internal language, unlocking notions and proofs which might otherwise be
hard to obtain.

The slide shows a speci�c example. The internal statement
that A∼[X1, . . . ,Xn] is anonymously Noetherian is quite simple; its
external translation is quite convoluted.
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Revisiting the test cases

Let A be a reduced ring.· ·· ·
· ·


A baby application

Let M be a surjective matrix
over A with more rows than
columns. Then 1 = 0 in A.

Proof. The matrix is surjective
over the �eld A∼. This is a con-
tradiction to basic linear algebra.
Hence Spec(A) |= ⊥, thus 1 = 0
in A.

· · · ·· · · ·
· · · ·


A child application

Let M be an injective matrix
over A with more columns than
rows. Then 1 = 0 in A.

Proof. The matrix is injective
over the �eld A∼. This is a con-
tradiction to basic linear algebra.
Hence Spec(A) |= ⊥, thus 1 = 0
in A.

M
�nitely

generated
A

of �nite type
// B

Generic freeness
Let B be an A-algebra of �nite type (∼= A[X1, . . . ,Xn]/a).
Let M be a �nitely generated B-module (∼= Bm/U ).
If f = 0 is the only element of A such that

1 B[f −1] and M[f −1] are free modules over A[f −1],
2 A[f −1]→ B[f −1] is of �nite presentation and
3 M[f −1] is �nitely presented as a module over B[f −1],

then 1 = 0 in A.
Proof. In the little Zariski topos it’s not not the case that

1 B∼ and M∼ are free modules over A∼,
2 A∼ → B∼ is of �nite presentation and
3 M∼ is �nitely presented as a module over B∼,

by basic linear algebra over the �eld A∼. The claim is precisely the
external translation of this fact.

7 / 15

This slide delivers on the promise made earlier: Using the internal language
of the little Zariski topos, we can reduce to the case of �elds without having
to employ maximal ideals, prime ideals or minimal prime ideals. Since the
internal language machinery is itself constructive, the displayed proofs can
be unwound to yield external constructive proofs which don’t reference topos
theory. Details on these external proofs can soon be found in a forthcoming
paper titled Without loss of generality, any reduced ring is a �eldWithout loss of generality, any reduced ring is a �eld.

https://rawgit.com/iblech/internal-methods/master/paper-wlog.pdf
https://rawgit.com/iblech/internal-methods/master/paper-wlog.pdf
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The test case of Grothendieck’s generic freeness lemma illustrates that the
internal language of toposes can help commutative algebra even if one is
not interested in constructivity issues. The previously known proofs are
somewhat long and somewhat convoluted; the new proof is arguably short
and simple.

Details on the internal proof are in Section 11.5 of these notesthese notes. The external proofexternal
proof obtained by unwinding the internal one is still quite direct, compared to
the previously published proofs, and interestingly follows a curious course: It
starts with verifying, in an inductive manner, that B and M are free; that A→
B is of �nite presentation; and that M is �nitely presented as a B-module.
Then the assumption for f = 1 is used, rendering the prior steps moot, since
over the zero ring any module is free and any algebra is of �nite presentation.
External translations of internal proofs which use double negation will always
take such a course.

https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://arxiv.org/abs/1807.01231
https://arxiv.org/abs/1807.01231
https://arxiv.org/abs/1807.01231
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Here’s a rough sketch why the double negations occur. In undergraduate
linear algebra, we learn that any �nitely generated vector space is free (has
a basis), by the following argument: Let (v1, . . . , vn) be a generating family.
Either one of the generators can be expressed as a linear combination of the
others or not. In the latter case, the family is linearly independent and we’re
done. In the former, we remove the redundant generator and continue by
induction.

This argument relies on the law of excluded middle and can therefore not
put to work in the internal universe as is. However, intuitionistically we do
have the weaker statement ¬¬(ϕ ∨ ¬ϕ), and we can use this law in place
of the law of excluded middle to intuitionistically deduce that any �nitely
generated vector space does not not have a basis.
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Understanding algebraic geometry

Understand notions of algebraic geometry over a scheme X
as notions of algebra internal to Sh(X).
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externally internally to Sh(X)

sheaf of sets set
sheaf of modules module
sheaf of �nite type �nitely generated module
tensor product of sheaves tensor product of modules
sheaf of rational functions total quotient ring of OX
dimension of X Krull dimension of OX
spectrum of a sheaf of OX -algebras ordinary spectrum [with a twist]
big Zariski topos of X big Zariski topos of the ring OX [with a twist]
higher direct image sheaf cohomology

Let 0 → F ′ → F → F ′′ → 0 be
a short exact sequence of sheaves
of OX -modules. If F ′ and F ′′ are of
�nite type, so is F .

