
REFLECTIONS ON REFLECTION FOR

INTUITIONISTIC SET THEORIES

Abstract. We study the well-known reflection principle of Zermelo–Fraenkel

set theory in the context of intuitionistic Zermelo–Fraenkel set theory izf.
We show that the reflection principle is equivalent to rrs2, a strengthened

version of Aczel’s relation reflection scheme. As applications, we give a new

proof that relativized dependent choice is equivalent to the conjunction of the
relation reflection scheme and dependent choice, and we present an intuitionistic

version of Feferman’s zfc/s, a conservative extension of zfc which is useful as

a foundation for category theory.

1. Introduction

The basic form of the reflection principle for Zermelo–Fraenkel set theory zf is
the following.

Theorem 1.1. Let ϕ(x1, . . . , xn) be a formula in the language of set theory with
some of its free variables as indicated (and further free variables allowed). Then zf
proves

∀M. ∃S ⊇M. ∀x1, . . . , xn ∈ S. ϕ(x1, . . . , xn)⇔ ϕS(x1, . . . , xn),

where ϕS is the S-relativization of ϕ, obtained by substituting any occurrence of “∀x”
and “∃x” by “∀x ∈ S” and “∃x ∈ S”. Furthermore, the resulting set S may be
supposed to be transitive, to be closed under subsets or even to be a stage Vα of the
cumulative hierarchy; and given not a single formula ϕ but a finite list ϕ1, . . . , ϕs
of formulas, we may suppose that S reflects all of them.

The reflection principle expresses that truth of any formula can already be
checked in an initial segment of the universe. This observation is important both
for philosophical and for practical reasons: Philosophically, it tells us that the
set-theoretic universe cannot be distinguished from its initial segments by any
set-theoretical property. Practically, it allows to transfer results obtained for a
restricted class of objects to all such objects. For instance, if we manage to verify
(the S-relativization of) some group-theoretic statement for all groups contained in
an arbitrary set S, then we may deduce that the statement holds for all groups in
the universe. Examples from sheaf cohomology and more generally category theory
abound; an example from set theory is presented in Proposition 3.6.

The reflection principle has been used by Feferman to construct zfc/s (“zfc with
smallness”), a conservative extension of zfc which provides a useful foundation of
category theory [8]. This system extends zfc by a new constant symbol S together
with axioms stating that S is transitive, closed under subsets and reflective with
respect to every formula ϕ(x1, . . . , xn) of the original language:

∀x1, . . . , xn ∈ S. ϕ(x1, . . . , xn)⇔ ϕS(x1, . . . , xn). (?)

The system zfc/s is conservative over zfc because any given proof in zfc/s uses
only a finite number of instances of the axioms (?), whereby the reflection principle
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can be used to yield an honest set S which validates just the same equivalences and
can hence be used in place of S.

Elements of S are deemed “small”, so that S is the set of all small sets. The sys-
tem zfc/s is useful as a foundation for category theory because it supports, without
requiring new set-theoretical commitments such as the existence of Grothendieck
universes, a native treatment of large structures. For instance, the category of all
small sets can be formed entirely within zfc/s, without resorting to classes. We
invite the reader desiring to learn more about the merits of zfc/s to study the
survey by Shulman [12, Section 11].

To our naive eyes, the passage from zfc to zfc/s looked sufficiently innocent
so that we set out to develop an intuitionistic version of zfc/s: To our mind, size
issues were entirely different concerns than issues of constructivity, and we hence
opined that they should be dealt with separately. Such a separation would not only
lead to improved mental hygiene and better understanding, but would also allow us
to use the benefits of zfc/s in situations where the law of excluded middle and the
axiom of choice are not available, such as in realizability semantics, sheaf semantics
or quite generally topos semantics.

