Technical documentation

Genomizer
Version 3.0

Publication date: 2015/11/10

CONTENTS 1

Contents

[Prefacel i
1 Introductionl iii
|2 Target group and needs| iv
2.1 Target group| iv
2.2 Clientneedsfo iv
2.2.1 Upload & Download| v

222 Databasel oo v

2.2.3 Processing|. o oL v

2.2.4 Format Conversionl vi

|3 Service description| vii
3.1 Usagel vii
B2 User Input|. o vii
3.3 Desktop| vii
3.4 Webl viii
3.5 Mobile application| 000 000 viii
BB Server viii
3.6.1 Data storage] L. viii

3.6.2 Processing|. oL ix

8.6.3 Profile data conversion|. ix

(I Development] 1
|4 Architectual design| 2
4.1 System overview| oL 2

CONTENTS 2
41.1 Genomizer clientsf. o o0 3
4.1.2 Genomizer server| 3

[TInteraction design| 5

Bl General view]o 5
.2 Desktop client|. o 5
[5.2.1 Windows/OS X/Linuz application| 5
5.3 Web application| 0., 8
9.3.1 Layout and Structure], 8
B32_Colord 10
B33 Tcons. . .« v oot 10
9.3.4 Batchingl 0. 10
P.3.5 Processing|. o oL 10
5.3.6 System administration|, 10
BA_Android 11
Pp.4.1 Login view| 12
b42 Search view| L oo 12
b.4.3 Search result viewl 12
p.4.4 Experiment view|o 13
5.4.5 Search settings view| 13
4.6 Process viewlo 14
0.4.7 Active processes VIEW| 0. 14
h.D 08l .« 15
BEIL _Tabbado ooi e 15
P.0.2 Login Screen| oo o 15
5.0.3 Search Viewl. oo 15
0.5.4 Search Result Viewl. 16

CONTENTS 3

[6 System designl| 21
6.1 Desktop application] 21
0 A e 21
6.1.2 Modell 22
6.1.3 Requests|. oo 22
6.1.4 Responsel 22
6.1.5 Controllerl 23
6.1.6 Utilites] 23
6.1.7 System Administration|. 23
6.1.8 Flow of the system| 25

6.2 Web application| 00 0oL, 26
6.2.1 How the web application works| 26
6.2.2 System overview|o 27
6.2.3 Login| L 28
624 Searchl 28

6 Upload| 29
626 Processl o 29
627 Converfl 30
16.2.8 System administration - Web| 30

6.3 Android application| 0o 0oL 31
6.3.1 System overview| 31
6.3.2 Package overview|.o 32

6.4 105 application| o Lo 33
6.4.1 Overall system designl 33

B5 Server 35
6.5.1 Communicationl. 35
6.5.2 Data Conversionl, 37

CONTENTS 4

6.0.3 File-transfer|. 0 0L 42
6.5.4 Data Storage| 43
6.5.5 Database Design| 45
6.5.6 The Data Storage Subsystem| 45
6.5.7 Interaction| oL 46

[7 Implementation| 48
7.1 Desktop application| 48
7.1.1 esting] 48

[7.2 Web application| 48
(2.1 Frameworks L. 48
[7.2.2 Technologiesused| 49
[7.2.3 Testing frameworks|. L. 50
[7.2.4 Webapptests], 50

7.3 Android application| o 0oL 50
(3.1 FEnvironment] 0oL 51
(3.2 FEmulationl. o oo 51
[7.3.3 Android Support Library|] 51
[7.3.4 Technologies|, 51

.0 esting] 51

[7.4 105 application|o 51
4. esting|o 51

CE Servero 52
(51 Communication]. L. 52
[(0.2 Conversion| o 54
7.5.3 Data Storage| 55

[(.6 Timitations| 57

CONTENTS 5
Bib phy 58
(Nomenclaturel 58
[A_User manuall 59
IA.1 Desktop application], 59
|A.1.1 Login and startup| 59
BAI27Searchl . - o o v oo 60

A Upload| 61

ATZ Process . .« oot 63

IA.1.5 Workspace] o 65

IA.1.6 Administrationlo 66

BAIT Converfl ot 69

A.1.8 Settings| 69

IA.2 Web application| 000000, 70
|A.2.1 Using the interface] L. 70

|A.2.2 Setting up the application| 82

IA.3 Android application| o000 85
|A.3.1 Setting up the server URL|. 85

IA.3.2 lLoggingin|. L oo 85

IA.3.3 Navigation|, 86

|A.3.4 Search and process| 86

|A.3.5 Active processes|o 90

IA.4 105 application| Lo 91
|A.4.1 How to run the app in Xcode| 91

1A 4.2 Howtologin| 91

IA.4.3 How tologout| 92

|A.4.4 How to search for experiments| 92

CONTENTS 6

|IA.4.6 How to process files| 93

EI7 H Tl - e vishl Search Resulid 95

|A.4.8 How to change the order which search results appear in| . 95

1A.4.9 How to view process status on the server| 95

[B Deployment and maintenance] 96
IB.1 Configure server| o 96
IB.2 A brief introduction to vagrant| 96
IB.2.1 Basicusage|o oL 96
IB.2.2 Moditying the configuration| 97
IB.2.3 Entering the vagrant virtual machinef. 97

IB.3 Systems overview of production| 97
IB.3.1 Using the toolchain|. 97
IB.3.2 Configured environments| 99
IB.3.3 The important scripts| 101
IB.3.4 Creating a new environment|. 102
IB.3.5 Modifying an existing environment| 105
IB.3.6 Rebuilding an environment| 106
IB.3.7 Deleting an environment|. 106
IB.3.8 Configuring the host system|. 106

IB.4 Administer the databasel00 107
IB.4.1 Set up postgresql account| 108
IB.4.2 Upload SQL Script toserver| 109
B.4.3 Create the Genomizer Tables 109

IB.5 Install the server| oL 109
IB.6 Set up processing| 111

CONTENTS 7

[C_User Stories 112
IC.1 TImplemented user stories|. 112
|C.2 Product backlogl, 116

[D Android application: UML-diagrams| 120

[EEiOS application: UML-diagrams| 122

[F Desktop application: UML-diagrams| 124

|G Data Storage: UM L-diagrams| 129

(H Server: Communication UMII 130
HIOverviewlo oottt 130
: Request| 130
H3 Command . - - -« v v v oo e 131

(LServer API| 132
B p 152
[LT Tntroductionl.o 152
J.2 Filebackup| oo oo 152

J.2.1 Archiving| oo 152

J.3 Database backup| o oo o 153
14 Crontabl 153
.0 Restoring] 154

[K Acceptance Tests| 155
[KI Tntroduction]. 155
K2 Testd.o 155

IK2.1 LoggingIn| 155
IK.2.2 Logging Out| 158

CONTENTS 8

IK.2.3 Upload Genome Release| 159

IK.2.4 Delete Genome Releasel 161

IK.2.5 Add Annotationl oo 162

[K.2.6 Delete annotation] 165

IK.2.7 Update Annotation|. 166

IK.2.8 Create experiment| 171

IK.2.9 Add files to an Experiment| 173

IK.2.10 Delete Experiment| 174

IK.2.11 Searching| L. 174

IK.3 Not yet specified| L 0oL, 177
[L_APT testerl 178
User guide|. o o 178

IL.2 Program structure] oo 178
(M Known problems| 181
IM.1 Web application| 181
IM.1.1 Error handling when uploading experiments|. 181

IM.1.2 Old authorization token causes page redirect| 181

IM.1.3 Code duplication in SearchResults and Experiments| . . . 181

IM.1.4 No warning when closing tab during upload.| 181

IM.1.5 Ubploading genome release - does not update list automati- |
cally| oo 181

IM.1.7 No warning when closing tab during uploading genome |
[releases| 182

IM.1.8 The page have to be refreshed after adding a new annotation|182

IM.1.9 Closing raw processing status window does not stop update |
JSON messages tobesent|. 182

IM.1.10 Pressing "select all” in the convert view allows reconversion|182

CONTENTS 9

IM.1.11 Pressing "upload experiment” when editing an experiment |
causes the "update annotations” button to stop working| . 182

IM.1.12 File selection in process view should be improved|. 182
IM.2 Android application| Lo oo 182
IM.2.1 Processing|. 182
M.2.2 Convert between file formatsl 183
............................ 183
IM.3 205 application| 183
IM.3.1 Processing|. L. 183
IM.3.2 Advanced Searchlo o000 183
M.4 D Dl - - e 183
M.~ D Dl - . 183
D5 Servero 185
IM.5.1 Business logic|. oL 185
M52 HTITP Headersl 185
IM.5.3 Processing|. L. 185
M54 Apiary|.o 185
IM.5.5 Upload and download| 185
IM.5.6 Process limitations|, 185

PREFACE i

Preface

This documentation describes the Genomizer project conducted during the
spring of 2015. The project is a part of the course in software engineering named
Programvaruteknik(5DV151) given by Umed University. The course is given to a
mix of students. Some studying for a master and some for a bachelor degree in
computer science. Hence different kind of knowledge exist within the student
groups.

The documentation has two purposes. 1) To give the possibility for tutors
to assess the project and grade the students on their work. 2) To describe
the project and all parts of the developed system. The target audience of the
system description are three subgroups: end users, system administrators and
developers.

End users are epigenetic researchers. Developers are students of the course
(current and future). System administrators are both students and personnel
responsible for maintenance of the system.

The origin of the project is a perceived need from the epigenetic research
department at Umed University. The wish is to make a more efficient pipeline
for the computational parts of their research. An automated pipeline where
knowledge of the parts involved is kept to a minimum. The automated pipeline
would result in less time spent on data entry and more time available for analysing
data or conducting experiments.

Changes last version

Only Chapter 1 is left completly untouched.

Acknowledgments
e Jonas Andersson: Great technical support and workflow support.
e Jonny Pettersson: Great support on the group dynamics.

o Jan-Erik Mostrom: Great feedback on documentation.

CONTENTS

ii

Developers spring 2015

Data Storage
Nils Gustafsson
Albin Rastander
Jimmy Sihlberg
Martin Larsson
Erik Samuelsson
Fredrik Uddgren

Desktop

Viktor Bengtsson
Maximilian Bégling
Christoper Fladevad
Jonas Hedin

Petter Johansson
Marcus Loow

Oscar Ottander

Processing

Adam Dahlgren Lindstrém
Carl-Evert Kangas

Emil Nylind

Mikhail Glushenkov

Saimon Marouki

Mobile Applications
Erik Berggren

Jesper Bilander

Victor Bylin

Pal Forsberg

Petter Nilsson

Mattias Scherer

Business Logic
Johannes Ekman
Alexander Frisk
Tim Hedberg
Mikael Johansson
Mikael Karlsson
Stefan Lindstrém

Robin Ramquist

‘Website

Ludwig Andersson
Niklas Fires
Andreas Giinzel
Pascal Hansson
Patrik Horngvist
Anna Jonsson

Bjorn Pers

Editorial Staff: Mikael Johansson, Erik Samuelsson, Marcus Loow, Jesper Bilander, Patrik

Hoérngvist.

2015/11/10Mikael Johansson

ii

CHAPTER 1. INTRODUCTION iii

1 Introduction

Genomizer is a system for storing and analysing DNA-sequence data. It was designed for
researchers in the field of epigenetics, who are interested in where on a DNA string certain
proteins binds. In order to get this information, experiments are conducted and raw data
files collected. These data files are then converted, in a series of steps, to files suitable for
analysis. These files are hence refered to as profile data. Genomizer allows the researchers to
upload raw files to a server and automate the generation of analysis data as well as store the
generated analysis data in a database for later access.

The documentation contains three main parts. Introduction chapters that explain the goal
of the project as well as a non-technical description of the project implementation. The
development part of the document where the current implementation of each part of the project
is explained how they look and work as well as an attempt to explain why certain design
choices where done. Then finally there is a big collection of appendicies that goes deeper in
their explanation of certain details of the implementation as well as maintenance guides.

iii

CHAPTER 2. TARGET GROUP AND NEEDS iv

2 Target group and needs

The Genomizer system was designed with a specific target group in mind: Epigenitic researchers.
This chapter will explain the needs of these users, the problems they faced before this system
was provided and the requirements that were collected and taken into account during the
project.

2.1 Target group

The target group for the Genomizer system is Epigenetic Cooperation Norrland (EpiCoN),
a diverse group of researchers at Umed University made up of many different nationalities.
Their main communication language is English.

EpiCon are involved in the research of how proteins bind to DNA strings and its effects.
Experiments are carried out which yield large amounts of raw data. This information, combined
with knowledge about the location of genes within a given genome, enable the researchers to
gain valuable information about which proteins are active in enabling and disabling genes.
These results are important in the study of how cells “remember” which genes should be
enabled after cell division.

Previous to the Genomizer project the raw data files retrieved from experiments were manually
processed by the researchers using inefficient Perl scripts. This process also involved using
Bowtie[l], a program used to unscramble the DNA data, and LiftOver|2] which is used to
adjust results to conform to different genome releases.

The researchers at EpiCoN have varying computer skills. While they all have basic computer
knowledge, not all are familiar with more advanced computing tasks such as running scripts at
command line level. As such, some researchers have become dependent on others to process
the raw data. At EpiCon the researcher that has the knowledge to use all the scripts and
software performs many of these time consuming tasks for other researchers.

From time to time students of molecular biology are interested in working with the data,
however their access is limited to viewing and analysing the data.

2.2 Client needs

The researchers at EpiCoN need a system to structure the large amount of genetic data they
use daily. The requirements, as described below, were collected and handled as a number
of user stories, each of which describe a desired function from the end users perspective. A
complete list of the user stories are presented in on page [T12] A overview of the
requested system may be seen below in ‘Where orange colored nodes are must have
features while gray nodes are visions of the clients that may be implemented if time allows for
it.

There are three main data types used in the research and that the system should handle:
raw, profile and region data. Raw data is the raw output from an experiment and cannot
be analysed directly. It is first processed to so called profile data. Profile data describes the
amount of reads found for every base—pair in an organism’s genome. Region data is further
processed profile data consisting of the regions where every base—pair’s read strength is above
a given threshold and fault tolerance. The region gets a value based on the average of the
base-pair reads for the given region.

CHAPTER 2. TARGET GROUP AND NEEDS A\

Processing Upload Visualization

l
p

Analysis |[«—> D Zm— Quality
Control
Download Format Conversion

Figure 2.1: Overview of targeted system

2.2.1 Upload & Download

When conducting experiments the researchers generate raw data that generates what they call
Raw-files. These files along with profile data, region data and genome release data may be
added and related to an experiment. The requested functionality is to be able to upload these
files to the database from multiple sources. The sources may be directly from an experiment
conducted by the researchers or from official publications.

