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1 Introduction
In this paper we present a Python based implementation of the distributed hash table
Chord. It is designed as a public key storage for a peer-to-peer VoIP application.

2 Existing work
Our work is mainly based on three papers. First, there is the original paper from Stoica et
al[2] which introduces the key aspects of Chord. This is the base for our implementation.
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Then, there is the paper from Pamela Zave[1] which describes advanced methods for
stabilization in a Chord network. It mainly suggests a way how to properly maintain
additional successor lists of length r. A successor list is a list of immediate successors
of a node according to its identifier address. If the currently selected successor fails, the
next successor in the list allows to keep the Chord ring closed. This algorithm is crucial
in an unsteady network with nodes joining and leaving within short amount of time. In
our implementation, we set r := 3. In scenarios with a lot of nodes and high fluctuation,
it is recommend to increase this value.
For redundant storage, we rely on the work of Waldvogel et al [3]. Waldvogel et al

suggest generating replicas by mapping the key k to multiple locations. For replication
the hash function h is defined by:

h(k, d) = HSha256(k||d)

d is the index of the replication. So if the replication degree is 3, we evaluate h(k, 0),
h(k, 1) and h(k, 2). The results of h(k, d) are the keys under which the content will be
stored in the distributed hash table. However, when using small integers as key k, with
the above function collisions can appear easily.

HSha256(11||1) = HSha256(111) = HSha256(1||11)

This type of collision may not occur when using only public keys as DHT keys, but
as we wanted to keep the DHT able to save integer keys, we decided to eliminate this
problem. Therefore a modification to the proposed hash function was applied. The new
hash function is called d-times recursively:

h(k, d) =
{

HSha256(h(k, d− 1)) if d > 0
HSha256(k) if d ≡ 0.

3 Documentation
3.1 Dependencies
The project was tested on Fedora 21 and XUbuntu 14.04, but it should run on other
distributions as well.

3.1.1 Setup on Fedora/RHEL/CentOS

yum i n s t a l l python3−pip

3.1.2 Setup on Debian/Ubuntu

apt−get i n s t a l l python3−pip

3.1.3 Python Libraries

On all systems, the following libraries have to be installed:
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pip3 i n s t a l l jsonschema
pip3 i n s t a l l aiomas

3.2 Install and run Chord
3.2.1 Simple testing

We provided a test script for the GNOME and XFCE desktop environment. It does not
need mininet, as the node addresses are mapped to different ports on the local machine.
To start the test use either

gnome_start . sh

on a GNOME environment or

x f c e_s ta r t . sh

on XFCE. You can add 3 nodes by calling

gnome_add3 . sh

or

xfce_add3 . sh

This command only works once.
Afterwards you can start ‘dhtQuery.py‘ to add content to the DHT. You can store

and lookup by an integer key here. Just follow the instructions. The Python script
dhtQuery.py provides a console interface to store and retrieve data with an integer key.

3.2.2 Adding custom nodes

You can run nodes with custom properties using the console. For example:

python3 main . py − i 1333 −b 1337 −B 127 . 0 . 0 . 1

runs a node on port 1333 with bootstrap node 127.0.0.1/1337. The parameters are:

Name Type
-i The node port
-I The node IP address
-B Bootstrap Node IP
-b Bootstrap Node Port
-h Path to Hostkey .pem file. Used to generate custom node id
-c Path to config file. The above parameters will override the config properties

3.3 Configuration files
As an alternative to parameters you can use configuration files. The properties are
described in figure 1.
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Table 1: The properties of a config file.
Section Field Description Example Value

No Section HOSTKEY Path to PEM keyfile /home/test/key.pem
LOG Logfile /home/test/test.log
PORT Port on local machine 1337

KX PORT Port for the KX module 20000
DHT OVERLAY_HOSTNAME Boostrap node hostname bootstrapnode.com