We expected this modification to be entirely straightforward. However, the
situation turned out to be more subtle, and we failed in our original goal of
verifying the reflection principle in intuitionistic Zermelo–Fraenkel set theory izf.
The situation for czf, the predicative subsystem of izf commonly heralded as the
largest common denominator of all flavors of constructive set theory, remains even
more elusive. (XXX, update: czf does not, and cannot be expected to, verify the
reflection principle.)

However, we succeeded in verifying the reflection principle in only a slight
extension of izf:

Theorem 1.2. The reflection principle is equivalent, over izf, to the strong relation
reflection scheme rrs2.

We also give a weaker version of the reflection principle which is equivalent to
Aczel’s original reflection scheme rrs. Both rrs and rrs2 will be reviewed below.
They are validated not only by zfc, but also by zf, and furthermore by all known
models of izf, hence might be regarded as not entirely unconstructive, even though
they are conjectured to be independent of izf. As a result, the question whether the
reflection principle holds for izf remains open (though conjectured to be false), and
for the stronger system izf + rrs2 we can give a variant “with smallness” which
can serve as a set-theoretic foundation for category theory.

This note is organized as follows. Section 2 reviews the classical proof of the
reflection principle in the context of zf set theory. Section 3 reviews Aczel’s relation
reflection scheme and its variants. Our main result is presented in Section 4. We
conclude in Section 5 and Section 6 with two applications.

Acknowledgments. We are grateful to Daniel Albert for his careful reading of
earlier drafts. XXX

2. Review of the classical reflection principle

A basic proof of the reflection principle in zf runs as follows. Our proof of the
reflection principle in izf + rrs2 will follow the same outline.
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Lemma 2.1. Let ϕ(u1, . . . , un, x) be a formula in the language of set theory.
Then zf proves

∀M. ∃S ⊇M. ∀u1, . . . , un ∈ S.
(∃x. ϕ(u1, . . . , un, x)) =⇒ (∃x ∈ S. ϕ(u1, . . . , un, x)).

Furthermore: (1) We may suppose that S is transitive. (2) We may suppose that S
is closed under subsets. (3) Given a finite list ϕ1, . . . , ϕs of formulas instead of the
single formula ϕ, we may suppose that S bounds all the formulas ϕi.

Proof. Given a class X (as commonly understood as the comprehension of a formula),
we denote by X∼ its subclass {x ∈ X | ∀y ∈ X. rank(x) ≤ rank(y)}, where the rank
function refers to the stage in the cumulative hierarchy. The two fundamental
properties of this construction are: This subclass is equal to a set,1 and it is
inhabited if and only if X is.

Starting with S0 := M , we construct Sk+1 from Sk as the union

Sk+1 := Sk ∪
⋃

u1,...,un∈Sk

{x |ϕ(u1, . . . , un, x)}∼.

It is then easy to check that S :=
⋃
k∈N Sk is a set with the required property.

For addendum (1), we change the definition of Sk+1 to be the transitive closure
of what is was before. To further accommodate addendum (2), we change this
definition again, to be Pω of what is was before, where Pω(X) :=

⋃
`∈N P

(`)(X) is
the union of iterated powersets. For addendum (3), we change the definition of Sk+1

to include one summand for each formula ϕi. �

The proof constructed by Lemma 2.1 is mostly constructive; however, there is one
issue with nontrivial ramifications: While izf does show that the subclass X∼ of a
given class X is a set, it does not verify that X∼ is inhabited if X is. This would
amount to the constructive taboo that any inhabited set contains a rank-minimal
element. Moreover, by a result of Friedman and Scedrov [XXX], no definable
substitute for X∼ exists. The remedy presented in Section 4 will construct X∼ in a
non-unique fashion and then deal with the resulting fallout that taking the union
requires additional care.

Theorem 2.2. Let ϕ(x1, . . . , xn) be a formula in the language of set theory. Then zf
proves

∀M. ∃S ⊇M. ∀x1, . . . , xn ∈ S. ϕ(x1, . . . , xn)⇔ ϕS(x1, . . . , xn).