When results are published in scientific articles the raw data from the experiments are often
also provided. One location where these raw data files can be published is the GEO (Gene
Ezpression Omnibus) database. A desire to be able to initialize an upload to Genomizer with
the source of the upload beeing GEO.

2.2.2 Database

The Database module requested has the purpose to archive experiment data in a way of
easy access. To allow for this the experiments and files associated with them needs to have
information vital for good readability. This is solved with the help of annotations. The
researchers must add annotations to files related to an experiment. This data is the foundation
for further research and so must be stored securely. To ensure security the client requested a
system for authorization that protects the data from outside tampering. To protect against
hardware failure there exists a request for a backup system.

2.2.3 Processing

The unordered raw data gained from an experiment requires processing in order to be analysed.
The researchers have written a number of scripts and, when combined with the BowTie
algorithm, generate profile data. In this format the DNA pieces are ordered and mapped to
the DNA string. It is important that the system automates this process so that all researchers
can easily process the large raw files.

As new discoveries are made in the area, new standards for the order of the base pairs in
a DNA string are set. This results in a new Genome Release for a specific species. These
are obtained as a set of files specifying this order and are used in the processing of raw data.
Genomizer must support the uploading of new sets of genome release files to be used in
processing otherwise the system will very quickly become outdated.

It would also be an advantage if the system could carry out further processing from profile to

CHAPTER 2. TARGET GROUP AND NEEDS vi

region files.

After processing, the resulting data files should be annotated and saved in the database
alongside their parent files. It is important that the parent files remain traceable and that the
parameters used in processing are saved so that the process can be repeated and confirmed.

2.2.4 Format Conversion

Genomizer should also provide a way to convert profile data files between different genome
releases. This involves the ability to upload new Chain Files which enable conversion using
LiftOver and the embedding of this program. The LiftOver program compares the differences
between two genome releases and converts it to one update genome release.

It is not uncommon to discover errors in a new release after publication, thus it is important

to store files generated using older genome releases, even though newer releases has been
published to allow for LiftOver conversion.

vi

CHAPTER 3. SERVICE DESCRIPTION vii

3 Service description

This chapter will present an overview of the services that the Genomizer system currently
provides.

3.1 Usage

Data Storage Processing

Server

Internet vvvvvvvvvvvv

Desktop Mobile applications Web

User Input |-

Figure 3.1: Communication diagram of the product

In order to give the users flexibility when using the service there are clients for many different
platforms (Windows, Linux, OSX, Web, Mobile devices). When a user chooses a given task,
for example start raw to profile processing. The task i sent via Internet to the server as shown
in The server then handles the request and return a response back to the user.

3.2 User Input

The user input in the Genomizer system may be done with four different clients: a desktop
client, a web client, an Android client and a ¢0S client. The last two clients are collected
under mobile application since they offer the same functionality.

3.3 Desktop

The desktop client is the main client for the Genomizer system. It offers the following
implemented functionality.

e Login and logout.

e Searching for experiments and different files.

vii

CHAPTER 3. SERVICE DESCRIPTION viii

o Create new experiments.

o Modify existing experiments.

o Upload files to experiments.

o« Download files from experiments.

e Process files from raw to profile.

¢ Delete files and experiments from the database.
e Add annotations to experiments.

¢« Remove and modify annotations.

e Search annotations by name.

¢ Upload, remove and rename genome release files.

3.4 Web

The web client runs, without any installation, in a web browser and mimics most of the
behaviour and functionality of the desktop client. However, adding and removing users is not
possible in the web client. Neither are there different user rights that give users different access
and permissions. There is only one right for all users.

3.5 Mobile application

Due to the limited storage available on mobile devices it is not appropriate to enable uploading
and downloading of files, however the mobile applications enable the searching of files in the
database and the scheduling of processing procedures for the conversion of raw to profile data.

3.6 Server

The purpose server is to take care of the organizations of files and experiments as seen in the
top part of as the part Data storage. The server also serves as a processing tool of
the files added to the Data storage.

3.6.1 Data storage

The main purpose of the Genomizer system is to centralize all data. To enable this a user can
annotate and upload data to the server using both desktop and web based clients. Uploaded
files are organized in Ezperiments which are the representation of actual experiments in a
laboratory. An experiment acts as the logical container for files that are related to each other -
it can hold many files of different types (raw, profile and region). These files can either be
uploaded directly by the user or generated from processing by the server.

Advanced database searches can be performed on the annotations to find previously uploaded
data. When the required data is found the user can choose to download the files or request
that they be processed on the server.

3.6.1.1 Annotations

Annotations is a way for the researchers to keep track of what an experiment consists of as
well as files associated with an experiment. Genomizer has two kinds of annotations. There

viii

CHAPTER 3. SERVICE DESCRIPTION ix

is multiple-choice annotations which have a defined name and choices. An example is the
annotation named species that have the choices human, fly and rat. Then there is free text
annotations where the user may enter what they want.

Dynamic annotations must also be managed in order to keep the system clean and up to date.
Genomizer therefore provides full editing options for existing annotations if the user have the
credentials. This includes the editing of mulitple-choice annotation choices and the removal of
unused annotations.

Example 1 If the user has an experiment that was conducted in
zero gravity and the database does not have the annotation field
“Zero Gravity” the user can add this as a new annotation. In this
case a Drop Down annotation type may be appropriate, with the
simple choices “yes” or “no”. Of course it is also possible to leave
the annotation type as Free Text which enables users to write freely
the value of the annotation.

3.6.2 Processing

Users can request that a raw file set be processed to profile files. This procedure is carried
out by the server to avoid heavy workload and the requirements of certain programs on the
clients side. The processing carried out between raw data and profile data involves a number
of different steps. The user can choose which steps are carried out and the various parameters
used.

3.6.3 Profile data conversion

The server can be requested to convert between different formats of profile data. The conversions
currently handled by Genomizer are gff, sgr, wig and bed. These formats are specified by the
Genome Bioinformatics Group at UC Santa Cruz[7]. Since different formats carry different
amount of information or meta data, conversions from each file format to every other is not
possible.

Part 1

Development

CHAPTER 4. ARCHITECTUAL DESIGN 2

4 Architectual design

To get an understanding on how the system is designed as a whole, this chapter will try to
explain the architecture of the system on a more broad level and design choices that is to
expensive to change at the current point in the project.

4.1 System overview

The Genomizer is a server-client architecture. It consists of four different clients: a web client,
a desktop client and a two kinds of mobile clients. The mobile clients are implemented in
Android and ¢OS. The server side consists of three components, a web server that acts as a
proxy, a Java server that connects to the final component a postgresql database.

The web server is a Apache system in the current implementation.

Web Desktop Mobile

~ 1 7

Web server
Proxy

!

Genomizer

¢
D

Figure 4.1: Overview of the system architecture

The connection to the server from any client goes through the web server which acts as a proxy
as well. This to insure a SSL connection between the web server and the clients and a regular
connection between the server and web server. The proxy protects the web client from XSS
(Cross site scripting).

All of the clients use the RESTful protocol where the message body consists of a JSON object.
These messages are requests that gets passed through the web server to the Genomizer server.
The Genomizer server communicates with the database to perform the request. Then it
generates a response following the RESTful protocol. The RESTful protocol is used to promise
that the server will be state-less. State-less meaning that a request from a client can not lock
the server for other clients requests.

The different requests that can be sent to the server are defined in on page [132]
that goes into deeper detail about the API.

The architecture of the system can be seen in Figure @where the clients are the colors blue,
yellow, and red. Web server is green and the Genomizer server and its database are colored
orange.

CHAPTER 4. ARCHITECTUAL DESIGN 3

4.1.1 Genomizer clients

All the clients that are part of the Genomizer service are implemented using the architectural
design pattern MVC (Model View Controller). This pattern is based around keeping the
logic and data separate from its representation and user interface. The basic idea is shown in

figure

Communication Controller

o
o
o
iy
O
o
9 ®
+ N A
o mi
15}
P
n
o~
=

Model > View

Represent Show GUI

Figure 4.2: Basic MVC pattern.

The view will contain lists of experiments and annotations, data regarding process status, and
other information. It will also present the user with windows and buttons that present and
allow data to be manipulated. When a user interacts with the graphical interface the action
will be handled by the controller using listeners. This in turn modifies the model; representing
the data and information, as well as the operations available on it.

For this project a communication part is also necessary; often as a part of the model. As
mentioned in the overview section above, the communication is performed via a RESTful
protocol using JSON requests and responses. JSON is used because it is easy to parse and is
directly compatible with the standard frameworks used in the web client.

The advantage of this approach lies in the separation of the interface- and logic-code; allowing
one to be more easily replaced or modified. In our case the communication data and interface
can be kept the same, while the client representation of it can be changed freely.

4.1.2 Genomizer server

The server is devided up in three main components, the front end, the data storage and the
processing.

The front end consist of a handler for the A PI requests mentioned above. The handler interpret
incoming request and passes them through to either processing or data storage depending
request type.

Data storage makes up the back-end of the server. Its purpose is to communicate with the file
system and the database to return the correct information that was requested by the front-end.

The processing component of the server has the purpose of interpreting the raw files and
convert them to profile data. This conversion is very heavy on the hardware of the server, thus
the processing needs to be scheduled to times when user activity is low.

shows a simple flow diagram which describes how the client and server communicates.
The particular example shows the data flow when the client process a file. In the figure the
front-end is the communication node while data storage makes up the database node and

CHAPTER 4. ARCHITECTUAL DESIGN 4

processing the final process node.

Grart proces®
HTTP Request Routed request Server SerVer

Client Proxy (Communication) (Process)
Send jng,

Database call

Server
(Database)

Figure 4.3: The flow of a request through the server.

Every request the client does creates a non persistent connection to the server. When the
server receives a request it checks which kind of request it is and routes it to the communication
part of the server.

When the request is routed to communication a specific command is created. The command is
an object which consists of information from the RESTful-header and JSON body sent from
the client. The command is then parsed and sent to different parts of the server, usually the
database first, which returns information from a SQL query. Depending on the requests this
information can later be used, for example, to process a file or be sent back to the clients
directly.

The clients are always going to receive a response code after each request, but in some cases
the respond also contains a JSON body with information which can be shown to the user. This
is the case for requests like getAnnotations. The response can also contain error messages,
describing what went wrong when executing the command.

After a client receives the response the connection with the server is closed and a new is opened
with the next request.

CHAPTER 5. INTERACTION DESIGN 5

5 Interaction design

This chapter goes into detail on how the graphical and interactive parts of the clients are
designed. It starts with a general view of the interaction design and then divides into chapters
based on the different clients.

5.1 General view

Since the Genomizer application is first and foremost about handling important data, it is
crucial to allow the user to be in control but still to protect and preserve the data that is
already in the system from non-authorized users. That is why Genomizer uses a log in screen
to reassure that only authorized personnel can access the server data.

The workflow of Genomizer is intended to be as natural as possible for the users and to be
easily integrated into their daily work routine. Furthermore, simplicity is favored, the clean
and consistent design that stretches over platforms facilitating the tasks without adding the
distraction of any unneccessary features.

5.2 Desktop client

Screen clients use a tab based navigation between views, these tabs are shown at the top of
the user interface. The common views in the current system are search, upload and process.

Search results are displayed in a table, experiments can be expanded to reveal the files contained
in the experiment. The files in an experiment are grouped by types where each type consists
of a row in the table that may be expanded to reveal the files of that type.

The upload view consists of experiment groups. Each experiment group contains a set of input
fields for annotation and a list of files added to this experiment. The user may create new
experiments in this view or add files to an existing experiment, multiple files may be added to
multiple experiments simultaneously.

The base for the process view contains a set of input fields for the parameters that are to be
used when processing a file.

5.2.1 Windows/OS X /Linux application

The first thing a user will see when starting the desktop client is the login window (see
Figure 5.1)). The window prompts the user for user name, password, and a server IP to connect
to. If the correct credentials are entered, the user will be logged in and taken to the next screen.
If the user enters an invalid password, user name, or server, an appropriate error message will
be displayed as seen in[Figure 5.2} This feedback informs that user the login was unsuccessful.

After the user has been successfully logged in, the main window will appear (see .
The main window is built with tabs to simplify work by letting the user easily switch between
different views for different work tasks. Each tab is described by appropriate name and contains
related functionality. The main window also has a log out button. This button is of little
importance, and is therefore located in the upper right corner.

At the bottom of the main window a status panel is located. The status panel gives feedback
from different tasks executed by the user. When a task is executed successfully, the color of
the status bar will turn green, and display a message. In case of an unsuccessful execution,
the status bar will turn red, to indicate that something went wrong.

CHAPTER 5. INTERACTION DESIGN 6

Genomizer Login

MName Username

Password bk

IP 127.0.0.1

Login

Figure 5.1: The login window.

Genomizer Login

Login failed, invalid
username

MName Usernam

Password HhRERA

IP 127.0.0.1

Login

Figure 5.2: The login window with an error message after a failed login.

From the search view (see the user can build search queries and look up existing
experiments. The search view has been designed to have a similar layout and interaction as
the advanced search tool on the site http://www.ncbi.nlm.nih.gov/pubmed/advanced. The
researchers are familiar with this site, so they can recognize interaction elements from it when
using the search function of the desktop client.

To search for experiments the user can click the magnifying glass. This icon is well-known and
often associated with searching. The icon is located next to the search field, so that the user
can easily understand that the search field and the icon are connected. The user can also press
the enter key to perform a search, without letting go of the keyboard, making the interaction
faster. Next to the magnifying glass is a button for emptying the search field. The button has
an icon depicting a trash can — a well-known metaphor for removing or emptying things.

From the upload view (see the user can create new experiments and upload files to
them. When creating a new experiment the user is forced to fill in some fields. These fields
have been given a bold-texted label, to indicate that they are of more importance than the
others. A text below the fields also states that bold fields are forced. Non-forced fields are
labeled with non-bold text.

To inform the user that information is missing, constraints has been put on the buttons for
creating the experiment. If any forced field has not been filled in, or no files have been added

for upload, these buttons will be grayed-out and cannot be clicked.

For each file added to the experiment there is a progress bar. This bar gives the user feedback

http://www.ncbi.nlm.nih.gov/pubmed/advanced

CHAPTER 5. INTERACTION DESIGN 7

Genomizer
testuser 2
SEARCH | UPLOAD | PROCESS | WoRKSPACE | ADMINSTRATION | converr] | 1

Gemomizer Afvanced Seerch Bulier -
- Add to workspace | | Upload to experiment
B Tssue Species c
+ erpoct [na [Hom I

+ o0z [na ey 1

+ exp003 [na TRat 1

s successurs materes.

Figure 5.3: The Genomizer desktop client’s main window. The window have
tabs for different views (1), a log out button (2), and a status panel for feedback

(3).