⇐ Let 0→ M ′ → M → M ′′ → 0 be
a short exact sequence of modules.
If M ′ and M ′′ are �nitely gener-
ated, so is M .

8 / 15

One doesn’t need to be an expert in topos theory in order to know that
many notions in algebraic geometry are inspired by notions in algebra and
that proofs in algebraic geometry often proceed by reducing to algebra. The
internal language is a way of making this connection precise: In many cases,
the former are simply interpretations of the latter internal to Sh(X). Because
this connection is precise instead of informal, additional value is gained:
We can skip many basic proofs in algebraic geometry because they’re just
externalizations of proofs in algebra carried out internally to Sh(X).
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A basic example is as follows. A short exact sequence of sheaves of modules
looks like a short exact sequence of plain modules from the internal point
of view of Sh(X). If the two outer sheaves are of �nite type, then from the
internal point of view, the two outer modules will look like �nitely generated
modules. Because the standard proof of the proposition quoted on the lower
right is intuitionistically valid, it follows that, from the internal point of view,
the middle module is too �nitely generated. Consulting the dictionary a
second time, this amounts to saying that the middle sheaf is of �nite type.

More details on this research program can be found in these notesthese notes, partly
reported on at the 2015 IHÉS conference2015 IHÉS conference. Even though many important dic-
tionary entries are still missing (for instance pertaining to derived categories
and intersection theory), I believe that it is already at its current stage useful
to working algebraic geometers.

The next few slides illustrate an entirely di�erent way of approaching alge-
braic geometry using topos theory.

https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://www.youtube.com/watch?v=7S8--bIKaWQ
https://www.youtube.com/watch?v=7S8--bIKaWQ
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Synthetic algebraic geometry

Usual approach to algebraic geometry: layer schemes above
ordinary set theory using either

locally ringed spaces

set of prime ideals of Z[X , Y ,Z ]/(Xn + Y n − Zn) +

Zariski topology + structure sheaf

or Grothendieck’s functor-of-points account, where a scheme is
a functor Ring→ Set.

A 7−→ {(x, y, z) ∈ A3 | xn + yn − zn = 0}

Synthetic approach: model schemes directly as sets in the
internal universe of the big Zariski topos of a base scheme.

{(x, y, z) : (A1)3 | xn + yn − zn = 0}

9 / 15

At the Secret Blogging SeminarSecret Blogging Seminar, there was an insightful long-running discussion on
the merits of the two approaches. Two disadvantages of the approach using locally
ringed spaces is that the underlying topological spaces don’t actually parametrize
“honest”, “geometric” points, but the more complex notion of irreducible closed subsets;
and that they don’t work well in a constructive setting. (For this, they would have to
be replaced by locally ringed locales.)

The functorial approach is more economical, philosophically rewarding, and works
constructively. Given a functor F : Ring → Set, we imagine F(A) to be the set
of “A-valued points” of the hypothetical scheme described by F , the set of “points
with coordinates in A”. These sets have direct geometric meaning. However, typically
only �eld-valued points are easy to describe. For instance, the functor representing
projective n-space is given on �elds by

K 7−→ the set of lines through the origin in Kn+1

∼= {[x0 : · · · : xn] | xi 6= 0 for some i},

whereas on general rings it is given by

A 7−→ the set of quotients An+1 � P , where P is projective,
modulo isomorphism.

It is these more general kinds of points which impart a meaningful sense of cohesion
on the �eld-valued points, so they can’t simply be dropped from consideration.

https://sbseminar.wordpress.com/2009/08/06/algebraic-geometry-without-prime-ideals/
https://sbseminar.wordpress.com/2009/08/06/algebraic-geometry-without-prime-ideals/
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This tension is resolved by observing that the category of functors Ring→ Set
is a topos (the big Zariski topos of Spec(Z)) and that we can therefore employ
its internal language. This language takes care of juggling stages behind
the scenes. For instance, projective n-space can be described by the naive
expression

{(x0, . . . , xn) : (A1)n+1 | x0 6= 0 ∨ · · · ∨ xn 6= 0}/(A1)×.