Furthermore, the resulting set S may be supposed to be transitive and to be closed
under subsets; and given not a single formula ϕ but a finite list ϕ1, . . . , ϕs of
formulas, we may suppose that S reflects all of them.

Proof. Let a set M be given. We obtain S by applying Lemma 2.1 to the list of all
subformulas of ϕ which start with an existential quantifier. That the resulting set S
has the required property can then be checked by an induction on the structure of ϕ.
The cases “=”, “∈”, “>”, “⊥”, “∧”, “∨”, “⇒” follow trivially from the induction
hypothesis. The case “∀” does not need to be treated since we may assume without
loss of generality that all universal quantifiers in ϕ have been rewritten as “¬∃¬”.

1If X is empty, then this claim is trivial; if X is inhabited by some element x0, then X∼ can

be obtained using separation from Vrank(x0)+1; and in fact, by an argument using the set of truth

values and unbounded separation, the claim can also be proven in izf.
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The remaining case is where ϕ is of the form ϕ ≡ (∃x. ψ(u1, . . . , um, x)). In this
case the claim is that

∀u1, . . . , um ∈ S. (∃x. ψ(u1, . . . , um, x))⇐⇒ (∃x ∈ S. ψS(u1, . . . , um, x)).

This claim follows by the property of S guaranteed by Lemma 2.1 and by the
induction hypothesis concerning the subformula ψS(u1, . . . , um, x). �

The proof of Theorem 2.2 is constructive with the sole exception of treating the
case of universal quantifiers by appealing to the law of excluded middle and referring
to the unconstructive Lemma 2.1. For the constructive proof in Section 4, we will
solve both issues by instead appealing to a strengthened version of Lemma 2.1.

3. Aczel’s relation reflection axiom scheme and its variants

We follow the usual convention that izf is the set theory with the following axioms:
extensionality, pair, union, empty set, infinity, unbounded separation, collection,
powerset and ∈-induction. We direct the reader wishing for a survey of izf and
other nonclassical set theories to Crosilla’s entry in the SEP [7].

We write “R : X ⇒ Y ” to mean “∀x ∈ X. ∃y ∈ Y. 〈x, y〉 ∈ R”.

Definition 3.1. Let X and R ⊆ X ×X be classes. Let x0 ∈ X.

dc dependent choice
If X and R are sets and if R : X ⇒ X, then there is a function f : N→ X
such that f(0) = x0 and 〈f(k), f(k + 1)〉 ∈ R for all numbers k.

rdc relativized dependent choice
If R : X ⇒ X, then there is a function f : N → X such that f(0) = x0
and 〈f(k), f(k + 1)〉 ∈ R for all numbers k.

rrs Aczel’s relation reflection scheme
If R : X ⇒ X, then there is a set B such that x0 ∈ B ⊆ X and R : B ⇒ B.

mdc Palmgren’s multivalued dependent choice
If R : X ⇒ X, then there is a function f : N→ P (X) (the class of all subsets
of X) such that x0 ∈ f(0) and such that ∀x ∈ f(k). ∃y ∈ f(k+1). 〈x, y〉 ∈ R
for every number k.

Definition 3.2. Let X and R ⊆ X ×X ×X be classes. Let x0 ∈ X.

rrs2 If R : X ×X ⇒ X, then there is a set B such that x0 ∈ B ⊆ X and R :
B ×B ⇒ B.

mdc2 If R : X×X ⇒ X, then there is a function f : N→ P (X) such that x0 ∈ f(0)
and such that ∀x ∈ f(k). ∀x′ ∈ f(k′). ∃y ∈ f(max{k, k′}+1). 〈x, x′, y〉 ∈ R
for any numbers k, k′.

Aczel’s relation reflection scheme rrs first surfaced in the theory of coinductive
definitions of classes and enjoys substantial stability properties, as it passes from
the meta theory to XXX[all kinds of] models. Background on rrs can be found in
Aczel’s original article introducing it [1], and more information on choice axioms in
general is contained in the book draft by Aczel and Rathjen [3, Section 10]. rrs is
equivalent, over czf and a fortiori over izf, to Palmgren’s multivalued dependent
choice [11]; this observation makes the relationship to dependent choice more visible.