Genomizer Advanced Search Builder

e
(®) Query Builder () Manual edit ‘ [ExpID] " Q m

ExplD v +

Figure 5.4: The search view of the Genomizer desktop client with the icons
for search and emptying the search field highlighted.

on upload process. Each file also has its size displayed after its name. This gives the user an
idea of how time consuming the upload will be.

Experiment ID Tissue Stage Species Sex

Exp00L 1 | Human v] [=
Bold text indicates a forced annotation. | 2

d_melanogaster_fb5_22.rev.2. ebwt [20.3 MB) 5

0% 1 | Raw] o cR X | select: (J

Browse files ‘ Create with selected files | | Create with allfiles ‘3

4

Figure 5.5: The upload view of the Genomizer desktop client. An empty
forced field (1), as stated by the bold-texted label (2), makes the upload buttons
(3) grayed-out. The upload progression bar (4) and the size of the file (5) gives
the user an idea of how time consuming the uploading process will be.

The workspace tab lets the user easily manage files and experiments. Files and experiments in
the work space are listed the same way as search results in the search view, making the design
consistent throughout the system. The workspace view has easy access to the download and
process functions.

The administration view (see is divided into two seperate views, one for managing
annotations and the other one for managing genome releases. The division of the views makes
the interface less cluttered and less confusing, and also increases the cohesion of the views.
The user can easily switch between the views by clicking the the tabs on the left-hand side.

To improve the feedback when errors occur, an error dialog (see will be shown. The
dialog explains what went wrong and why the error occurred. The user can find additional
information about the error by clicking a button labled 'More info’. This information can be
useful for system administrators, developers or support, but not for regular users (which is
why it is initially hidden).

CHAPTER 5. INTERACTION DESIGN 8

[SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION |
System administrator tools

Annotation
Genome files || Name

Development Stage
Tissue

Species

Sex

Figure 5.6: The administration view showing part of the view for managing
annotation. The highlighted tabs to the left let’s the user switch between views.

Couldn't add new experiment
0 Invalid characters in experiment name. Valid characters are: ™, A-Z, az 0-9, space, _and .

Error code: 400

Time of occurrence: 2015-05-20 14:20:29

User name: testuser

User token: 555c0ae3-2c2e-4ab5-9a05-09ef6284f404

OK Less info

Figure 5.7: An error dialog that explains that the user have entered invalid
characters for an experiment name.

5.3 Web application

Generally, the design of the user interface for the web application is an integration of the
principles previously described with core design elements of web and the twitter bootstrap
element library.

5.3.1 Layout and Structure

The structure of the application is in most cases shallow, the navigational depth is usually two
steps but sub views with modal views may result in a depth of 3. There are three types of
views which are hierarchical in some way, main views contain sub views and modal views, sub
views may contain modal views.

« Navigation bar: A navigation bar is a menu that contains an overview of the func-
tionality in the form of, in this case, tabs that leads the user to other views and that
is always visible for the user to allow easy navigation. The navigation bar for the
application can be seen in [Figure 5.8 Since the most important parts of the application
is to be able to upload, process and convert files, these are each a natural part of the
navigation bar (although conversion is not yet implemented and therefore not shown in
the figure).

¢ Main views: A main view covers the entire page except for the navigation bar. The
structure among main views is shallow and the user may freely navigate between all
main views using the navigation bar. Typically a main view contains a toolbar and a

Genomizer Search Upload ~ Admin Q~ Logout

Figure 5.8: The web client navigation bar.

CHAPTER 5. INTERACTION DESIGN 9

@ Genomizer x

@“ \ﬁ‘ @‘ [hagrid.cs.umu.se:8090/#admin ‘ﬂ? =
Genomizer Search Upload Admin Q- Logout

Annatations Create New Annotation

Gename-

releases | E-’:ar-zh Annotation
Name Values Forced
Development Stage freetext false Edit
Tissue freetext true Edit
Species Human Fly,Rat true Edit
Sex Female Male,Unknown Does not matter false Edit

Figure 5.9: The web client administrator main view.

Login

Username

Password

Figure 5.10: The login modal.

set of panels. shows the administration main view.

e« Sub views: A sub view is a part of a main view. In the case of the administrator view
seen in [Figure 5.9] the main view has a vertical navigation bar on the left side used
to navigate between sub views, sub views may not be directly navigated outside of its
main view. The user may navigate to other main views from a sub view. Except for
the sub navigation bar the sub view covers the entire main view, replacing its content,
as does the annotation view in this case.

¢ Modal views: Modal views are opened on top of the current main view and are used
for specialized operations. Modal views can be navigated to using buttons inside main
views and sub views. Usually the user will be taken back to the previous view when the
modal is closed but navigation in a sequence of modal views could be implemented in
the future. An example of a modal view is the login view seen in [Figure 5.10}

o« Panels: Content that belongs together is grouped using so bootstrap panels. Main
views and sub views should contain one or more panels.

e Toolbars: In main views and sub views we use a toolbars where operation controls
available to the user are presented, for example, add and search experiment functionality
in the upload view.

CHAPTER 5. INTERACTION DESIGN 10

« Popovers: Elements that belong to a view but have no need to be visible at all times
are shown in bootstrap popovers. Popovers that do not belong to a specific view may
be placed in the navigation bar, that is, the main menu.

5.3.2 Colors

Grayscale colors are mostly used, black or dark gray is used for text, icons and borders while
white or light gray is used for backgrounds. Colors of different hues are used to distinguish
elements from each other and to highlight important elements. Colors with high saturation
are reserved for smaller elements while colors with lower saturation can be used regardless of
element size. Light gray of varying brightness may also be used to highlight or distinguish
elements.

5.3.3 Icons

Buttons that perform actions should always contain an icon as well as text so that the
experienced user may more quickly desired actions by identifying buttons at a glance instead
of having to read the button text.

5.3.4 Batching

For operations performed on objects that there are multiples of e.g. experiments or files, let
the user perform these operations on multiple objects at the same time in cases where it makes
sense using checkboxes.

5.3.5 Processing

The interaction flow of the processing is adapted from the actual processing steps in order to
help the researchers by increasing usability through providing a well-known but more optimized
approach.

After having chosen an experiment for processing and entered the processing view, the user
can choose the processing steps wanted and enter the correct files and parameters for each

processing step as shown in [Figure 5.

5.3.6 System administration

The admin page is built up by a number of components: the main view, the side bar, the
create annotation view, the edit annotation view and the genome-release view. The first one is
the main view which consists of a sidebar and an empty div-tag. The empty div-tag is then
replaced with the annotation list view which has a Create new annotation button and a list of
the available annotations on the database with an option to edit.

When the user clicks on for example Create New Annotation, the div tag in the main view
is replaced with the create annotation view. The same goes for the Edit buttons on each
annotation. This way we only have to render that specific div-tags current information and
the sidebar is unaffected.

The design is made so that the user should be able to avoid mistakes. For example in the
create annotation page the user is not able to create an annotation without filling in all the
fields. Futher more the field for Items in drop-down list is disabled if the user don’t choose
Drop-down list as the annotation type.

10

CHAPTER 5. INTERACTION DESIGN 11

Genomizer Search Upload Process Convert Administration Q- Log

Raw to profile

Infile QOutfile Genome Parameters Keep .SAM
release
file! fastq . result! hgte v @
file1 fastg v result2 hglt -a-m2-
¥
Smooth
Infile outfile window Mean/median Min
size smooth
resultt resultd 2 mean A 1
¥
Smoath v Add

Figure 5.11: Files selected for upload.

In the Edit annotation view the same principles apply, but also there is a Delete Annotation
button on this page which will delete the entire annotation from the database.For that reason
we decided to ask if the user is sure of this action and of course made the button red.

The back buttons on the different views work as one would expect and the sidebar option
Annotations takes the user back to the main adminview.

The sidebar item ”Genome-releases” takes the administrator to the page for adding and editing
genome-releases. This page have the same look and feel as the previous. The delete buttons
are red and will prompt a confirmation-popup.

The ”Select files to upload” will as expected open the file explorer and the user chooses files
according to normal operativesystem standards, then the "Upload” button will prompt the
user for information about the files such as species and genomeversion before uploading.

5.4 Android

The Genomizer Android application was designed to allow for a quick search of the database
while on the move. It also makes it possible to start processes in advance so that the data is
ready when further work and analysis is to be done. The application will also provide a way
to continuously view the status of active processes on the server.

The application was designed in close collaboration with the ¢OS application in order to
provide a consistent experience on both plattforms. We did, however, find it necessary to take
into consideration some of the Android specific design paradigms which distinguish Android
applications from other smart phone platforms. In this section the layout and design decisions
will be described.

11

CHAPTER 5. INTERACTION DESIGN 12

5.4.1 Login view

There are two textfields available for the user to type username and password and a button to
click when user is ready to log in. This is a popular layout for many login screens and thus a
design many users are familiar with.

@ cenomizer2.0

Genomizer 2.0

Signin

< (o] o

Figure 5.12: Login view

5.4.2 Search view

The design illustrated in show the search view, which is also the view the user is
presented with upon successful login. The search annotations are displayed in a list and it is
easy to learn how to search. Scroll bars are used for multiple options and textfields are used
for free text. At the bottom of the view there is a button to press in order to start the search.

=@ search and process

PuBMED

Search

Figure 5.13: Search view

5.4.3 Search result view

The design illustrated in show the search result view. The result is shown in a list,
sorted by experiments. The list displaying search results is large to facilitate usage for user and
to take advantage of the screen space. It is easy to learn how to navigate the list. Scrolling is
available if the list is long and if the user clicks on an experiment they are redirected to the
experiment view displaying more information about that experiment.

12

CHAPTER 5. INTERACTION DESIGN 13

=@ search and process

Search result

Experiment ExpSmall
Development Stage -]

issue
Species Insect]

Figure 5.14: Search result view

5.4.4 Experiment view

The design illustrated in shows more information about a specific experiment. All
files associated with the experiment is displayed here and sorted by type (raw, profile and
region). The button Go to process at the bottom takes the user to the process view, where
the user can process all raw files associated with the experiment. If no raw files should exist,
the button will be disabled.

=@ search and process
EXPERIMENT FILES

RAWDATA
file1 fastq

PROFILE DATA
filel.sam

REGION DATA

Go to processing

< o o

Figure 5.15: Experiment view

5.4.5 Search settings view

The design illustrated in is showing the view for search settings. This is a way for
the user to select annotations to be displayed in the search result view. The user can select
annotations by checking the checkbox next to the annotation name. The user can also select
on how to sort the experiments. This functionality gives the users the possibility to design the
search result view the way they want to have it, which often is appreciated.

13

CHAPTER 5. INTERACTION DESIGN 14

=@ search and process

Set visible annotations
Development_Stage
Tissue

Species

d 49

Sex

Sortby

Development_Stage

Check All Uncheck All

Figure 5.16: Search settings view

5.4.6 Process view

The design illustrated in is showing the view for processing. This enables the user
to start a process from raw to profile. The only selectable input files are the ones that exist in
the experiment. The Parameters button enables the user to change the Bowtie flags. The
plus icon in the action bar adds a new entry, and the cross removes the associated entry.

=@ search and process &

nput file

 J

file1.fastq 4
Genome release

hg19 , Parameters

output e Keep sam
file1.wig

Process

Figure 5.17: Processing view

5.4.7 Active processes view

The design illustrated in [Figure 5.18|is showing the view for active processes on the server. The
user is automatically navigated here when the Process button in the process view is clicked.
The user can here choose to remove any process on the server.

14

CHAPTER 5. INTERACTION DESIGN 15

=@ Active processes

Experiment: processpool_test ®
Author. UNKNOWN_AUTHOR

fed: 6/2/158:53 AM

ted: 6/2/158:53 AM

Experiment: processpool_test %
Author. UNKNOWN_AUTHOR

Process added: 6/2/158:53 AM

Process started: 6/2/15 853 AM

Process finished: Pending
Status: Started

Experiment: Expl ®
Author. UNKNOWN_AUTHOR

fod: 6/2/158:53 AM

Refresh

N o u]

Figure 5.18: Active processes view

5.5 i0S

Focus has been on making a nice looking application with an intuitive workflow and to follow
the 708 design principles. Some of the design decisions are motivated in the text below.

5.5.1 Tab bar

A tab bar is used to make access to different main functionalities available at all times. Big
and clear icons are used to show the user which view they all represent. It is also possible to
simply swipe between the different views to increase the speed of which the advanced user can
use the system. The tab bar is designed to always be located at the bottom of the screen after
the user has logged in. It can be seen in most pictures of the {OS-application, a good example

is at the bottom of [Figure 5.10h.

5.5.2 Login Screen

The login screen has two responsibilities; to make a nice first impression and to make it easy
for the user to login. The design is kept simple and clean to avoid distractions.

5.5.3 Search View

The search view is designed to be usable for both advanced and new users. A list with available
annotations is displayed to make it easy to do basic searches fast. Some annotations can only
be selected with a picker view, while others are edited by typing free text. The reason for
the occurance of the picker views is to simplify searches and help the user to make correct
search requests. For example, the sex of an individual can only be male, female or unknown.
Other values for the sex annotation would be nonsence! The search button disappears when no
annotation is selected to decrease the chance of user sending empty searches and to increase
the understanding of the switches.

15

CHAPTER 5. INTERACTION DESIGN 16

Carrier & 2:07 PM 1) Carrier ¥ 2:07 PM (-

Search I Search K4

7

Fly

Male

olle

Q Q

Figure 5.19: The search screen.

Each annotation has a corresponding switch button as seen in [Figure 5.19p-b. The button
determines if the annotation should be included in the search request. This make it easy to
make small changes to the search, while not clearing the annotation values.

The advanced user can customize the search query sent to the server. This gives the user
the possibility make more complex search queries and possibly make use of already acquried
PubMed-search proficiency.

5.5.4 Search Result View

The main purpose of the search result view is to give an overview of the search results. The
challenge with this view was to summarize large amount of information in a small area. The
small screen of the {Phone made it impossible to have columns for each annotation. Instead a
decision was made to group the files by experiment as seen in The table with
the experiments will only expand vertically, both when the number of shown annotations and
the number of experiments grows. Thus, the user never has to scroll sideways which would be
awkward.

16

CHAPTER 5. INTERACTION DESIGN 17

Carrier & = 2:06 PM -

{ Search Search Results Edit
Name: ExpBig
Created by: ?

Species: Insect
Tissue: ?

Name: ExpSmall
Created by: ?
Species: Insect
Tissue: ?

Q

Figure 5.20: The search result view.

The user can choose which annotations to display in the result view. This gives the user the
possibility to only show the annotations which are interesting at the moment.

The files view (see)7 which is shown when the user selects an experiment, only
contains the filename of the files in the specific experiment. The annotations is not shown in
this view to avoid information overload and to give the user a good overview of the files. The
purpose of the plus-symbol next to each file is to add as many files as the user wish to use
when selecting processes. More information can be seen when the circled ’i’ to the left of the

filename is tapped, an example of this can be seen in [Figure 5.21p.