This example illustrates our goal: to develop a synthetic account of algebraic
geometry, in which schemes are plain sets and morphisms between schemes
are maps between those sets. It turns out that there are many similarities
with the well-developed synthetic account of di�erential geometry, but also
important di�erences.
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The big Zariski topos

Let S be a �xed base scheme.

De�nition
The big Zariski topos Zar(S) of a scheme S is equivalently

1 the topos of sheaves over (A�/S)lofp,
2 the classifying topos of local rings over S or
3 the classifying Sh(S)-topos of local OS-algebras which are

local over OS .

For an S-scheme X , its functor of points X = HomS(·,X) is an
object of Zar(S). It feels like the set of points of X .
In particular, there is the ring object A1 with A1(T) = OT (T).
This ring object is a �eld: nonzero implies invertible.
[Kock 1976]

10 / 15

The objects of the category (A�/S)lofp are morphisms of the form Spec(R)→
S which are locally of �nite presentation. (Other choices of resolving set-
theoretical issues of size are also possible.)

A functor F : (A�/S)
op
lofp → Set is a sheaf for the Zariski topology if and only

if the diagram
F(T)→

∏
i

F(Ui)⇒
∏
j,k

F(Uj ∩ Uk)

is a limit diagram for any open covering T =
⋃

i Ui of any scheme T ∈
(A�/S)lofp.

In the case that S = Spec(A) is a�ne, the big Zariski topos of S is also
simply called “big Zariski topos of A”. It is a subtopos of the topos of functors
Alg(A)→ Set and classi�es local A-algebras.

From the internal point of view of Sh(S), the sheafOS of rings is just an ordi-
nary ring, and we can construct internally to Sh(S) the big Zariski topos ofOS .
Externally, this construction will yield a certain bounded topos over Sh(S).
However, as indicated on the slide, this topos will not coincide with the true
big Zariski topos of S. To construct the true big Zariski topos, we have to
build, internally to Sh(S), the classifying topos of local and local-over-OS
OS-algebras.
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Synthetic constructions

An = (A1)n = A1 × · · · × A1

Pn = {(x0, . . . , xn) : (A1)n+1 | x0 6= 0 ∨ · · · ∨ xn 6= 0}/(A1)×

∼= set of one-dimensional subspaces of (A1)n+1

(with O(−1) = (`)` : Pn , O(1) = (`∨)` : Pn )

Spec(R) = HomAlg(A1)(R,A1) = set of A1-valued points of R

TX = X∆, where ∆ = {ε :A1 | ε2 = 0}

A subset U ⊆ X is qc-open if and only if for any x : X there exist
f1, . . . , fn :A1 such that x ∈ U ⇐⇒ ∃i. fi 6= 0.

A synthetic a�ne scheme is a set which is in bijection with Spec(R) for
some synthetically quasicoherent A1-algebra R.

A �nitely presented synthetic scheme is a set which can be covered by
�nitely many qc-open f.p. synthetic a�ne schemes Ui such that the
intersections Ui ∩ Uj can be covered by �nitely many qc-open f.p. synthetic
a�ne schemes.

11 / 15

In the internal universe of the big Zariski topos of a base scheme S, S-schemes
can simply be modeled by sets (enjoying the special property that, in a certain
precise sense, they are locally a�ne). This slide expresses some of the basic
constructions of S-schemes in that language.

Particularly nice are the following items.

• Projective n-space can be given by the any of the two quite naive
expressions displayed on the slide.

• Let X be an S-scheme. We often think about a sheaves of OX -modules
over X by their �bers; but for a rigorous treatment in the standard
foundations, we have to take the full sheaf structure into account; the
�bers do not determine a sheaf uniquely.
From the internal point of view of Zar(S), a sheaf of OX -modules is
indeed simply a family of A1-modules, one A1-module for each element
of X . The slide illustrates how we can de�ne the Serre twisting sheaves
in this language.
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• The spectrum of an A1-algebra can be given by the naive expression dis-
played on the slide. It looks like this expression can’t be right, ignoring
any non-maximal ideals; however, it is.