Remark 3.3. Most published renderings of rrs and mdc do not refer to an initial
element x0 ∈ X, but to a set A ⊆ X and then require instead of that x0 ∈ B,
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that A ⊆ B. This difference is immaterial, thanks in one direction to the existence
of singleton sets and in the other to strong collection. The same is true for rrs2
and mdc2, though the proof is not as easy.

Aczel’s rrs should not in itself be regarded as a choice principle; however in its
presence, ordinary dc entails rdc. This result is due to Aczel [1, Theorem 2.4], who
proved the equivalence rdc = rrs + dc over czf−, and we give a new proof of this
equivalence over the stronger theory izf in Section 5.

The axiom scheme rrs2 does not appear to have been studied much. Apart
from the PhD thesis by Ziegler [13], where it is called the strong relation reflection
principle, we have not been able to track down further mentions of it in the literature;
hence it seems prudent to verify some of its basic properties here.

In the presence of dc, rrs is equivalent to rrs2:

Proposition 3.4. Over czf−, rdc is equivalent to rrs2 + dc.

Proof. Trivially, rdc entails dc, and rrs2 + dc entails rdc by Aczel’s result
since rrs2 entails rrs.

To verify that rdc entails rrs2, let classes X and R ⊆ X × X × X be given,
let x0 ∈ X be an element and assume R : X ×X ⇒ X. Let List(X) be the class of

finite lists with entries in X. We declare a class X̂ by

X̂ := {〈i, j, v〉 | i, j ∈ N, v ∈ List(X), i, j < length(v)}

and a relation R̂ ⊆ X̂ × X̂ by defining 〈〈i, j, v〉, 〈i′, j′, v′〉〉 ∈ R̂ to be equivalent to

there exists an element y ∈ X such that
(1) 〈v!i, v!j, y〉 ∈ R (where v!k is the element of the list v at position k),
(2) v′ is obtained from v by adding the single element y at the end and
(3) 〈i′, j′〉 is the next point after 〈i, j〉 in some fixed enumeration of N2

which, for each number n, first visits all points 〈k, l〉 with k, l < n
before it visits any of the other points.

Then R̂ : X̂ ⇒ X̂. Applying rdc with initial value 〈0, 0, [x0]〉 ∈ X̂ yields a

function f : N → X̂. Let B be the set of all entries of the lists contained in the
tuples f(k). Then x0 ∈ B ⊆ X and R : B ×B ⇒ B. �

A consequence of Proposition 3.4 is that rrs2 holds in Aczel’s type-theoretic
“sets as trees” model of czf [2], since that model validates rdc.

Proposition 3.5. Over czf−, rrs2 is equivalent to mdc2.

Proof. The proof in [11] carries over. �

Proposition 3.6. zf proves rrs2.

Proof. Let X and R ⊆ X ×X be classes. Let x0 ∈ X and assume R : X ⇒ X. By
the reflection principle, there is a set S 3 x0 such that R : X ∩ S ⇒ X ∩ S. This
concludes the proof as the class B := X ∩ S is a set by separation. �

4. Constructivizing the reflection principle

Our constructive rendition of the reflection principle will require the axiom
scheme rrs2 displayed in Definition 3.2. This result is the best possible, as we verify
in Theorem 4.6 that conversely the reflection principle entails rrs2.
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Even though superficially similar, the following lemma is not yet a constructiviza-
tion of Lemma 2.1; these two lemmas differ in the set from which u1, . . . , un are
drawn.

Lemma 4.1. Let ϕ(u1, . . . , un, x) be a formula in the language of set theory.
Then izf proves

∀H. ∃H ′ ⊇ H. ∀u1, . . . , un ∈ H.
(∃x. ϕ(u1, . . . , un, x)) =⇒ (∃x ∈ H ′. ϕ(u1, . . . , un, x)) ∧
(∀x. ϕ(u1, . . . , un, x)) ⇐= (∀x ∈ H ′. ϕ(u1, . . . , un, x)).