17

CHAPTER 5. INTERACTION DESIGN 18

Carrier ¥ 2:06 PM [
< Back Files
Raw data

@ smalltest1.fastq

@ smalltest2.fastq

File About

Profile data Filename: 65
Date: Apr 20, 2015

Name: lab2g7.m
Experiment ID: 132123123
Metadata: astringofmeta
Author: namn

Genome Version: Not set!
Speice: Fly

@ stepTestinfile_step20.sgr

(i) smalltest176549.wig
stepTestlInfile.sgr
stepTestinfile_step20iossmo...

stepTestInfileiosstep.sgr

Close

© 00 6
CHONONOMONORNNCONC)

stepTestInfilesmooth.sgr

Figure 5.21: The file view.

5.5.4.1 Create processes

The view to create a process is focused on the user’s current workflow. The user wants to use
the selected files from the files view as input and then select a specific process on those files,
which creates output-files to be used as input-files in another process. This creates a sequence
of processes which the server will execute one process at a time. Moreover each input-file
for a process will be executed parallel with eachother. The input-files and the output-files
are separated by the process which will be executed on the input-files. To make it easy to
understand what will be executed on each step of the sequence the separator between input-files
and output-files is the name of the process and an arrow from the input-files to output-files.
The color of an output-file will have the same color as its corresponding input-file to track a

file’s conversion-process, from start to finish, see —C.

18

CHAPTER 5. INTERACTION DESIGN 19

Carrier & 2:04 PM (- Carrier & 2:05 PM - Carrier & 2:05 PM (—

£ Files Make a Process Done < Files Make a Process Done £ Files Make a Process Done

stepTestinfile_step20.sgr stepTestinfile_step20.sgr

Mean Switch
stepTestInfile.sgr
stepTestinfile.sgr
Mean
stepTestInfile_step20.sgr
stepTestinfile_step20.sgr Mean

stepTestinfile.sgr

stepTestinfile_step20.sgr

Clear Add Process Clear Add Process Clear Add Process

Q ‘ Q 3oh Q
a b C

Figure 5.22: Creating a process

5.5.4.2 Processes

As visible in [Figure 5.23] we chose to build the processing status view with a simple tableview,
to make it dynamic and easy. We also think this gives the user the best possible overview of
current processes. The status is color coded to make it as easy as possible for the user to see
which processes are in which state.

Carrier & == 2:06 PM —

Processes

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 4m ago. Started 4m ago.
Finished

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 4m ago. Started 4m ago.
Crashed

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 5m ago. Started 5m ago.
Crashed

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 7m ago. Started 7m ago.
Crashed

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 8m ago. Started 8m ago.
Crashed

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 8m ago. Started 8m ago.

Figure 5.23: The process status view.

19

CHAPTER 5. INTERACTION DESIGN 20

5.5.4.3 Alerts

Alerts are simple banners animating down from the top to give the user a heads-up of what is
going wrong and what is going the way it is expected. The user can tap the banner to dismiss
it or if nothing is done it will animate away in 2 seconds. The banners were introduced to
not stop the user with prompts which the user has to react with to be able to further use the
system. A red banner, as seen in [Figure 5.24] indicates an error and a white with a green icon,
indicates something went as expected. The colors are used to allow the user to just notice
which color pops down and give them somewhat of an understanding of what is going on
without having to read the text every time.

Multiple file types
Multiple file can't be sent to
process at the same time.

Raw data

@ smalltest1.fastq

@ smalltest2.fastq
Profile data

@ stepTestinfile_step20.sgr

(1) smalitest176549.wig

@ stepTestlinfile.sgr

@ stepTestlinfile_step20iossmo...

@ stepTestlinfileiosstep.sgr

© 600606 @6

@ stepTestinfilesmooth.sgr

Clear Process (2)

Q

Figure 5.24: Examples of alert

20

CHAPTER 6. SYSTEM DESIGN 21

6 System design

A more indepth look at how the system is designed with UML- and class-diagrams. It is
divided into two main sections for the server and clients. The client section contains the
different clients. After that follows the server section that is divided into different parts that
makes up the whole server.

6.1 Desktop application

The desktop client is constructed around the model-view-controller pattern. It relies heavily on
action events being performed in the graphical interface which is then handled by the controller.
The model is the part handling the communication and the storing of important information
such as ongoing downloads and the user token (used for communication authorization). In
a UML-diagram of the desktop client is presented. A basic overview can also be
seen in [Figure 6.1

qui
controller model
WorkspaceTab ‘
GUI Controller ‘ Model UpdalerModeI
QuerySearchTab f— [o
Sub itroller f h Tab...
UploadTab Other helper classes...

SysAdminTab

ProcessTab | H

ion

| ConnectionFactory % ————————— % Connection
Other Tabs, Windows, and Panels... ‘ :

: DownloadHandler —
HTTPURLUpload F—

% ! requests

' ‘
other Response subtypes... Other Request subtypes...

ResponseParser |- i
*{ To and from JsoN

LoginWindow

Other helper dasses...

TreeTable H Different Nodes... ‘

] Experimentpata

FileData

AnnotationDataValue

AnnotationData AnnotationDataType

FileDrop

Other data, constants, and helpers... ‘

Figure 6.1: Overview of desktop client design. (Excluding SysAdmin related
parts.)

6.1.1 View

The view of the Genomizer Desktop client is constructed with tabs. There are 5 different tabs.
These are Search, Process, Upload, Workspace and Administration. In the gui package of

these are shown.

21

CHAPTER 6. SYSTEM DESIGN 22

Each tab in the view is represented by its own Java class. The QuerySearchTab class which
represents the search tab can display both a search view and a results view. It uses the
QueryBuilderRow class to construct the rows in the query builder which is used to construct
search queries. The QueryBuilderRow class represents a row in the query builder and each
row is dynamic and can change accordingly to user interaction. The search results are also
implemented in the QuerySearchTab and the results are displayed with the TreeTable class
which is further described in the utilities section below.

The UploadTab class represents the upload view of the GUI It has functionality to both upload
a file to an existing experiment (which is separately handled in the UploadExistingExpPanel)
and to create and upload a new experiment.

The ProcessTab class represents the process view in the GUI It contains a list where files
to be processed can be stored and a large number of processing parameters which can be
changed by the user. There process tab also contains a console for displaying direct feedback
on processes and an area which contains the status of all current processes which are being
handled on the server. The later can be updated manually with a refresh button.

The major part of the WorkspaceTab class consists of a TreeTable which holds all the experi-
ments and the corresponding data which the user has added to the workspace. Then there
is also five buttons implemented which allows the user handle the data in the TreeTable.
These buttons are Remove from workspace, Delete from database, Upload to, Download and
Process. The TreeTable view can be changed to a view which displays all current and com-
pleted downloads. This is made using a tabbed pane containing the TreeTable view and the
downloads view.

6.1.2 Model

The model part of the system contains methods for doing most of the logic in the system. For
example there are methods for sending login requests and for downloading files. There are
separate classes for downloading and uploading files as well as a class for regular communication
with the server called Connection. New connections are created with the ConnectionFactory
class. The model also acts a storage for importing information such as the user token and list
of ongoing downloads and uploads. This is shown in the model and communication packages

of [Fignre 6.1)

6.1.3 Requests

The Request package contains the Request class, the RequestFactory and all the classes that
extends the Request class. Request is the super class and can make a JSON package that all
the other Request classes can use. All requests must have a name, type and an URL, but
can consist of more information. For example LoginRequest also has username and password.
RequestFactory is a class that can create all objects from all types of requests. It is a way to
easily create all requests from the same place.

6.1.4 Response

This package consists of all types of responses that the server can send to the client-program.
There is a class named Response that all the other response classes extends from. For example
there is a response class for the login request called LoginResponse. All types of responses
have different properties. There is also a class ResponseParser that can parse the responses
so that the important information can be taken out of a JSON-package. This information can
then be used to tell the client program what should happen next in the user interface.

22

CHAPTER 6. SYSTEM DESIGN 23

6.1.5 Controller

The controller part of the system consists of ActionListeners for the different buttons and
functionalities in the view. For example there are Listeners for searching, downloading and
processing. The Controller class has access to both the view and the model and acts as a
middle hand between those two parts of the system. Usually a Listener in the controller
reacts upon user input and then modifies the model and gives information about the change
to the view. Many of the action listeners have been divided into tab-specific classes.

6.1.6 Utilites

There are several classes which represents different data in the system. There are classes
for experiment data, file data and annotation data. For example when a search response is
received from the server it is parsed into experiment data and the experiment data contains
file data and annotation data. There is also a class representing process feedback data. As we
can see in a lot of the other packages will use some of the data or functionality
within the wutil package.

The TreeTable class represents the table which displays experiment data, annotation data
and file data in the Search and Workspace tabs. It is specially constructed to handle the data
classes and it allows vertical sorting.

6.1.7 System Administration

The system administration is developed separately from the rest of the GUI, and therefore has
a slightly different way of communicating.

Communication with the Server

All communication between the server and the system administration tab follows a line of

steps. See below.

1. An event is triggered by the user clicking something.

2. The listener for the active tab receives the event and sorts out which type it is, and
calls the appropriate method in the SysadminController class.

3. The SysadminController has the connection to the Model, and calls the associated
method there.

4. The Model creates the corresponding request for the server, and then creates a new
connection.

5. The Connection receives the request from the Model and sends the request to the server.

If the event triggers a request for data, the Model will use a parser to parse the data before
sending it back to the GUI to present it to the user.

A communication example

As a more detailed example of Figure [6.2] Assume that the user clicks the ’Genome Files’
tab in the ’ADMINISTRATION’ tab. This will trigger an event (1) to be handled by the
SysadminTabChangeListener (2) who will receive the event and execute the desired behavior
of the tab, which is to directly show the available genome releases. This is done by sending a
request to get available genome releases to the server and then parse the response.

In order to contact the server the SysadminTabChangeListener (2) calls the SysadminController

(3) who uses a reference to the class GenomeReleaseTableModel (4) to call the method
getGenomeReleases(). getGenomeReleases () will create a GetGenomeRequest using the RequestFactory.

23

CHAPTER 6. SYSTEM DESIGN 24

® ©) ®

TAB
EVENT LISTENER

* SYSCONTOLLER

FEQUEST HODEL

CONNECTION @

SERVER

Figure 6.2: Communication Overview

The request is then sent to the server through the Connection class (5). The response

from the server is passed to the ResponsParser that parses the JSON respons into wanted
GenomeReleaseDatal[] object. The genome release array is return all the way back to SysadminController
(3) which updates GenomeReleaseTableModel with the new GenomeReleaseDatal[] and at last

lets the GUI know that the data has changed through a new event (1). This will trigger the

GUI to repaint and show the available data.

Building the Administration Tabs

All tabs under the Administration tab are built in a similar fashion and then added to a
JTabbedPane in the SysadminTab class. Each tab has it’s own package containing all classes
associated to the particular tab. All tabs are also built step by step by using smaller methods
creating panels and components. Each tab has at least one main listener that is added to
all components that require listeners. Once an event is triggered in a tab the corresponding
listener simply use a switch case based on button/tab names to decide which action to take.
The main listeners have an instance of the SysadminController to be able to further handle
requests from the user and send them forward to the Model if neccessary.

Important classes The system administration part of the desktop application depends on
quite a few classes and is based loosely on the model-view-controller design pattern. Here
follows a list of the most important classes and a short desciption of their function and
responsibilities.

e SysadminController - Handles the communication between the SysadminTab and the
GenomizerModel. The SysadminController creates all ActionListeners for the buttons
in the different views. Some minor commands are handled within the sysadmin package,
but user commands requiring input or output from the server are recieved from the
different components of the SysadminTab and sent to the GenomizerModel which converts

24

CHAPTER 6. SYSTEM DESIGN 25

them to Request objects and sends them on to the server.

e SysadminTab - Builds all of the different views that are displayed within the system
administration tab. When creating the views it also adds the ActionListeners to the
buttons and fields. It also holds a reference to all of the view components it has created
so that information can be sent to and from the controller when needed.

o The listener classes - These are added to all of the components of the view that the
user can interact with. When an action is performed, the listener performs the action
that is assigned to the command string associated with the action. All of the command
strings are stored in the SysStrings class for easy access.

Button and Tab names

To simplify the naming of buttons and tabs a class called SysStrings is used. All buttons or
tabs are named here and then this class is used when setting the actual names. This is to
avoid inconsistencies as well as making names easy to change.

6.1.8 Flow of the system

The sequence diagram in [Figure 6.3 describes the flow of the system when the user presses the
download file button and the diagram in describes how the desktop clients reacts to
a login.

DownloadWindowListener

actionPerformed

)

-— |
getWorkspaceSelectedExperiments)

[DownloadWindow]new (selectedFiles)

T new

| DownloadFileListener
el Connection

*addbownloadListener |
|
|
|
|

setDownloadWindow(downloadWindow)

actionPerformed [
getDownloadWindow downloadFile

RequestFactory.

makeD: jesy, | _ne

[T [Cenminme)

ResponseParser

parseD esponsey, | new

new

[‘DownloadHandler]

downloadFile T

-

Figure 6.3: UML sequence diagram of downloading a file

25

CHAPTER 6. SYSTEM DESIGN 26

LoginListener Model Connection

actionPerformed

getl

getPassword

loginUser(uname, EWH

makeLoginRequest new
LoginRequest
sendRequest(loginRequest)
getResponseCode

(D]

getResponseBody

|
|
|
RequestFactory |
|
|
|
|

ResponseParser

—C®

parseLoginResponse, | new .
[LoginResponse]

userlD = loginResponse.token

true/false

updatelLoginAccepted/
updateLoginNeglected

Figure 6.4: UML sequence diagram of login

6.2 Web application

This section describes the overall design of our system, first with a system overview and then
with more in depth information about our tabs.

6.2.1 How the web application works

shows how the web application works in general. There is a user that interacts
with a browser. A browser renders the DOM (Document Object Model, a convention for
representing and interacting with objects in HTML) of the web application. How it does this
is up to the browser. Different browsers might display it differently. The web app is based
on the MVC pattern, but with the controller merged into the view and with a component
called Collection being introduced. A collection is simply a ordered set of models. Models and
collections will talk to the server to update themselves. Out of the components that go into
this figure, we are in charge of (and only capable of) changing a few of these; View, Template,
Collection and Model. See Backbone in section [[.2.1] more information.

26

CHAPTER 6. SYSTEM DESIGN 27
sees
Browser
displays
notifies of
actions DOM
changes
renders
View Template
observes
queries and
has multiples of a writes to
Collection Model Server

I

Figure 6.5: A general build of a backbone web app.