• The big Zariski topos of an S-scheme X is, from the internal point of
view of Zar(S), simply the slice topos Set/X . Hence to give anX -scheme
simply amounts to giving an X -indexed family of sets.

Synthetic algebraic geometry has been developed up to the point of étale
geometric morphisms. Much remains to be done: For instance, as of yet
there is only an account of Čech methods for computing cohomology, there
is not yet a synthetic treatment of true cohomology. Derived categories and
intersection theory are also missing.
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Relations between the Zariski toposes

The big Zariski topos is a topos over the small Zariski topos:
π : Zar(A) −→ Spec(A)

local A-algebra (A α−→ B) 7−→ (A→ A[(α−1[B×])−1])

This morphism is connected (π−1 is fully faithful) and local, so
there is a preinverse

Spec(A) −→ Zar(A)
local localization (A→ B) 7−→ (A→ B)

which is a subtopos inclusion inducing an idempotent monad ] and an
idempotent comonad [ on Zar(S).

Internally to Zar(S), Spec(S) can be constructed as the largest
subtopos where [A1 → A1 is bijective.
Internally to Spec(S), Zar(S) can be constructed as the classify-
ing topos of local OS-algebras which are local over OS .
Zar(A) is the lax pullback (Set⇒Set[Ring] Set[LocRing]).

12 / 15

Let A be a ring. By de�nition, we obtain a geometric morphism Set →
Set[Ring] into the classifying topos of rings. There is also a geometric mor-
phism Set[LocRing]→ Set[Ring], obtained by realizing that any local ring is
in particular a ring. These morphisms �t together in a lax pullback square as
follows:

Zar(A) //

��

Set[LocRing]

��
Set //

4<

Set[Ring]

This observation is joint with Peter Arndt and Matthias Hutzler.

Incidentally, the pseudo pullback of the morphism Set[LocRing]→ Set[Ring]
along Set→ Set[Ring] is not very interesting: It’s the largest subtopos of Set
where A is a local ring. Assuming the law of excluded middle, this subtopos
is either the trivial topos (if A is not local) or Set (if A is local).

There is also a way of realizing the little Zariski topos of A as a pseudo
pullback, exploiting that the (localic) spectrum construction is geometric. See
Section 12.6 of these notesthese notes for details.

https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
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Properties of the a�ne line

A1 is a �eld:

¬(x = 0)⇐⇒ x invertible [Kock 1976]
¬(x invertible)⇐⇒ x nilpotent

A1 satis�es the axiom of microa�nity: Any map f : ∆→ A1 is
of the form f (ε) = a + bε for unique values a, b :A1,
where ∆ = {ε :A1 | ε2 = 0}.

Any map A1 → A1 is a polynomial function.

A1 is anonymously algebraically closed: Any monic polynomial
does not not have a zero.

13 / 15

The axiom of microa�nity is a special instance of the Kock–Lawvere axiom
known from synthetic di�erential geometry. We’ll see on the next slide
that A1 validates an unusually strong form of the Kock–Lawvere axiom,
not at all satis�ed in the usual well-adapted models of synthetic di�erential
geometry.

The fact that, internally to Zar(S), any map A1 → A1 is a polynomial can
be seen as a formal version of the general motto that in algebraic geometry,
“morphisms are polynomials”.
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Synthetic quasicoherence

Recall Spec(R) = HomAlg(A1)(R,A
1) and consider the statement

“the canonical map R −→ (A1)Spec(R)

f 7−→ (α 7→ α(f ))
is bijective”.

True for R = A1[X ]/(X 2) (microa�nity).
True for R = A1[X ] (every function is a polynomial).
True for any �nitely presented A1-algebra R.

Any known property of A1 follows from this
synthetic quasicoherence.

the mystery of nongeometric sequents

14 / 15

Let R be an A1-algebra. An element f ∈ R induces an A1-valued function
on Spec(R); functions of this form can reasonably be called “algebraic”. In a
synthetic context, there should be no other A1-valued functions on Spec(R)
as these algebraic ones, and di�erent algebraic expressions should yield
di�erent functions. This is precisely what the bijectivity of the displayed
map expresses (in a positive way).