PORT Port for the API 1234
HOSTNAME Own IP address 127.0.0.1

BOOTSTRAP PORT BOOTSRAP PORT 1234

3.3.1 Mininet

As the native virtual machine provided by mininet was terribly slow, we used a XUbuntu
installation within a virtual machine (tested with Gnome Boxes on Fedora 21 and Virtual
Box on Windows 10). To install mininet follow the instructions on http://mininet.
org/download/. For Ubuntu you can use apt-get to install it. Furthermore you need to
install the required packages as described above in section 3.1.2 and 3.1.3. For testing,
run the Python script ’sudo python startMininet.sh’. You may want to call ’sudo mn’ if
there appear any errors regarding used ports (Enter ’quit’ to stop it afterwards). Also
make sure you provide the right config files. For the 5 default nodes generated by the
python script these are located in the mnconfig/ folder. You need to provide the
right absolute path for the HOSTKEY here!

3.4 Software Architecture
The application is started with main.py. It initializes a new node with parameters
from console or config files. The logic for such a node is located in Node.py and its
corresponding class Node. The Node class is responsible for remote procedure calls
(RPC) and handles most of the logic such as stabilization, joins and look-ups in the
DHT.

3.4.1 Helpers

We have separated certain tasks from the main Node class. The most important ones
are replica, storage and messageParser. They are all located in the helpers/ folder.

3.4.2 Validation

The validation of RPC calls was implemented by using the Python JSONSchema (https:
//pypi.python.org/pypi/jsonschema) Validator. This validator allows to create schemes
defined by the JSON Schema standard (http://json-schema.org/). It defines how a
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JSON object must look like. If there are errors such as missing attributes, an error mes-
sage is returned. The schemes for our RPC calls are located in helpers/validator.py.
The schemes ensure, that objects are passed with the correct type, length and name.

3.4.3 Unit Tests

To detect possible bugs as early as possible we use the integrated unit test framework
of Python. If there is a file named storage.py the corresponding unit test is named
test_storage.py for example. All unittests are referenced in unittester.py, from which
you can run all unit tests at once. To do so, type ./unittester.py into the console.

3.4.4 Class Documentation

To document the different classes, we used sphinx. You can find a pre built version
in docs/api (Not the docs folder in the code directory!). It is used to generate the
documentation right out of the source code and export it as HTML. To install sphinx,
please refer to http://sphinx-doc.org/latest/install.html. With apt-get, type:

apt−get i n s t a l l python−sphinx
pip3 i n s t a l l sphinx

To generate the documentation, switch to the code/doc/ directory and type make html
in the console. The resulting web page is located in code/doc/_build/html afterwards.
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3.4.5 UML Diagram
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3.5 Security and Stability
3.5.1 Churn

Our implementation can handle churn with trying to minimize the introduced latency.
Therefore we use a technique called reactive recovery and periodic recovery as compared
by Rhea et al. [4] to each other.
Reactive recovery is realized by using a successor list for each node. A node tries to find

a replacement neighbor, which is the next item in the successor list, once it realizes its
immediate neighbor has failed. Also during a look-up procedure (find_successor()),
an alternative finger is chosen automatically as fallback if the node from the intended
reference is not alive anymore. As at high churn rates rates, reactive recovery is inef-
ficient regarding bandwidth, another technique used is periodic recovery. We call the
stabilize() (in Node.py) routine in a fixed time interval here. The finger table, suc-
cessor lists and predecessor is checked and repaired, if necessary.
Another technique would have been to use super-peers, which are nodes that are always

online. But this does not go along with the distributed architecture of the project.

3.5.2 DDoS/DoS

Although (distributed) Denial of Service attacks should be handled by firewalls, increas-
ing the replication level decreases the vulnerability against such attacks. Like this, the
loss of single nodes does normally not destroy the occurrence of a certain data item.
Some more ideas are mentioned in section 5.

3.5.3 Authentication

As section 4 explains in more detail, we use Remote Procedure Calls provided by the
library aiomas.
Every incoming request that is not a RPC, is ignored. By invoking a valid RPC to

a remote node, a valid answer shows that it is a node of our DHT implementation.
However, by itself, this does not provide any protection against modification of data by
attackers.
Unintentional data corruption should be prevented by lower protocol layers. An ad-

ditional hash of the data would not provide any security related improvement without a
shared secret. However, the JSON fields are validated in terms of existence, length and
data type.