Example 2 In the web app, there is a collection called Ezperiments
which contains a set of Experiment models. Each of these models
contains info about a specific experiment (for example, the name
of the experiment and which files and annotations are incluced in
it). The collection will retrieve experiments from the server and
update itself with a simple call to its fetch() method. After this,

the collection is synced with the server data.

6.2.2 System overview

index.html

Backbone router

/

Isearch

Jupload

Iprocess

Process View

AnnotationTypes)—C AnnotationType)

Experiments

Experiment

Files

H D

(.

RawToProfileinfo)

Figure 6.6: Overview of the relations between the different Javascript proto-
types in the system.

27

CHAPTER 6. SYSTEM DESIGN 28

The web app is divided into the parts Misc, Views, Collections and Models. In |Figure 6.6
an overview of the system is shown. The views are the parts in green, the collections the parts
in yellow and the models the parts in red.

Example 3 In[Figure 6.6 the collection Files contains a set of
File models. The model Experiment contains a Files collection.
An Ezperiment model may be used by the collections SearchResult
and Ezperiments.

The parts in grey represent the router which belongs in the Misc category. It is responsible for
rerouting links. This is done mainly when the user wants to go to another webpage by clicking
a link. The router is ”clever”, however, and does not need to load a whole web page whenever
a rerouting is triggered - instead it only loads the necessary parts of the new web page.

Example 4 When a user clicks the search tab, the router nav-
igates to |/search. But instead of loading the whole |/search| on
top of the page we are currently on, the router will keep the old
navigation bar, open the search tab alone and put the search tab
below the already existing navigation bar.

The Misc category also holds the main. js, which is in charge of setting up and starting the
app. The views are responsible for the user interface, displaying information and handling
events. The collections and models are responsible for holding the data.

6.2.3 Log in

Log in has a single view that is a modal, meaning that it is not a full page like the tabs but a
pop-up that appears over the entire main view when a user enters the page.

6.2.4 Search

The search tab has three views that together make up the Search Views as they have been
denoted in When searching for data, the models and collections will update
themselves to contain the new annotations, experiments and files pertaining to that particular
search, so the search views can display them. Once new data has been retrieved, the user can
perform a number of actions on the displayed experiments and files.

Example 5 When searching for experiments, they and their con-
tained files will be displayed. The user may choose to delete a
file by marking it and then click a delete button. If this happens,
the Search Views will receive the event and tell the model of the
marked file to destroy itself. The model will then send a delete
request to the server and disappear.

In is a simple sequence diagram for the search tab. If a user enters a query in the
search field and then presses the search button, the Search view will update the SearchResults
collection to have a new query. Once SearchResults has a new query, it will try to fetch
search results corresponding to the query from the server. If successful, new experiment
models for every experiment retrieved will be created and set in the SearchResults collection.
SearchResults then triggers a “change event” that SearchResultsView listens to. When that
event occurs, SearchResultsView knows that SearchResults has been changed, and rerenders
itself.

28

/search
/search

CHAPTER 6. SYSTEM DESIGN 29

SearchResults

View SearchResults

enter query and press
the 'Search’ button

set search query

200 OK

populate models

|
I
I
|
1
T
I fetch
|
|
|
|
|

trigger change event

re-render

T
|
|
|
|

Figure 6.7: a sequence diagram showing what happens when a user enters a
valid search query and results are fetched.

6.2.5 Upload

The upload tab has three views, that together make up the "Upload Views” as we have denoted
them in Unlike search (see section that uses experiment and file models to
retrieve information about experiments and files, upload uses the same models to create new
experiments and files. To do this, it needs to be aware of what annotations are available, so
it uses an annotation type collection to retrieve the current annotations offered when a user
wants to create a new experiment.

6.2.6 Process

Process consists of two views that are reached either through the process tab in the main
navigation bar or through the process button in the search view that allows the user to search
for experiments prior to entering the process view. Process also has collections and models
to store and send data necessary for a process, like genome releases available for the chosen
species of an experiment.

The view reached through the tab is simply a textfield where you can enter an experiment
name and a button which allows you to proceed to the process view for that experiment, which
is exactly the same thing that happens when marking an experiment in the search view and
pressing the process button there.

The process view is at first only a dropdown list where any process step can be chosen and
added to the view by pressing the add button. Similarly, to each process step, a line can be
added using the + button, which represents one run of that process step. Adding more than
one line to one step allows simultaneous processing, but should any infile depend on an outfile
a new process step of the same sort must be created below.

29

CHAPTER 6. SYSTEM DESIGN 30

6.2.7 Convert

The convert tab is one single view that is accessible via the search view. When the user
searches an experiment, selects files from the experiment and clicks the ”Convert” button, the
file names and the file IDs are passed along as parameters in the URL. The convert view is
then loaded and can fetch the file names and the file IDs from the URL. The file names are
used to display to the user which files are selected, and the file IDs are used when sending
process requests to the server. The user must also pick a new file format for the selected files,
which is also sent to the server as a string. This way, the server knows which files are to be
converted and to what format.

6.2.8 System administration - Web

The system administration part of the web client is developed using the same tools and
frameworks as the rest of the web client. This admin part of the system is made up of view
classes, model classes and collection classes. The classes are described below:

Classes used by all views

Gateway - this is a model class used solely for communication with the server. It is a static
class in the sense that it doesn’t have to be created. It only needs to be included and then
its functions can be called immediately without having to be instantiated. The gateway class
retrieves the URL from the main JavaScript file this way the URL only needs to be declared
once. The URL can then be fetched by any class that includes the Gateway class.

SysadminMain View - the main view for the admin tab, this view is used together with every
other admin view. It contains a sidebar menu used to navigate between different admin views.

Classes used to handle annotations

Annotation - this is a backbone model that represents an annotation. An annotation consists
of three fields. A name, a list of values and a forced field. The name simply specifies the
name of the annotation. The list determines whether this annotation is a drop-down list, or a
free-text field. If the list contains one element called free-text, the annotation is a free-text
field. Otherwise it is a drop-down list with the values in the list. The forced field determines if
the annotation has to be filled in by the user when a file is uploaded.

Annotations - this is a backbone collections that consists of several Annotation models. It
also has a URL that it uses to fetch annotations from the server, the URL is retrieved from
the Gateway class.

Annotations View - this view is the basic view for displaying annotations. It has a search field
and a button for creating new annotations. Pressing the button renders the newAnnotationView.

The AnnotationsView has a child view called AnnotationListView. This way the list view can
be rendered separately from the search field when the user types in searches.

AnnotationList View - this view uses the Annotations collection to fetch all the annotations
from the server and renders them dynamically in a list. In the list is an Edit button for every
annotation, the edit button will retrieve the name of the desired annotation and navigate
through the router to the EditAnnotationView with the name as a parameter. The view also
has a button that will take the user to the NewAnnotationView.

EditAnnotation View - this view uses the name parameter received from the Annotation-

ListView to retrieve a specific annotation from the collection of annotations. It then renders
the fields with the values from the annotation. This view has a button to delete an annotation.

30

CHAPTER 6. SYSTEM DESIGN 31

It will send a delete message to the server using the Gateway model to delete the annotation.
An annotation can also be modified in different ways.

NewAnnotation View - this view is used to create a new annotation. It consists of a couple
of fields and a create button. Pressing the create button renders a ConfirmAnnotationModal
which displays the values for the annotation.

ConfirmAnnotationModal - this class extends the ModalAC class. It is simply used to
display information that the user has to confirm. Pressing confirm creates a message using the
Gateway class and sends it to the server.

Classes used to handle genome releases

GenomeReleaseView - this view is used for viewing, adding and deleting genome releases. It
contains a button ”Select files to upload” which opens up file explorer and lets the user select
one or multiple files for uploading. When the user then presses upload the UploadGenomeRe-
leaseModal will open. Below the button the view has a table showing the current genome
releases available on the server. The user can hold the mouse over files too see all files included
in that genome release. A ”"Delete” button is shown next to every genome release and if pushed
sends a delete request to the server through the Gateway class.

UploadGenomeReleaseModal - this modal shows the user which files has been selected for
upload and asks for information about which species and genome version they are for. Then
at the press of "Upload” the files starts to upload and the user will see a progress bar over the
complete upload progress.

GenomeReleaseFiles - this is a collection with GenomeReleaseFile as models. It handles the
ordering and filtering of its models.

GenomeReleaseFile - this model represent a genome release and can contain multiple files in
itself since one genome release is almost never just one file. This class takes case of uploading
itself to the server and thereby also updates the progress bar through events that propagate
up to the GenomeReleaseFiles collection.

6.3 Android application

The following sections describe the system design of the Android application. All functionality
of the system components are described in this section. Worth noting is that the figures
referred to in this section can be found further down in the document.

6.3.1 System overview

The Android application is divided into seven packages. These packages are default, com,
login, model, process, processStatus and search. All packages (except for com and model)
contains one or several fragments. A Fragment is an object that helps to modularize the code
and brings more sophisticated user interfaces.

The user will interact with an activity that holds a fragment. The fragment (which contains some
logic) will tell the class ComHandler what action that should be performed. The ComHandler
will construct a message by using MsgFactory. The message is then passed on to Communicator
which sends the message to the server with REST. The Communicator returns the response to
the ComHandler that parses it by using the class MsgDeconstructor and then returns it to the

fragment. Hopefully, will bring some clarity.

31

CHAPTER 6. SYSTEM DESIGN 32

ﬂ Sees

Activity

ﬂ Containg

Fragment

Retums
Uses
Uses

MsgFactory <::> ComHandler <::> Communicator

Returns Retumns

Uszes

Returns

Uses

MsgDeconstructor

Figure 6.8: A generalization of how the Android application works.

6.3.2 Package overview

The default package contains the MainActivity. This class is the base of every screen in the
application after logging in. The top level navigation is handled from here.

The com package is responsible for communication with the server. It also contains classes and
methods for construction and deconstruction of JSON.

The login package contains the GUI and controller for the login screen. It also enables the
user to select, add, edit and delete server URLs.

The model package holds information about experiments, annotations, files etc. found on the
server.

The process package is responsible for displaying processing parameters etc. for when the
user wants to start a process.

The processStatus package shows the running, failed and succeeded processes on the server.

The search package handles searches by either selecting annotations, or by manually typing in
PubMed style. It also handles the search results by displaying the found experiments in a list.

32

CHAPTER 6. SYSTEM DESIGN 33

6.4 i0OS application

The following sections describes the system design of the iOS application. The overall system
design is discussed followed by a more detailed description of how the segues are controlled.

6.4.1 Overall system design

The system is designed using the model-view-controller principle. Each view is controlled
by its own controller class which reacts to user input and triggers changes in the model and
updates the view accordingly.

DataFileController] ServerConnection

SearchResultController H ontroller }

ExperimentDescriber Annotation]
ExperimentFile H FileContainer]

Figure 6.9: UML diagram.

JSONBuilder

gives an overall image of the system design. Some classes are excluded from the
figure to make it easier to get an overall idea of the system. The controller classes of the table
cells and some other controller classes are not illustrated in the diagram. The non-excluded
classes are described in

33

CHAPTER 6. SYSTEM DESIGN 34

Class

Description

Annotation

Contains information about an annotation and
can format the annotation name to an aestheti-
cally more pleasing representation.

DataFileViewController

Controls the File view. It contains a reference
to an experiment and lists all its files in a table.

Experiment

A class that contains information related to an
experiment, as well as its files.

ExperimentDescriber

Generates a description of an experiment using
annotations chosen by the user.

ExperimentFile Contains information about a file from an ex-
periment.

ExperimentParser Parses experiment information from a NSDic-
tionary to an Experiment object.

FileContainer Contains files and sorts them by file type.

JSONBuilder Creates different JSON requests.

PubMedBuilder Creates a pubmed search query.

SearchResultController

A controller class for the Search Results view
presented in It configures the table
which holds the information about the experi-
ments a search resulted in. An ExperimentDe-
scriber is used to generate a description of the
experiments.

SearchViewController

A controller class for the Search view, see [Fig]
[are A.54l Tt checks which annotation-fields are
used and tells the JSONBuilder to generate a cor-
responding search query when the user presses
the search button. The class also contains a
advanced search to allow the user to manually
enter search queries.

ServerConnection

Handles sending JSON objects to the HT'TP class
and receives and handles JSON objects from the
server.

Table 6.1: Description of some classes of the system.

34

CHAPTER 6. SYSTEM DESIGN 35

A more detailed description of these classes, and the ones not mentioned here, can be found in
comments in the source code.

6.5 Server

The design of the servers system is based around several parts. These parts consists of:
communication, conversion, processing, storage and file transfer. Following is a more detailed
description of each part.

6.5.1 Communication

The server is based around a RESTful protocol where all communication is handled over non-
persistent connections which the clients initiate. Since the communication is non-persistent,
the server has no way of contacting clients except for responding to requests. When a client
wants to connect it sends the request to a proxy, which only accepts encrypted trafic, that is
then forwarded to the actual server. Once inside the server, the request is parsed, executed
and a response is sent back to the proxy which forwards the message back to the client.

To uniquely identify different logins a token is generated when a user logs in, the client now
should identify itself with this token in all other requests for them to be executed. Otherwise,
the server will not recognize who the client is and therefore can’t know what server commands
the client has permissions to execute.

Most commands are executed immediately when ther server recieves it, and the result is
sent back as soon as the command is finished. There are however an exception to this, the
process command, which is put in the back of a queue instead of being executed. The server
continuously takes work from this queue and executes them as fast as it can, but due to the
huge computing power requirement it cannot do them all at the same time.

For a visual reference of the flow between the different parts of the system, see on
page [4

Server Commands
The following eleven items are the main categories of commands that can be sent:

o Connection

o Experiment

o Files

o File conversion
o Search

o User

o Admin

e Processing

o Annotation

o Genome release

e File upload/download

Connection handles the Login and Logout commands, which are self-explanatory in their
functions. There is also

35

CHAPTER 6. SYSTEM DESIGN 36

Connection

Connection handles the Login and Logout commands, which are self-explanatory in their
functions. There is also a deprecated command which can be used, but should not, to check
if the clients token is still valid or if it has expired. This was used before, but was deemed
unnecessary due to this check happening on every other command as well.

Experiment

Used to create new experiments, update or delete existing experiments as well as retrieving
information about specific experiments. Deleting or retrieving information only requires the
experiments ID, whilst creating new or updating existing experiments require annotations to
be specified as well.

Files

Contains commands to create new file-posts, update or delete existing file-posts and retrieving
information about specific file-posts, just as Experiment does for experiments, but for file-posts.
A file-post is a database entry which keeps information about a file, as well as the path to the
file. A file cannot be uploaded without having a matching file-post. When discussing files in
general, file-posts and the file together will be refered to as a file.

File conversion

File conversion has a single command, which converts files from one file-format to another.
The formats that can be converted from and to are: .bed, .gff, .sgr and .wig.