In synthetic di�erential geometry, the closest cousin of synthetic algebraic
geometry, the analogue of the displayed map is only bijective for Weil al-
gebras such as A1[X ]/(X 2) or A1[X ,Y ]/(X 2,XY), not for arbitrary �nitely
presented A1-algebras. This is a major di�erence to synthetic di�erential
geometry.
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The notion of synthetic quasicoherence is interesting for a number of reasons:

• All currently known properties of A1, such as all the properties listed
on the previous slide, follow from the statement that A1 is synthetically
quasicoherent.
For instance, here is how we can verify the �eld property. Let x :A1

such that x 6= 0. Set R = A1/(x). Then Spec(R) = ∅. Thus (A1)Spec(R)

is a singleton. Hence R = 0. Therefore x is invertible.

• Given an A1-module E, we can formulate the following variant of the
axiom of synthetic quasicoherence: “For any �nitely presented A1-
algebra R, the canonical map R ⊗A1 E → ESpec(R) is bijective.” This
axiom is satis�ed if and only if E is induced by a quasicoherent sheaf
of OS-modules.

• The notion of synthetic quasicoherence is central to synthetic algebraic
geometry. The notions of synthetic open immersions, closed immersion,
schemes and several others all refer to synthetic quasicoherence.
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An analogue of synthetic quasicoherence holds in the classifying topos of
rings, demonstrating that even presheaf toposes can validate interesting
nontrivial nongeometric sequents.

We believe that an analogue of synthetic quasicoherence holds for the generic
model of any geometric theory. This is work in progress. If true, this would
yield a major source of nongeometric sequents in classifying toposes. Because
of the many applications on nongeometric sequents, it’s very desirable to
possess such a source.

The mystery of nongeometric sequents is this: On the one hand, they are
very useful to have because of surprising applications; on the other hand,
they are as of yet quite elusive.
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Classifying toposes in algebraic geometry

(big) topos classi�ed theory

Zariski local rings [Hakim 1972]

étale separably closed local rings [Hakim 1972, Wraith 1979]

fppf fppf-local rings
(conjecturally: algebraically closed local rings)

ph ?? (conjecturally: algebraically closed valuation rings
validating the projective Nullstellensatz)

surjective algebraically closed geometric �elds

¬¬ ?? (conjecturally: algebraically closed geometric
�elds which are integral over the base)

in�nitesimal local algebras together with a nilpotent ideal [Hutzler 2018]

crystalline ??

15 / 15

Toposes, and also more speci�cally classifying toposes, originated in algebraic
geometry. It is therefore deeply embarrassing that as of now, still very little
is known about the theories classi�ed by the major toposes in active use by
algebraic geometers.

Gavin Wraith. Generic Galois theory of local rings. 1979.
(A cult classic and must-read for anyone interested in

the intersection of topos theory and algebraic geometry.)
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For almost forty years, only the big Zariski topos and its étale subtopos were
understood in that way. These 2017 notesThese 2017 notes answer the question for the fppf
topology and the surjective topology (in Section 21) and state conjectures for
the ph topology and the double negation topology. However, while good to
have, the answer for the fppf topology remains unsatisfactory, since Wraith’s
conjecture that the fppf topos classi�es the simpler theory of algebraically
closed local rings has neither been con�rmed nor refuted.

A couple of weeks ago, Matthias Hutzler managed to determine the theory
classi�ed by the big in�nitesimal topos of a ring A: It classi�es pairs (B, a)
consisting of a local A-algebra B and a nilpotent ideal a ⊆ B. Details will be
in his forthcoming Master’s thesisforthcoming Master’s thesis. He is currently working on answering
the question for the closely related big crystalline topos.

It will be exciting to learn what the crystalline topos and the many other
toposes in algebraic geometry classify; how algebraic geometry can pro�t
from these discoveries; and which new �avors of synthetic algebraic geometry
they unlock.

https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://gitlab.com/MatthiasHu/master-thesis/raw/master/thesis.pdf
https://gitlab.com/MatthiasHu/master-thesis/raw/master/thesis.pdf
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