4 Protocol Design
4.1 Original and new Approach
Our approach for communicating between multiple Chord instances changed consider-
ably during the process of development. Initially, we started creating TCP server and
clients based on Python’s asyncio library which is a part of the standard library since
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version 3.4. For message serialization, deploying JSON was a valuable choice due to its
human readability while debugging the communication between several nodes.
However, with more and more functionality being introduced, the communication part

required to be completely abstracted into an independent module to maintain a struc-
tured and clear code base. We found the quite new library aiomas1. It provides an
interface for remote procedure calls (RPC ). In contrast to other modules, it is based
on the event loop asyncio (the one we also utilized). Initial tries failed due to some
documentation issues. Once working, we switched to this module for inter module com-
munication as it’s mostly a bad idea to reinvent the wheel. Albeit, we have some ideas
how to improve the library as stated later.

4.2 Inter Node Communication
To exchange data with other nodes, RPCs allows to call functions on remote nodes as it
would be local function calls. With aiomas, the elementary structure for RPC messages
is represented by the following triplet:

type id payload

The message identifier id is an unique number (32 bit) incremented for each outgoing
request made. Due to the asynchronous processing in asyncio, incoming TCP packets
might not be related to the request sent before. Therefore, the message identifier asso-
ciates outgoing requests to recognize the corresponding response. If a matching response
is found, aiomas informs the future object linked to the blocking instruction. A message
can have three different types (represented as int):

• REQUEST = 0

• RESULT = 1

• EXCEPTION = 2

Type REQUEST is for outgoing requests to other nodes. Type RESULT marks a
response for a previously sent request. Type EXCEPTION contains a trace of the call
stack if an exception is raised. We focus on the first two types. The last field payload
embodies the actual data sent between the nodes. The data is serialized by Python’s
default JSON module. The binary representation is an UTF-8 encoding of the serialized
JSON message.
Depending on the message type, the payload is different:

• REQUEST —For a request, payload contains the triplet (path, args, kwargs).
path specifies the function executed with the arguments args and kwargs in the
RPC.

1https://bitbucket.org/ssc/aiomas/overview
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• RESULT — A result message transports the return data of a RPC. Depending
on the function, the underlying type can vary. In almost all scenarios, we return
a Python dictionary (dict). It bundles several options accessible by a key string.
For more details, refer to the individual RPC functions below.

4.2.1 rpc_dht_put_data

This call saves data on another node, given the key is managed by the contacted remote
node.
Parameter Input:

bigint
key The key

int
ttl The time to live (seconds)

bytes
data Arbitrary bytes

Replication values are not transferred as part of this message. Instead, the corresponding
node invokes this RPC several times on different nodes to distribute the data. Section
2 briefly describes the mechanism.

Notice:

• bigint is also represented by type symbol int in Python. The intend is that this
integer is not restricted to 32 or 64 bit.

• As bytes cannot be directly represented in JSON, bytes fields are replaced by
UTF-8 strings containing the data encoded by base64.

Every notice also holds for all other RPCs.

Return Data:

int
status The status. 0 for success, otherwise error code > 0.

string
message (Optional) Descriptive reason when something went

wrong.

4.2.2 rpc_dht_get_data

Fetches the stored data on a certain node given the key.
Parameter Input:

bigint
key The key

Return Data:

int
status The status. 0 for success, otherwise error code > 0

[]bytes
data All data associated with the key (list)
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If no data is stored for a particular key, an empty list is returned.