Search

Search is used for searching after experiments in the database, the search uses a PubMed-style
query system which can be found and explained at http://www.ncbi.nlm.nih.gov/pubmed.
All experiments that match the query are sent back to the client. No post-processing or
ordering is done on the list ofexperiments by the server.

User

Only contains two commands at the moment, update and retrieve information. Via the update
command users can updates their password, name (fullname, not username) and email. Any
other editing of users is done via the Admin category.

Admin

The Admin commands are the primary way of creating, editing and deleting users. Creating
a new user requires a username, password, privilege level, name and email. To make editing
and deleting easy to use there is also a command to get a complete list of all the usernames
in the system, which together with the get user command from User, a client can get all the
information about any user.

36

http://www.ncbi.nlm.nih.gov/pubmed

CHAPTER 6. SYSTEM DESIGN 37

Process

In order to process files, the client can send a process command which is a collection of
sub-commands, one sub-command for each step of the processing pipeline. Each of these
sub-commands contain all the information they need to run and a list of infiles and outfiles.

When a process command is executed, it executes the each sub-command in order. Since a
sub-command might contain many input files and output files, it in turn executes on all the
input files, producing all the output files before finishing, and thus, causing the process to be
parallellized in each step, but each step is sequential in order.

Process also has commands to retrieve information about all the processes that are waiting,
running or finished as well as canceling a running or waiting process.

Annotation

Annotation has two different sub-categories, annotation field and annotation value, the field is
the name of the annotation and the value is the actual value. A annotation can only have
a single field, but several values, and is displayed with dropdown menus in the clients. The
reason for two different sub-categories is that both of the two need to be able to be created,
edited, deleted separately. The retrieve only retrieves full annotations, i.e. both the name and
all the possible values.

Genome release

Genome release is used to manage genome releases, works similarly to how file works, except a
single genome release-post can have many files associated with it.

A more detailed specification of the API can be found in

6.5.2 Data Conversion

The Genomizer service needs to be able to convert, process and visualize data. This chapter
explains how this is done in the system.

The RawToProfileConverter, Smooth, Step, Ratio and Bowtie extends the Executor class.

The different processing commands can only start the corresponding processing method on
these Executors.

6.5.2.1 Executor

The executor class, as seen in figure 5.2.1, is a abstract superclass that is an entity that is
able to execute various commands. The executor class is able to run programs as well as
scripts and shell commands. The commands are specified in the call to the methods in this class.

37

CHAPTER 6. SYSTEM DESIGN 38

executeCommand | executeCommand is a protected method used in processing to make

command line calls to external dependencies used in the various
processing steps. Firstly a processBuilder is used to ensure a safe
way to execute commands, after that the working directory is set and
the error output stream is merged with the standard output. After a
command has been started the output stream is then recorded with
the help of a Scanner object and a stringBuilder object. When the
command has been executed the termination status is checked and
the recorded string is sent back to the caller. The command to be
executed is represented as an array of strings.

6.5.2.2 RawToProfileConverter

The purpose of the RawToProfileConverter class is that it will be used by RawToProfProcess-
Command and do all the steps in the process pipeline produce a profile file in .wig format.
These steps are done by calling external dependencies such as programs and scripts which are
executed with methods that is extended from Ezecutor class.

6.5.2.3 Smoothing

The termSmoothing class is used on a profile file to smooth down the tips, making the data
result less jagged.

6.5.2.4 Step

The termStep class is used on a profile file to lower the file’s resolution.

6.5.2.5 Description of different scripts and processing steps

1.

BowTie: Uses the external dependency Java tool Bowtie. Support for Bowtie2 is
implemented but not fully tested. Bowtie creates unsorted .sam files from .fastq raw
files. The files are created in a temporary folder with the name result_X, where X is
the ID of the current thread. All other folders created is placed inside the folder from
where the files used where placed.

. sortSam: Uses external dependency Picard and sorts the .sam file and creates a new

.sam files, sorted by coordinates. The files are saved in the same temporary folder as in
the Bowtie step.

. RemoveDuplicates: Uses the external dependency Python tool Pyicos. Takes a sorted

.sam file and produces a new .sam file with all duplicate reads removed. It is optional
to save this .sam file to the database but it is saved in the temporary directory in the
mean time.

Convert: Uses external dependency Python tool Pyicos. This is the final step of raw
to profile conversion and uses Pyicos to convert a given .sam file to .wig file. All
intermediate files are removed except optionally the .sam file which can be returned
together with the final .wig file. All saved files are moved to the given profile directory
path.

. Smooth: smooths the file and creates a large .sgr file, converted the customers Perl

script by following the algorithm they sent us. This makes it more efficient. Puts the
files in a folder called smoothing.

. Step: Takes the smoothed .sgr file and takes samples from it with a specified interval

and creates a smaller .sgr file. If stepping is done the files will be placed in the same
folder as the previous step.

38

CHAPTER 6. SYSTEM DESIGN 39

7. Ratio Calculation: Creates four .sgr files with the Perl script provided by the customer.
Puts the files in a folder called ratios.

8. Smooth: After the ratio calculation, smoothing needs to be done again with different
parameters. Puts the files in a folder called smoothing

procedure Executes all the steps to make a profile .sgr file from
a raw file, it checks the directory it gets as file-path
so that it contains the raw files and that there are not
more then two files, but at least one file to process.
Does the procedure to create a profile data and move
it to the folder thats specified as a parameter.

runBowtie Constructs a long string with the full execution line
for BowTie. It then uses this string as a parameter
when calling the method parse. The resulting array is
then used when calling executeProgram and the result
of the execution is returned.

sortSamFile Constructs a string with the full execution line to
sort a sam file. It then calls parse to create a string
array from the full string and sends it as parameter to
executeShellCommand which runs a shell command to
sort the file and creates a new .sam file that is sorted
with the specified parameters.

o makeConversionDirectories

— Creates the necessary directo-
ries used by RawToProfile’s
procedure to put the tempo-
rary files needed to do all the
steps to create a profile .sgr
file.

o initiate ConversionStrings

— Defines all strings needed for
the directories created when
procedure is doing its work.
Also defines a string for each
step in the procedure, which
gets passed to the correspond-
ing execute methods.

getRawFiles Constructs a File object with the parameter inFolder
that should be a directory where the .fastq files that
the procedure should run on are. returns an array of
File objects with all the files procedure will be using.

makeConversionDirectories Creates the necessary directories used by RawToPro-
file’s procedure to put the temporary files needed to
do all the steps to create a profile .sgr file.

initiateConversionStrings Defines all strings needed for the directories created
when procedure is doing its work. Also defines a string
for each step in the procedure, which gets passed to
the corresponding execute methods.

39

CHAPTER 6. SYSTEM DESIGN 40

validate Parameters

Validates all parameters for the steps procedure should
run on. Checks whether a step should be run. If
so, validates that steps parameters, returns true if
everything is correct.

checkBowTieFile

Checks that bowtie succedded to run and that the
result is ok. Checks that bowtie created the file it
should and that the size of the file is not zero. If
everything was correct it returns true.

validateInFolder

Perform a check on the parameter inFolder that should
be a string with a path to where the files to be pro-
cessed should be. If the string ends with a "/" it gets
removed from the string.

runSmoothing

‘When implementing the scripts to create profile from
raw we realized that the smoothing script used alot
of memory to run, so we decided to convert it and try
to optimise it. The result was a improvement and in
this method we uses the smoothing a version of the
smoothing that got approved from the customers. The
method sets up all parameters the way the smoothing
class wants them in and fixes all the paths then we
run the smoothing, The method checks whether ratio
calculation have been run before smoothing or not
and sets the paths and parameters accordingly.

isSgr

Gets a string that should be a filename with the file
extension and checks if the file extension is ".sgr", if
so it returns true.

correctInFiles

Takes an array of File objects and checks that it con-
tains a correct amount of raw files to process.

doRatioCalculation

Initiates a string using the incoming parameters and
executes the the script to do Ratio calculation, uses
the method executeScript to execute.

checkBowTieProcessors

Bowtie has a parameter where the number of proces-
sors used can be specified, we want to restrict the
user from being able to run bowtie on all the cores
on the server cause that would slow it down. Instead
we make it so that bowtie runs on all but 2 of the
available cores on the system.

verifyInData

Makes a initial check so that all the incoming parame-
ters to the procedure method not is null. Also checks
that the array string with parameters is correct size,
not zero and not bigger then eight.

6.5.2.5.1 BowTie

BowTie takes a raw .fastq file together with a genome release and converts the .fastq file to a
.sam file, which is the first step to make the desired .wig file. After a .sam file is converted
the external dependency Picard is run with its internal command samSort, which produces a
sorted .sam file sorted by chromosome and position as needed to use the scripts.

6.5.2.5.2 After-processing scripts

The different functions of the Perl scripts is explained below. They are explained in the same
order that they are executed. All scripts take a directory of files to be processed as input

40

CHAPTER 6. SYSTEM DESIGN 41

parameter. The given Perl scripts are modified and wrapped by expect scripts in order for
better usability and callability from the Java implementation.

6.5.2.6 Ratio calculation

Does ratio calculation on the processed files, for each position in the IP sample with at least
one mapped read, a ratio of IP - input (on a log2 scale) is calculated. If the read count in the
input is below the read count mean (in the input sample) is calculated it is set to the mean (
or double mean (2 x mean) as user specified). If the input mean is below four the minimum
input value is set to four (to avoid division by near zero values. Calculated as (read length x
approximate total number of reads in input samples(9 millin))/ genome size (for Drosophila
melanogaster 120381546)). A random number between -0.5 and 0,5 is added to the read counts
before log2 conversion to make them discrete for statistical analysis. All ratio values are then
adjusted by reducing each value by median of the ratios. This linear adjustment is carried out
in order to compensate for differences in IP and input sequencing depth. Also, to visualize
ratios distribution, ratios are plotted by binning ratios with user specified numbers of bins
and minimum and maximum ratio values (200bins,minimum ratio value: -10, maximum ratio
value:10). Ratio values are printed in sgr format.

6.5.2.7 Smoothing and stepping

Both Smoothing and Step are implemented as separate classes calling external Perl scripts.
The classes provide some validation and a clean interface towards the external dependencies.
The programs can handle file corruption to some extent. If the file contains empty or wrongly
formatted rows the program will not crash, it will simply ignore the corrupt rows.

6.5.2.7.1 Smoothing

Smoothing means that a trimmed mean value or median value for a position and its surrounding
positions is calculated. The number of positions to smooth on is called the Window Size. For
example: with a window size of 10, the smoothed value on position X is calculated on the
interval (X-4, X+5). A number of position which below shouldn’t be smoothed at all should
also be provided. There’s also one parameter called stepSize, if the stepSize is one the program
will not do any stepping but if it’s larger than 1 stepping will be done. Stepping is handled in
this program by simply checking every time we are going to write to the new file if the current
row’s position is divisible with the stepSize, if it is we write to the file, otherwise the row is
discarded.

6.5.2.7.2 Step

Step also takes a window size, the number of genome reads to skip. This afterprocessing
reduces the granularity of the file and thus the file size, whilst information is lost of course.

6.5.2.7.3 Tuple

The tuple class is a data carrier that represents one row of data in an sgr file. It consists of the
fields chromosome, position, signal and newSignal. Where signal is the signal-value read from
the infile and newSignal is the updated value after smoothing have been done. The methods
in this class are all standard getters/setters except for the method toString which formats a
row for the outfile and rounds of decimal numbers. The constructor is also of interest since it
parse a row on tabs. Thus the fields in an infile needs to be seperated by tabs and not spaces.
The constructor will throw an exception if the line it tries to parse is either null or if it does
not consist of three columns separated by tabs where the first is a string and the second and

41

CHAPTER 6. SYSTEM DESIGN 42

third is a double.

6.5.2.8 ProcessHandler

The ProcessHandler is a controller that handles process-calls. Depending on the name of the
process it handles it differently. It acts as an interface between the process-module and the
rest of the program.

6.5.2.9 Logic & interface

The main logic in the ProcessHandler is a switch-case that switches on the name of the
process being called. For example if the name of the process is “RawToProfile” is sets up a
RawToProfile-converter and calls it.

processName A string that tells the handler which kind of process
should be executed.

procedureParams | A list of string with the parameters to the different
external programs/scripts that will be called during
the execution. The first element will be a string with
parameters/flags for the first external program that
will be called, and so on.

inFile A string with a path to the directory containing the
files that should be operated on.
outFile A string with a path to the directory where the result

.sgr files should be put.

6.5.3 File-transfer

In the current version of the program the desktop clients and the web clients connect to different
software on the server. The desktop clients connect directly to the server communication
software whilst the web clients connect via the apache server and all non web requests that is
to be calculated using the server software is automatically redirected by apache. The redirect
is setup in a way that all GET requests that have a /api/ tag in the URL will be redirected.
The exception for the desktop clients are file up- and downloads which are done through the
apache server.

The download and upload will work for all platforms although this will not be implemented
for Android and iOS clients due to hardware limitations.

If the client wishes to upload a file to the server they first send a request to the server-system
which authenticates the client and stores the annotations for the file. The download and upload
path is validated by the script to ensure that no invalid paths are sent to the scripts.

In below it is shown how the systems handles the different types of messages the
client-systems can send. The big square represents the Apache server with different parts
of the Apache server within. The iOS and Android clients can only send some requests to
the server-system. Meanwhile, the desktop client can send requests to the server-system and
upload and download to/from the web server. The web client sends all its messages to the
Apache server and if it is a request to do some sort of computation it will be redirected to the
server-system and if it is a download, upload or web-page message it will be sent to the web
server.

The current version of the system utilizes a file structure to organize HTML- and file requests
on the server, the structure is illustrated in The Web-root folder contains the

42

CHAPTER 6. SYSTEM DESIGN 43

Apache Server

Webserver DownloadiUploadiResponse Deskiop

Download/UploadWebpage RequestResponse

Response Redirect Request: Genomizer RequestiResponse Andriod

Response

RequestDownload/UploadWebpage

RequestiResponse

Figure 6.10: The different types of messages sent between the
systems.

PHP-scripts for uploading and downloading files. The app folder contains the Genomizer web
page. All folders of the experiments are located in the data folder, which contains folders for
the different data-types.

Web-root |

[—

data

I_ Exp# |

raw profile region other

app

Figure 6.11: Illustrating the current file tree on the server machine.

6.5.4 Data Storage

In order to enable the annotation and subsequent searching for experiments and files the data
stored on the server is complemented by a database of information. Each file uploaded to
or generated by Genomizer belongs to an experiment which is identified by the experiment
ID (expID). Each experiment created by the end user results in an entry in the database’s
Ezperiment table. Each experiment contains files that were either uploaded to the server (e.g.
raw data from an experiment or from an external source) or processed by the server from the
uploaded files (e.g. profile or region data). The full database schema is shown in

43

44

SYSTEM DESIGN

CHAPTER 6.