Furthermore: (1) We may suppose that H ′ is transitive. (2) We may suppose
that H ′ is closed under subsets. (3) Given a finite list ϕ1, . . . , ϕs of formulas instead
of the single formula ϕ, we may suppose that H ′ has the displayed property for each
of the formulas ϕi.

Proof. Let Ω := P ({0}) be the set of truth values. For given elements u1, . . . , un ∈ H,
we have

∀a ∈ {a ∈ {0} | ∃x. ϕ(u1, . . . , un, x)}. ∃x. ϕ(u1, . . . , un, x) and
∀p ∈ {p ∈ Ω | ∃x. (0 ∈ p⇔ ϕ(u1, . . . , un, x))}.∃x. (0 ∈ p⇔ ϕ(u1, . . . , un, x)).

Hence, by collection, there are sets C and D such that

(∃x. ϕ(u1, . . . , un, x)) =⇒ (∃x ∈ C. ϕ(u1, . . . , un, x)) and
(∀x. ϕ(u1, . . . , un, x)) ⇐= (∀x ∈ D. ϕ(u1, . . . , un, x)).

The union C ∪D satisfies both of these conditions at once.
Applying collection again, there is a set X such that for any u1, . . . , un ∈ H there

exists a set E ∈ X such that

(∃x. ϕ(u1, . . . , un, x)) =⇒ (∃x ∈ E. ϕ(u1, . . . , un, x)) and
(∀x. ϕ(u1, . . . , un, x)) ⇐= (∀x ∈ E. ϕ(u1, . . . , un, x)).

Hence the set H ′ := H ∪
⋃
X has the required property.

To ensure that H ′ is transitive and closed under subsets, we pass first to its
transitive closure and then compute the union of all its finitely-iterated powersets.

In order to accommodate more than a single formula ϕ, we add one summand in
the definition of H ′ for each formula ϕi. �

The proof of Lemma 4.1 makes crucial use of unbounded separation and the
powerset axiom. Hence we do not believe that it can be improved to work over czf.
Since we do not have any uniqueness guarantee on the “∃x” quantifiers in the proof,
it also does not work over izfRep, the variant of izf with replacement instead of
collection.

Lemma 4.2. Let ϕ(u1, . . . , un, x) be a formula in the language of set theory.
Then izf + rrs2 proves

∀M. ∃S ⊇M. ∀u1, . . . , un ∈ S.
(∃x. ϕ(u1, . . . , un, x)) =⇒ (∃x ∈ S. ϕ(u1, . . . , un, x)) ∧
(∀x. ϕ(u1, . . . , un, x)) ⇐= (∀x ∈ S. ϕ(u1, . . . , un, x)).

Furthermore: (1) We may suppose that S is transitive. (2) We may suppose that S
is closed under subsets. (3) Given a finite list ϕ1, . . . , ϕs of formulas instead of the
single formula ϕ, we may suppose that S bounds all the formulas ϕi.
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Proof. By rrs2, there is a set B such that M ∈ B and such that for any H1, H2 ∈ B,
there is a set H ′ ∈ B such that H := H1∪H2 and H ′ are related as in the conclusion
of Lemma 4.1.

We set S :=
⋃
B. This set has the required property. To verify this claim, it

is useful to observe that given u1, . . . , un ∈ S, there is a common set H ∈ B such
that u1, . . . , un ∈ H.