4.2.3 rpc_get_node_info

Returns information about the node and its environment, such as successors and prede-
cessor.
Parameter Input:

bool
successor_list = False Return the list of successor

bool
additional_data = False Return additional data

Return Data:

_
Information about the node and its immediate neighboring nodes (see 4.2.4)

[]dict
successor_list (If requested) List of available immediate successors

dict
additional_data (If requested) Additional data initially supplied to this

Chord instance, e.g., the KX port

Notice: In all cases, a node is represented by its node identifier node_id and its network
address node_address bundled by a dictionary. The address string is built according
to aioma’s agent terminology, e.g., tcp://127.0.0.1:5555/0. The trailing number is
actually not needed in the implementation. It allows to spawn several nodes on the same
host’s port.

4.2.4 Node Info

This section only describes a part of a RPC referencing it. The following fields store
information about a node and its environment.

bigint
node_id Node ID

string
node_address Network address (IPv4 or IPv6)

dict
successor Successor node.

dict
predecessor Predecessor node.

A node is represented by its node identifier node_id and its network address node_address
bundled by a dictionary. This is the information stored in successor and predecessor.

4.2.5 rpc_find_successor_rec

This function retrieves information about the node responsible for the given key. It
employs a recursive mechanism to shorten the distance to the target node along a path
of intermediate nodes.
Parameter Input:
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int
node_id Node ID (key) whose responsible successor is interesting

bool
with_neighbors Adds information about neighboring node of the target

node

bool
tracing Activates trace messages, i.e., recording the responsible

node on each hop

Adding information about the target node’s neighbors is useful if its immediate pre-
decessor is interesting. This can be done with the with_neighbors option. The option
tracing enables further information about immediate nodes along the route to the target
node.
Return Data:

_
Information about the found node responsible for node_id (see 4.2.4)

dict
additional_data (Tracing requested) Additional data provided by the suc-

cessor hop

[]dict
trace (Tracing requested) List with visited nodes on the route

to the target so far. Inverse creation of the list starts once
the goal is reached.

The return message needs some explanation. It is returned along the same path of
nodes which was set up during the recursive calls of this function to find the responsible
node for the given key (node_id). If the responsible node can be located and is alive,
information about this node is forwarded back to the initial requester. If not, a status
field informs about the error albeit a descriptive error message.
If the requesting node activates trace logging (tracing), two further fields are part of

the return data. The trace log is stored as a list in the trace field. One special property
about list assembly is that it is done while forwarding the response of the last node (hop)
along the established path. Consequently, the last hop is the first entry in the list. Each
list entry contains the following fields:

trace list entry
bigint

node_id Node ID

string
node_address Network address (IPv4 or IPv6)

dict
additional_data Additional data, e.g., KX port

When analyzing the protocol, there is another characteristic: the entry of a certain
node is always added by its predecessor in the call hierarchy. This guarantees that a
node cannot pretend to be a different one, for instance. Of course, an attacker node can
invalidate the entries in the accumulated trace log. However, its own entry is a valid one
if it has gotten an honest predecessor.

4.2.6 rpc_update_finger_table

This function allows a remote peer to update the finger table entries of its predecessors
that should link to this node. It is part of the reactive update. This is useful for a
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fast stabilization of the base ring if a new node joins the network.
Parameter Input:

dict
origin_node node_id and node_address of the node the initial request

originates from

int
i Index of finger entry which should be replaced with ori-

gin_node

Return Data:

int
status The status. Always 0 in the current implementation.

Although the status is 0, it does not mean necessarily that the update request was
accepted. Wrong entries are also corrected during the periodic updates.

4.2.7 rpc_update_successor

This function allows a new node to speed up its integration between two neighboring
nodes in the Chord ring. It is part of the reactive update. It provides a hint to its
predecessor that the immediate successor changed. In our implementation, the informed
node will ask its current successor first about its predecessor view. If it links to this new
node, it will be accepted by the node as valid immediate successor that replaces the old
entry.
Parameter Input:

dict
node_hint A node which might be eligible as a new successor

Return Data: None

There is no return data, because it is just a hint to accelerate the stabilization. It
is up to the recipient whether it updates its first finger (immediate successor) to the
suggested node. Otherwise, the periodic checks will fix it after some time.