' ! | |

T:mn_._m_u_nn; UOISISACL _ UOISISAWOIS 7 7 snyels 7 san TEmZm_E_ UOISISADL 7 UO[SIBAWOIS _

a4 ureyd sa|l4 a4 ureyn
ey | —
7 s«mn_._mw_o“; saads 7 UOISIaA 7 _ snels 7 SawW 7 SWeN3NT 7 UoSIBA 7 7 aind 7 arrd 7
aseajay awouad sa|ld asealay wouag ul_paysigqnd
7 aweN 70_339:03_ 7 ureda 70_339_.6370 I 7
umoqdoiq
1%a1231d « asedsyiom ul pasn
:sadA | ejeq uopelouuy
ad£1ereq umoqgdoiq Jo4 7 qresedsIoMm 7 SWeurasn 7 _ [rews3 T.._...mz__:u_ 7 30y 7 Jesplomssed Tmm_.:a._ogmmmmTEmEmwi
uo Bunjom ojul1asn
7 Sn[en | PaeT 7 Tm.__saumT:_mZ_:m_mL adAlereq 7 [EFEE] 7 7 anep | 9ge] T__mxm__ 7 axg
sas510yD uoneElouuy uonejouuy Yum_ parejouuy Juswsadxg

||

az158)I4 _ Saw _ma_m_mi UOISIBAHD 7 qldxa 7 mﬁ,__%%mnmo_a:_ 1oyiny _ Yredajiindu _ elregediy _ aleq _ aweNayid 7 adALa)d _ yred 7 [ELE

A

Figure 6.12: The database schema

44

CHAPTER 6. SYSTEM DESIGN 45

6.5.5 Database Design

The following section will explain the less obvious columns and their intended use.

e FileID is the identification number for a specific file. The data type SERIAL is used and
will therefore be auto—generate unique identifiers upon insertion.

e Path is the path to the corresponding file in the file system, for example:
/var/www/data/Experimentl/raw/rawFilel.fastq

e MetaData is the string of parameters used in processing and should be NULL for all raw
files.

e Annotated_With is the table that enables the annotation of experiments. The annotation
in this table references the Annotation-table, to verify that new annotations are valid.

Example 6 To set the Species-annotation to ”Dog” for
the experiment Experimentl, the following tuple would be
inserted into the Annotated_ With—table:

ExpID Label Value
Ezperimentl | Species | Dog

e Annotation is the table containing all the possible annotations a user can use to provide
extra information about an experiment. This includes the type of annotation which is
Drop Down for annotations where the user can choose from a drop down list, or Free
Text where the user can enter the value freely. There is also support for a default value
and annotation forcing where users are forced to provide the information. For Drop
Down annotations the table Annotation_choices specifies the valid choices.

e The Genome_Release table stores information about the Genome Releases available
for use. This includes the unique version code for a Genome Release[21]. The
Genome_Release_Files table stores the information about the files that make up the
Genome Release.

6.5.6 The Data Storage Subsystem

All the classes used in the manipulation of the database and the creation of the file systems
directory structure is contained in the java project’s database package.

The other Genomizer subsystems execute all updates to the data storage through the
DatabaseAccessor class. As a result there are many methods in this class, however most
methods forwards the request to one of the classes in the database.subclasses package. Here
the methods that modify the different areas of the data storage system are separated into
different classes of more manageable sizes. An UML diagram of the DatabaseAccessor class
and its subclasses is available in |Figure G.1]in [Appendix G}

The DatabaseAccessor utilizes a number of classes in order to return information to the
method caller. These classes are contained in the database.containers package and are as
follows:

e Experiment
e FileTuple
e Annotation

e Genome

An UML diagram of these classes is also available in [Figure G.2|in [Appendix G|

45

CHAPTER 6. SYSTEM DESIGN 46

6.5.7 Interaction

Below are examples of typical interactions with the DatabaseAccessor class.

6.5.7.1 Adding an experiment

In order to add an annotated experiment the following steps must be followed:

1. First the addEzperiment method must be called. This will add one experiment to
the database without any annotations set for that experiment. If you try to add one
experiment that already exist then the addition will be refused and an exception will
be thrown.

2. If there are no annotations that can be used to provide extra information about
the experiment they must first be added by calling the addFreeTextAnnotation or
addDropDownAnnotation methods. If a Drop Down annotation already exists but
there is no suitable choice for the experiment, a choice can be added by calling the
addDropDownAnnotation Value method.

3. An available annotation can be used to provide extra information about an experiment

by calling the annotateExperiment method.

Now that an experiment has been added files can be added added to it.

6.5.7.2 Annotation Handling

Annotations can be handled using the methods below.

getChoices gets all the available annotation choices connected
to a specific label. For example the possible choices
returned for the label "sex" might be "Male, Female
and Unknown".

getAnnotations returns all annotation labels currently stored in the
database. Examples could be "Sex,Species, Tissue,etc.".
getAllAnnotationObjects | Combines the two previous methods. Here an anno-
tation object is returned that holds all the relevant
information including the label, datatype, and the pos-
sible choices for a Drop Down annotation.
changeAnnotationLabel updates the given label in the database. This will
change the label for all experiments that use it. For
example changing "specie" to "Species".
changeAnnotation Value updates a value for a specific annotation label. For
example changing "Human" to "Homosapien".

update Experiment Updates an annotation for one specific experiment.
Example: "experimentl, Species, Homosapien" can be
changed to "experimentl, Species, Fly".
deleteAnnotation deletes an unused annotation from the database. This
will also delete all the choices for that annotation.
removeAnnotationValue | removes a single annotation value for a particular label.

6.5.7.3 File Handling

The actions of adding and deleting experiment files or genome releases can be performed using
the following methods.

46

CHAPTER 6. SYSTEM DESIGN

47

addNewFile

To add a file you will need to have an experiment
added before you call the addNewF'ile method. Raw
files usually come in pairs and so they can be added
together by specifying the input file name.

deleteFile

Deletes the given file from both the database and the
file system. This can be done by either specifying the
path or the file’s ID number.

addGenomeRelease

Genome release files must be added one at a time by
calling the addGenomeRelease method. This method
returns an upload URL.

removeGenomeRelease

removeGenomeRelease removes all the files associated
with a genome release. This can only be done if there
are no files that have been generated using the specified
genome release.

47

CHAPTER 7. IMPLEMENTATION 48

7 Implementation

This section contains descriptions of the implementation and how different parts of the system
are designed, and what tests has been used to ensure its functionality. Here developers can get
an understanding of how and why the different parts of the server was created.

7.1 Desktop application

The desktop client is implemented in java 7. The graphical part of the client is made with java
swing and the external library swingz. The tree table which is used in the grapical interface is
implemented using a modified version of the JxTreeTable found in swingz. The modifications
made to the JxTreeTable is that a sorting mechanism has been added and it is possible for the
user to choose which columns to show. Other packages needed for the user interface include
the MIG-layout layout-manager.

The communication with the server is handled with a http protocol involving JSON-formatted
bodies. The external library GSON and the Apache Http Client are used for the communication.
Connections are done over the ecrypted SSL communication layer, using java(x) .net modules.
The SSL-certificates are however never verified, and validated ones not used, limiting the
security provided.

For dragging and dropping files into the upload tab, the desktop client uses a modified version
of the class FileDrop, which was originally written by Robert Harder and Nathan Blomquist
and was released as public domain.

7.1.1 Testing

The testing of the system has been quite varied since a large part of the desktop client consists
of a graphical interface. The graphical part of the client was tested throughout the developing
process and the customers also had a part in testing the interface. Another difficult part
of the testing was the communication with the server. A part of it was tested with JUnit
tests but the larger part of the testing was made manually by interacting with the GUI and
communicating manually with the server. A number of JUnit tests has been created concerning
communication with server API.

Use cases of most functionality were put together to further formalize the testing of the
implementation and to make sure the program is working as intended. These will also show all
supported functionality in the system.

7.2 Web application

7.2.1 Frameworks

To ease implementation, a couple of frameworks have been used. The frameworks are described
briefly below.

7.2.1.1 Backbone

Backbone[12] is a light-weight framework that loosely follows the MVC pattern. Out of the
MVC components, Backbone only has models and views, and the view behaves much like a

48

CHAPTER 7. IMPLEMENTATION 49

combination of both a view and a controller. Models are the parts of code that retrieve and
populate data. Views are the HTML representation of models, and they change as models
change.

Example 7 When the Ezperiment model is populated, which may
happen when the model fetches data from the server, it is immedi-
ately presented on the view that contains that experiment. The view
itself does not have to manually get any data from the Experiment
model.

Backbone makes use of Events, where other objects can trigger events and listen to them,
which is an effective way to promote decoupling between components. It also uses Collections,
that are ordered sets of models. A collection will automatically be provided with underscore
array and collection methods for convenient set manipulations (you can, for example, loop
through a collection with .each() instead of writing a for-loop). Backbone is used because it
allows more structure in the web application. With more structure, it is easier to collaborate
as the work can be divided - keeping the Javascript code in various model, collection and view
files.

7.2.1.2 Bootstrap

Bootstrap[I3] is a front-end framework that contains HTML and CSS-based design templates
for typography, buttons, forms, navigations, and the like. Instead of creating buttons from
scratch, deciding on colors, how big they are, and micromanaging how they fit with everything
else on the page, bootstraps templates that handles all of that, leaving the developers able to
focus on architecture. Bootstrap is used to save time on development and make the design of
the web app easily customizable.

7.2.1.3 RequireJS

RequireJS[I6] is a file and module loader for Javascript. RequireJS lets files require other files
much like #include in Java. This is very handy for the programmer. It is used because it
helps to structure the application.

7.2.1.4 JQuery

JQuery[I7] is a popular code library that handles AJAX calls and DOM manipulation, and
makes the code more compact and readable.

7.2.2 Technologies used

A couple of technologies have been used in the development and are described below.

7.2.2.1 AJAX

AJAX[14] (Asynchronous Javascript and XML) is a technique for creating fast and dynamic
web pages. Despite the name, the use of XML is not required; JSON is often used instead, which
is the case in the Genomizer web app. AJAX allows web pages to be updated asynchronously
by exchanging small amounts of data with the server, so that you only update parts of a
webpage without having to reload the entire page (like websites that do not use AJAX have
to). For example, when the search button is clicked in the navigation bar of the web app, only

49

CHAPTER 7. IMPLEMENTATION 50

the bottom half of the website is updated, and displaying the search view. The navigation bar
does not have to be reloaded, but remains as it is on top.

7.2.2.2 JSON

JSON[15] (Javascript Object Notation) is a format that is primarily used to transmit data
between a server and a web application instead of using XML or other formats. JSON is
formatted as easily readable text consisting of attribute-value pairs. JSON was used in this
application because JSON uses the same syntax as Javascript and therefore no parsing is needed,
as opposed to the usage of e.g. XML. JSON also works well together with Backbone as it has
integrated methods using the JSON format.

7.2.3 Testing frameworks

Three libraries are used to make testing easier: Chai, Mocha and Sinon. Together they let the
developers make a page for testing where all tests and results will be shown visually. These
libraries or testing frameworks will be discussed below.

7.2.3.1 Chai & Mocha

Mocha[19] is a test framework while Chai[I8] is an expectation framework. While Mocha
setups and describes test suites, Chai provides convenient helpers to perform all kinds of
assertions against Javascript code. We use these frameworks to do unit testing on our models
and collections.

7.2.3.2 Sinon

Sinon[20] is a framework used to “fake environment”. When doing unit testing, we do not
want to depend on things that are external to the unit of code that we are testing. Sinon can
be used for stubbing and mocking external dependencies and to keep control on side effects
against them. For example, Sinon can be used to create spies to see if an event has been
triggered, and to create fake servers that respond with fake pre-planned responses to queries.

7.2.4 'Web app tests

Unit tests have been performed on all model and collection files that contain non-trivial
functions. All unit tests can be found in the root folder under /tests/, more specifically
/genomizer-web/tests/. To run the tests, simply open the index.html in a web browser and
they will run. The views have not been unit tested since that is overly complicated; instead
they have been continuously manually tested throughout the development process. In addition
to these simple development tests, more official system tests have also been done by the desktop

group.

7.3 Android application

The Android application has been implemented with Java, the default language for developing
Android applications. The framework is called Android Application Framework and consist of
view managers, resources and more. The application is developed for devices with, reaching
over 90% of all devices (May 2015).

50

CHAPTER 7. IMPLEMENTATION 51

7.3.1 Environment

The application has been developed in Eclipse suited with Android Software Development Kit
(SDK). The SDK consist of debuggers, libraries etc.

7.3.2 Emulation

The application has been emulated on and Android Virtual Device (AVD). This emulator
comes bundled with the SDK and is a great tool simplifying Android development.

7.3.3 Android Support Library

The Android Support Library has been used in order to enable functionality introduced in
later API levels to earlier API levels.

7.3.4 Technologies

The communication with the server is done by HTTP and REST, exchanging JSON-packages.

7.3.5 Testing

The model classes of the application has been tested with JUnit 3. Since the application is so
heavy on graphical interaction (wich is hard to test) a lot of manual testing has been done,
both on AVD and on real hardware devices. The acceptance tests that is stated in
and applicable to a mobile application have all been satisfied.

7.4 i0OS application

The iOS application has been implemented using Objective C. The decision to use Objective
C was made largely because it is the standard language used for writing iOS applications.
Libraries and framework that has been used is mostly Apple’s standard framework for iOS
applications called UIKit. A few custom userinterface objects has been created to better suit
our and our customers needs.

Communication with the server is done with a HT'TP REST protocol and JSON objects are
sent and received.

7.4.1 Testing

The logic in the application has been tested with XCTest which exists in the integrated
development environment Xcode which has been user during the development. The graphical
interface has both been tested throughout development both by the developers and by the
customers. Furthermore a systemized testscript has been implemented using Ul Automation
which tests the application in the form of a user and runs through a set of scenarios. UI
Automation is an instrument in Xcode which uses scripts written in JavaScript to simulate
user interaction with the app.

51

CHAPTER 7. IMPLEMENTATION 52

7.5 Server

In this section the server and its different subsystem are displayed. Information about how the
software design was realised in code will be provided.

7.5.1 Communication

This section explains implementation details of certain bits of the communication/control part
of the system.

7.5.1.1 Doorman

The doorman is a class which greets all incoming connections and requests. The doorman
creates a RequestHandler and a server context so that the requests can be correctly handled.

7.5.1.2 RequestHandler

The RequestHandler class checks the server context to determine what Command is to be
created and what action to take. If for instance the HT'TP header is GET /experiment
a GetExzperimentCommand is created. The command is afterwards validated and executed.
Uploading and downloading is handled differently. Instead a downloadHandler/uploadHandler
is used to handle the exchange.