In order to ensure addenda (1) and (2), we apply rrs2 in a slightly different way to
guarantee that for any sets H1, H2 ∈ B, there is a set H ′ ∈ B such that H := H1∪H2

and H ′ are related as in the conclusion of Lemma 4.1 and such that furthermore H ′

is transitive and closed under subsets. Even though it cannot be expected that any
particular set H ∈ B will be transitive and closed under subsets, the union S will.
Addendum (3) can be ensured because of addendum (3) of Lemma 4.1. �

Remark 4.3. In the special case n = 1, the proof of Lemma 4.2 can be simplified
to only use rrs instead of rrs2, because in this case it suffices for the set B to be
such that for any H ∈ B, there is a set H ′ ∈ B such that H and H ′ are related as
in the conclusion of Lemma 4.1.

Theorem 4.4. Let ϕ(x1, . . . , xn) be a formula in the language of set theory.
Then izf + rrs2 proves

∀M. ∃S ⊇M. ∀x1, . . . , xn ∈ S. ϕ(x1, . . . , xn)⇔ ϕS(x1, . . . , xn).

Furthermore, the resulting set S may be supposed to be transitive and to be closed
under subsets; and given not a single formula ϕ but a finite list ϕ1, . . . , ϕs of
formulas, we may suppose that S reflects all of them.

Proof. The proof of Theorem 2.2 carries over. The only difference is that instead of
Lemma 2.1, Lemma 4.2 has to be used, and that the case for the universal quantifier
has to be treated just as the case for the existential quantifier has to. �

Scholium 4.5. Let ϕ(x1, . . . , xn) be a formula in the language of set theory. Assume
that the surrounding scope of any unbounded quantifier in ϕ contains at most one
free variable. Then izf + rrs proves the same conclusion as stated in Theorem 4.4.

Proof. The condition on the number of free variables allows the proof of Theorem 4.4
to be adapted to employ the version of Lemma 4.2 outlined in Remark 4.3, which
requires only izf + rrs instead of izf + rrs2. �

Theorem 4.6. Over izf, each instance of Aczel’s relation reflection scheme rrs2
can be deduced from suitable instances of the assumption that, given a finite list of
formulas, for every set M there is a set S ⊇M reflecting the given formulas.

Proof. Let X and R ⊆ X × X × X be classes. Let x0 ∈ X be an element and
suppose R : X ×X ⇒ X.

By assumption, there is a set S 3 x0 which reflects the three formulas “x ∈ X”,
“〈x, x′, y〉 ∈ R” and “∃y ∈ X. 〈x, x′, y〉 ∈ R”.

The class B := X ∩ S is a set by separation and contains x0. Given x, x′ ∈ B,
there is a set y such that y ∈ X and 〈x, y, y′〉 ∈ R. By the reflecting property of S,
we can assume that such an element y exists in S.

Hence R : B ×B ⇒ B. �
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5. A new proof of rdc = rrs + dc

When he introduced rrs, Aczel proved that over czf without subset collection,
relative dependent choice rdc is equivalent to the conjunction of rrs and dependent
choice dc [1, Theorem 2.4]. Using reflection, we can provide a new proof of this
fact, although over the much stronger base theory izf instead of czf−. The idea is
that reflection allows to reduce rdc to dc.

Proposition 5.1. Over izf, rdc is equivalent to rrs + dc.

Proof. Trivially, rdc implies dc, and rdc implies rrs by a similar, though much
simpler, argument as in the proof of Proposition 3.4.

Conversely, assume rrs and dc. In order to verify rdc, let classes X and R ⊆
X ×X be given. Let x0 ∈ X and assume ∀x ∈ X. ∃y ∈ X. 〈x, y〉 ∈ R.

We cannot apply Scholium 4.5 to the formula “∀x ∈ X. ∃y ∈ X. 〈x, y〉 ∈ R” since
unbounded quantifiers implicitly appearing in the formulas “x ∈ X” and “〈x, y〉 ∈ R”
(recalling that X and R are classes) may violate the condition on the number of
free variables. However, we can opt to leave these subformulas to be untranslated
when carrying out the S-relativization; with this understanding, Scholium 4.5 can
be applied to yield a set S 3 x0 such that

∀x ∈ S. (x ∈ X ⇒ ∃y ∈ S. (y ∈ X ∧ 〈x, y〉 ∈ R)).