4.2.8 rpc_update_predecessor

Calling this function on a remote peer allows to update its predecessor reference to the
caller node. It is called as part of the reactive update and periodic update.
Parameter Input:

dict
remote_node A node which might be eligible as a new predecessor

Return Data:
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bigint
node_id Node ID

string
node_address Network address (IPv4 or IPv6)

dict
old_predecessor (Optional) Information about the predecessor before the

update

[]bytes
storage (Optional) List of DHT keys with associated byte strings

the new predecessor is responsible for

If the update succeeds, node_id and node_address contain the information of the
requesting node. In this case, the other two fields are present. old_predecessor presents
information about the original predecessor. This is useful for a reactive update: the
joining node directly informs its predecessor that it got a new immediate successor.
This allows to accelerate the stabilization. As this update might cause a race condition
for concurrent access, the periodic update establishes a correct placement in the Chord
ring if two nodes tried to be the predecessor of a certain node.

storage contains a list of data (keys with associated data, ttl, etc.) the current node
is responsible now. The node stores these data items and returns it on request.

4.3 Application Programming Interface
For local communication with other modules of the overall project we use the binary
protocol as specified in the course documentation. You can test PUT and GET methods
with ./dhtQuery.py.

4.3.1 DHT PUT

For DHT PUT, the following fields are
needed:

1. size: The total size of the message
in bit

2. id: 500 for MSG_DHT_PUT

3. key: The key under wich the con-
tent is stored

4. TTL: Time to live

5. replication: Degree of replica-
tion

6. content: The content

Integer fields (size, TTL, replication)
are encoded in big endian byteorder.

Figure 1: DHT PUT Scheme
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4.3.2 DHT GET

For DHT PUT, the following fields are
needed:

1. size: The total size of the message
in bit

2. id: 501 for MSG_DHT_GET

3. key: The key under wich the con-
tent is stored

Integer fields (key and size) are encoded
in big endian byteorder.

Figure 2: DHT GET Scheme

4.3.3 DHT GET REPLY

For DHT PUT, the following fields are
needed:

1. size: The total size of the message
in bit

2. id: 502 for
MSG_DHT_GET_REPLY

3. key: The key under wich the con-
tent is stored

4. content: The content

Integer fields (key and size) are encoded
in big endian byteorder.

Figure 3: DHT GET Scheme

4.3.4 DHT TRACE

For DHT PUT, the following fields are
needed:

1. size: The total size of the message
in bit

2. id: 501 for MSG_DHT_TRACE

3. key: The key under wich the con-
tent is stored

Integer fields (key and size) are encoded
in big endian byteorder.

Figure 4: DHT TRACE Scheme
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4.3.5 DHT TRACE REPLY

For a trace reply message, the following
fields are needed:

1. size: The total size of the message
in bit

2. id: 501 for MSG_DHT_TRACE

3. key: The key under wich the con-
tent is stored

Now for each hop, there is additional
information added:

1. KX Port

2. IPv4 Address

3. IPv6 Address

The IP address is encoded in Python
with

ipaddre s s . ip_address ( s t r IP ) . packed

where strIP is the IP address in string
format. Integer fields (key, KX Port and
size) are encoded in big endian byte-
order.

Figure 5: DHT TRACE REPLY
Scheme

5 Future Work
Future work could introduce more security features. To add another level of protection
against DDoS attacks, we could remember the IP addresses of the origin servers to limit
their number of allowed requests. DoS attacks are quite a problem in the DHT, as
functions like find_successor are executed recursively. This means one request to a
Chord node usually affects at least 1, but up to O(logn) nodes in the network. An
attacker can cause serious damage using only a few resources this way. Another useful
feature would be to detect high churn rates automatically to switch between reactive
and periodic recovery.

6 Work Justification
As in the beginning we worked together on one computer, where one person was coding
and the other person observing, towards the end, we have split up the work a bit more.
Stefan cared more about the Chord logic itself, where Manuel focused on the helper
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classes (for replication, storage etc.) and the API. The overall effort spent on the project,
was quite high compared to other courses.
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