## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( mafc.probit(2) )
## Formula: Acc ~ Coh + Speed + PatternType + Coh:Speed + Coh:PatternType +
## (1 | SubID)
## Data: df
##
## AIC BIC logLik deviance df.resid
## 9838.6 9888.9 -4912.3 9824.6 9753
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -16.7910 -1.0133 0.3573 0.6518 0.9999
##
## Random effects:
## Groups Name Variance Std.Dev.
## SubID (Intercept) 0.395 0.6285
## Number of obs: 9760, groups: SubID, 30
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.35496 0.20236 -6.696 2.15e-11 ***
## Coh 10.34119 1.11795 9.250 < 2e-16 ***
## Speed -0.07424 0.02746 -2.704 0.00685 **
## PatternTyperadial -0.74667 0.16371 -4.561 5.09e-06 ***
## Coh:Speed 0.31080 0.18393 1.690 0.09108 .
## Coh:PatternTyperadial 8.69144 1.12074 7.755 8.83e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Coh Speed PttrnT Ch:Spd
## Coh -0.770
## Speed -0.607 0.697
## PttrnTyprdl -0.389 0.435 0.069
## Coh:Speed 0.578 -0.757 -0.941 -0.057
## Ch:PttrnTyp 0.343 -0.434 -0.064 -0.940 0.051
Drop Coh:Speed.
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( mafc.probit(2) )
## Formula: Acc ~ Coh + Speed + PatternType + (1 | SubID) + Coh:PatternType
## Data: df
##
## AIC BIC logLik deviance df.resid
## 9839.5 9882.7 -4913.8 9827.5 9754
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -17.9258 -1.0129 0.3548 0.6490 0.9999
##
## Random effects:
## Groups Name Variance Std.Dev.
## SubID (Intercept) 0.3954 0.6288
## Number of obs: 9760, groups: SubID, 30
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.557017 0.165541 -9.406 < 2e-16 ***
## Coh 11.798343 0.722069 16.340 < 2e-16 ***
## Speed -0.030784 0.009228 -3.336 0.00085 ***
## PatternTyperadial -0.732936 0.161144 -4.548 5.41e-06 ***
## Coh:PatternTyperadial 8.614064 1.103524 7.806 5.90e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Coh Speed PttrnT
## Coh -0.624
## Speed -0.255 -0.029
## PttrnTyprdl -0.431 0.597 0.050
## Ch:PttrnTyp 0.379 -0.602 -0.052 -0.939
Now, we compare this reduced model to the full model.
## Data: df
## Models:
## mod.reduced.1: Acc ~ Coh + Speed + PatternType + (1 | SubID) + Coh:PatternType
## mod.full: Acc ~ Coh + Speed + PatternType + Coh:Speed + Coh:PatternType +
## mod.full: (1 | SubID)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## mod.reduced.1 6 9839.5 9882.7 -4913.8 9827.5
## mod.full 7 9838.6 9888.9 -4912.3 9824.6 2.9338 1 0.08675 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The reduced model doesn’t change the fit that much, but we prefer simpler models overall, so we will retain it.