Hence ∀x ∈ X ∩ S. ∃y ∈ X ∩ S. 〈x, y〉 ∈ R. By dc, there is a choice function f :
N→ X ∩ S such that f(0) = x0 and 〈f(k), f(k + 1)〉 ∈ R for all numbers k. This is
a function of the kind required by rdc. �

6. An intuitionistic version of Feferman’s zfc/s

Definition 6.1. The system (izf + rrs2)/s is obtained from izf + rrs2 by adding
a constant symbol S together with axioms stating that S is transitive, closed under
subsets and reflective for all formulas of the original language.

Proposition 6.2. The system (izf + rrs2)/s is conservative over izf + rrs2.

Proof. Because the reflection principle is available in izf+rrs2, the same argument
as for zfc/s applies. �

Just as zfc/s can serve as a set-theoretic foundation for category theory in a
classical context, we argue that (izf + rrs2)/s can serve as such a foundation in an
intuitionistic context (provided, of course, one is willing to accept rrs2).

The system (izf + rrs2)/s is also interesting from the point of view of topos
theory. We recall that any topos supports an internal language which can be used
to reason about the objects and morphisms of the topos in a naive element-based
language, allowing us to pretend that the objects are plain sets (or types) and that
the morphisms are plain maps between those sets ([5, Chapter 6], [6, Section 1.3],
[9, Chapter 14], [10, Chapter VI]). We refer to [4, Sections 1 and 2] for a short
introduction and a review of some of the applications of the internal language.

Given a topos E and a formula ϕ in its internal language, we write “E |= ϕ” to
mean that ϕ holds in E . As a special case, truth in the topos Set, the category of
all sets, coincides with truth in the background theory; symbolically: Set |= ϕ iff ϕ.

However, in the context of (izf or) zfc, it is difficult to make this claim precise.
Because in zfc the category Set of all sets can not be coded as a set, zfc cannot
define truth in Set. We must therefore resort to a meta theory in order to express
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this claim, for instance by stating that primitive recursive arithmetic pra proves
that for any formula ϕ of zfc, zfc proves “(Set |= ϕ)⇔ ϕ”, where “Set |= ϕ” is to
be unrolled by pra.

An alternative is offered by zfc+i, zfc plus the existence of a strongly inaccessible
cardinal. In this system, there is a Grothendieck universe U ; we can form the
category SetU of all sets in U as an honest set; define truth in SetU ; and prove,
within the system, that for any formula ϕ, (SetU |= ϕ) ⇔ (U |= ϕ). This even
holds for formulas of the full infinitary language of toposes, which allows infinite
disjunctions and infinite conjunctions; this extended language could not be treated
by resorting to pra as indicated above.

However, truth in a Grothendieck universe U need not be related to actual truth.
A solution to this problem is provided by zfc/s and by (izf + rrs2)/s. In these
systems, we can form the topos SetS of all sets in S, define truth in it, prove for all
formulas ϕ that (SetS |= ϕ)⇔ (S |= ϕ); and reflection for S ensures that for each
(external, standard) formula ϕ, the system proves “(SetS |= ϕ)⇔ ϕ”.

7. Outlook

We proved that, over izf, the reflection principle is equivalent to rrs2. This gives
credence to the claim that the reflection principle is not provable over izf alone.
However, the following question remains open:

Question 7.1. Does izf prove rrs2?

If the answer is in the negative, as is most likely, then no conservative extension
could include a constant symbol S such that S-relativized truth is the same as
absolute truth.

However, truth in toposes is a more flexible notion than S-relativized truth for
any set S. Hence one might hope that even in this case, the following question does
have a positive answer:

Question 7.2. Is there a conservative extension izf′ of izf, containing a constant
symbol E, such that izf′ proves that E is an elementary topos and such that izf′

proves “(E |= ϕ)⇔ ϕ” for any formula ϕ?
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