7.5.1.3 Authorization

The communication between a client and the server is authorized by a user-unique token which
is created when the user sends a login request. A token is created when a user has logged in
successfully and the token is sent back to the user so that the user can thereafter use this in
future requests. The token created when a user sends a login is stored in the server memory
until the user sends a logout request.

7.5.1.4 Removing inactive tokens

The server has a function which removes inactive tokens after a set limit of time. This is
done because a client sometimes skips sending a logout request when shutting down the client
program. The InactiveUuidsRemover class is used to achieve this goal. In a thread it sleeps
for one hour before checking all clients. If any client hasn’t sent a request for 24 hours, the
client token is removed from the server memory.

This feature may be turned of with the flag "-nri".

7.5.1.5 Command object

The command object represent a specific command. It is created from the RESTful header
and/or the JSON/ body sent from the client. The JSON/ API provides methods for automatic
parsing of the JSON/ body into an object. The fields in the command object created must
match the attributes in the JSON/ body. This match is case sensitive

52

CHAPTER 7. IMPLEMENTATION 53

Client 2 Client 3 Client 4 Client S Client

Request Response Request

Authorization: . Authoriztion:
223fwe- ..
nul token: "223fwe-.." "t
wsename: "epor”
passwond: "pass”
Crealrg loken...
Checking password... | oo rwswisdt3iz3
Server | Server | Server | Server Server

Figure 7.1: 1. The user sends a login request without any autho-
rization token. 2. The server checks the given password. 3. The
server creates a unique token for the user. 4. Server sends the token
back to the user in a response. 5. Now that the user has a unique
token, the token is placed in the header whenever the user sends
another request.

7.5.1.5.1 Execute

Every command object must implement a execute method. This method is the part of the
command which uses the system interface to perform the task that corresponds to the command.

The execute method returns a response object which is sent up to the RequestHandler
which then sends the response to the client.

7.5.1.5.2 Validation

Every command must implement a validate method. This method is run after the command is
created but before the command is executed.

The validate method throws ValidateExceptions if any information given by the client is
in an incorrect format. The validation is used to prevent unnecessary communication.

7.5.1.6 Processing handling

For processing of data for instance multiple instances of a raw to profile convertion a queue
is used. A client sends a list of processes to run by the command PutProcessCommands.
The list of processes is placed in a ProcessPool which can start and cancel processing. All
lists of processes that are placed in the queue are executed one at a time in the order first
in first out. If a certain list of processes seems to take too long and is not prioritized the
list can be cancelled through the CancelProcessCommand. Note that one single process in
the list can not be individually cancelled but the entire list inputed through that particular
PutProcessCommands can only be cancelled.

53

CHAPTER 7. IMPLEMENTATION 54

7.5.1.7 Response object

There are different response objects for different kind of responses since the form of the response
to the client depends on the command the client initially sent.

The response object contains all the data necessary to create a RESTful header and a JSON/
body for the response.

7.5.1.8 Testing

Testing has been done in multiple steps. The first step is unit testing, where individual methods
are tested. This is often difficult due to the fact that the responsibility of handling client
requests is shared by multiple classes. To catch these test cases a client dummy has been
frequently used, which is the next step. It simulates a client by sending HTTP requests and
examines the response from the server. It is used manually to test a particular use case, and to
see that the server behaves as intended for that request. After a feature has passed the client
dummy it is pushed to a test server, where it is open for other clients to test and debug. If no
bugs are found the feature is declared complete and can be released.

7.5.1.9 Travis

To make sure of continous integration Travis is used with the GitHub project. Whenever
a change is pushed to a branch of the project Travis will try to build the project and run
the JUnit tests. No branches are allowed to be merged with others unless the Travis tests
succeeded.

7.5.2 Conversion

This section will explain the implementation of the SmoothingAndStep subroutine used in
the conversion of files from raw to profile. The basic algorithm is a dynamic arrayList which
carries the rows that are relevant at a given time, smoothing on the first row is performed. The
newly smoothed value is shifted out and replaced with a fresh row. This becomes a dynamic
window that traverses the entire file one row at a time.

7.5.2.1 Methods

o smoothing : The one public method of the class. It controls the whole process and calls
the other methods. It takes in the following parameters:

— int[| params: An array with 5 integers representing parameters. params[0]:
Window Size, the number of signal values that the smoothing should be calculated
on.
params[1]: Whether the smoothing should be trimmed mean (0) or median (1)
params[2]: Minimum numbers to smooth. A number that says how many signal
values the program at least need in order to smooth one row. This number must
be smaller than windowSize.
params[3]: Can either be 1 or 0. If 1 the program will calculate the total mean
value for all rows and print those.
params[4]: Print zeroes. If the program should print rows where the signal value
is 0 the flag should be (1), if (0) the program will not print the zeroes.

54

CHAPTER 7. IMPLEMENTATION 95

— String inPath: A filepath to the source file.

— String outPath: A filepath to either an existing file to be overwritten or of a
location and name that will become the path to a newly created file.

— int stepSize: An integer larger than 0 that tells if there should be stepping. No
stepping will be done if the number is 1.

The method will also return the total mean of every row in the file if that flag is set
properly.
o smoothOneRow: Checks whether smoothing should be trimmed mean or median and

calls the corresponding method, after this is done it calls the method that writes to the
new file.

o smoothTrimmedMean: Extracts the first position from the data array and initiates it’s
value to min and max values. We do this because trimmed mean means that we should
remove the largest and smallest number from the mean value in order to get a more
reliable/stable result. We then check that we have more numbers in the data array
than the minimum numbers to smooth number. In order to avoid doing unnecessary
calculations.

o smoothMedian: This method tries to fill an array with window size number of signal
values and then pass this array to a method that finds which number is the median.

o writeToFile: This method does three different things. It check whether we should print
zeroes in the outfile. It also check whether the current position is divisible with stepSize
to determine if the row should be written to the outfile or skipped. After these two
checks it either writes the row to the new file or not.

It also check whether we want to print the total mean of the whole file and/or if we
should then it counts up the proper variables.

o shiftLeft: Removes the first row from the data array and adds one row to the end of it.
It then checks whether the new row is of a different chromosome than the others, if so
it calls the special method chromosomeChange.

o chromosomeChange: This method knows that the last element in the data array is a
new chromosome. It then reads and smooths as many rows as it can before hitting the
cutoff number (minimum number of rows to smooth). It then writes and removes these
values from the data array as well. It’s important to note that so far it doesn’t add
new values to the array. Afterwards the method tries to refill the array with the new
chromosome until it has window size number of rows.

7.5.3 Data Storage

The following text describes the different classes the Genomizer server uses to communicate
with the database and the file system. All the communication with the database happens
through the DatabaseAccessor-class, which uses several helper classes that contain methods
with the actual logic. These relationships are visualized in

7.5.3.1 DatabaseAccessor

DatabaseAccessor is a class that serves as an API for the Genomizer database - it handles all
connections and queries to the database. To counteract data inconsistency the isolation level
of the connection is set to TRANSACTION_ _REPEATABLE_READ. The methods simplify
queries to the database by removing the need to write SQL in any other packages. For more
details see the class diagram, [Figure G.1} in[Appendix G|

7.5.3.2 Containers

The classes in the database.containers package represents domain specific objects. The
Experiment class contains an experiment’s annotations and a list of files. The Annotation

95

CHAPTER 7. IMPLEMENTATION 56

Methods -
AnnotationMethods

—» ExperimentMethods
FileMethods

GenomeMethods
UserMethods

Database

Containers

Annotation
ChainFile
- ChainFiles
Experiment
FileTuple
Genome
GenomeFile

Helpers

| PubMedToSQLConverter
FilePathGenerator
FileValidator

|

Figure 7.2: Conceptual overview - The implementation of data
access and storage

class contains information about the annotation label, whether the label is required or not, the
default value of the label and annotation choices for drop down values. The files are contained
in FileTuple objects which stores filename, filetype, filesize, etc. More information can be
found in the class diagram [Figure G.2]in [Appendix G}

7.5.3.3 Methods

The DatabaseAccessor uses helper classes to execute SQL queries. These helper classes are
grouped by their area of responsibility:

e Annotation methods
o Experiment methods
o File methods

o Genome methods

e User methods

These classes execute the basic SQL functions create, read, update and delete (CRUD). The
use of prepared statements in these classes (also known as parameterized queries) safeguards
against SQL injection. When modifications to more than one relation are made from a single
method, transactions are used to not put the database in an inconsistent state.

7.5.3.4 Helpers

Folders are created for a new experiment when the experiment is added to the database,
including subfolders in preparation of files to be uploaded. The creation of folders is handled by
the FilePathGenerator class. All files are then sorted into folders corresponding to experiment
ID, except for genome release files that are categorized by species.

The PubMedToSQLConverter class converts a PubMed string to a SQL query. The simplest
format for a PubMed string is value[Label] but the user can enter the annotation labels and

56

CHAPTER 7. IMPLEMENTATION 57

values in combination with the the logical operators AND, OR and NOT. Parentheses are used for
disambiguation.

Example 8 To search for all raw files that Per created the PubMed
string should be:

raw[FileType] AND Per[Author]

Searches can be made on labels corresponding to file attributes as well as experiment ID.
Searching for empty string will return all experiments in the database.

7.5.3.5 Testing

WARNING! The unit tests in the database.test package have a database dependency. Do
not run any of the tests found in this package on a database that is in use. All tuples are
removed from the database upon test completion. Every instance of unit testing should start
with an empty database and finish with an empty database to avoid test interdependency.

All the unit tests use the JUnit package and utilize the TestInitializer class. This simplifies
the process of connecting to the test database, filling it with test tuples and clearing the test
database and closing the connection when the test class is finished. The individual unit tests
can be found in the database.test.unittests package. The scripts for adding the test tuples
and clearing the test database tables can be found in the sql package.

7.6 Limitations

The Genomizer system has some limitations and known problems that needs to be mitigated.
In[Appendix M]a detailed description of known problems for each of the Genomizer subsystems
are listed.

o7

BIBLIOGRAPHY 58

Bibliography

(1]

2]
(3]
(4]

[5]

[9]

(10]

(11]

(12]
(13]
(14]
(15]
(16]
(17]
18]
(19]
20]
(21]

Langmead, Ben and Trapnell, Cole and Pop, Mihai and Salzberg, Steven L and others.
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol 10(3). 2009.

Zhan, Xiaowei. "LiftOver”. Center For Statistical Genetics. February 14, 2014. Web. May
30, 2014. <http://genome.sph.umich.edu/wiki/LiftOver>

Norris, David. ”Integrated Genome Browser”. BioViz. Web. May 31, 2014. <http://
bioviz.org/igb/>

technoweenie. "Release Your Software”. GitHub. July 2, 2013. Web. May 29, 2014. <https:
//github.com/blog/1547-release-your-software>

Preston-Werner, Tom. ”Semantic Versioning 2.0.0”. Web. May 29, 2014. <http://semver.
org/>

National Center for Biotechnology Information. "PubMed Advanced Search Builder”.
U.S. National Library of Medicine. October 28, 2009. Web. May 29, 2014. <http:
//www.ncbi.nlm.nih.gov/pubmed/advanced>

Genome Bioinformatics Group. ”"Frequently Asked Questions: Data File Formats”.
Genome Bioinformatics Group, UC Santa Cruz. Web. June 2, 2015. <http://genome.
ucsc.edu/FAQ/FAQformat.html>

” Authentication and Authorization”. The Apache Software Foundation. Web. May 21,
2014. <http://httpd.apache.org/docs/2.2/howto/auth.html>

Dudler, Roger. ”git - the simple guide”. Web. May 29, 2014. <http://rogerdudler.
github.io/git-guide/>

Davis, Adam. ”Git for beginners: The definitive practical guide”. Stackoverflow.
May 21, 2012. Web. May 29, 2014. <http://stackoverflow.com/questions/315911/
git-for-beginners-the-definitive-practical-guide>

?Generating SSH Keys”. Github. May 16, 2014. Web. May 29, 2014. <https://help.
github.com/articles/generating-ssh-keys>

Backbone.js documentation: http://backbonejs.org/ Retrieved 8/5 -14

Bootstrap documentation: http://getbootstrap.com/ Retrieved 8/5 -14

AJAX on wiki: http://en.wikipedia.org/wiki/Ajax_(programming)| Retrieved 8/5 -14
JSON on wiki: http://en.wikipedia.org/wiki/JSON| Retrieved 8/5 -14

RequireJS documentation: http://requirejs.org/| Retrieved 8/5 -14

JQuery documentation: http://jquery.com/| Retrieved 8/5 -14

Chai documentation: http://chaijs.com/ Retrieved 9/5 -14

Mocha documentation: http://visionmedia.github.io/mocha/| Retrieved 9/5 -14
Sinon documentation: http://sinonjs.org/| Retrieved 9/5 -14

”List of UCSC genome releases”. UCSC. Web. May 30, 2014. <https://genome.ucsc.
edu/FAQ/FAQreleases.html>

58

http://genome.sph.umich.edu/wiki/LiftOver
http://bioviz.org/igb/
http://bioviz.org/igb/
https://github.com/blog/1547-release-your-software
https://github.com/blog/1547-release-your-software
http://semver.org/
http://semver.org/
http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://genome.ucsc.edu/FAQ/FAQformat.html
http://genome.ucsc.edu/FAQ/FAQformat.html
http://httpd.apache.org/docs/2.2/howto/auth.html
http://rogerdudler.github.io/git-guide/
http://rogerdudler.github.io/git-guide/
http://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide
http://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys
http://backbonejs.org/
http://getbootstrap.com/
http://en.wikipedia.org/wiki/Ajax_(programming)
 http://en.wikipedia.org/wiki/JSON
http://requirejs.org/
http://jquery.com/
http://chaijs.com/
http://visionmedia.github.io/mocha/
http://sinonjs.org/
https://genome.ucsc.edu/FAQ/FAQreleases.html
https://genome.ucsc.edu/FAQ/FAQreleases.html

BIBLIOGRAPHY 59

Nomenclature

Bowtie Program the preforms parsing of the raw data and counts base pairs
Chain Files Genome release files with small alterations to previous genome releases.

Genome Releases Constant research gives more understanding, new genome versions are
often found.

Genomizer Collective name for the project.

GEO Centralized database where article data can be found.

LiftOver Converts genome release versions.

Profile Data converted to a human readable file for analysis.

Raw Collection word for files that are the result from a DNA-sequencing machine.

Region Region data is small parts of the profile data.

59

APPENDIX A. USER MANUAL 60

A User manual

This chapter explains how you use each of the Genomizer clients. First instructions on how to
use the desktop and the web clients are presented. These are the clients which provide the most
functionality. The mobile clients are more lightweight and offer a subset of the functionality
presented by the desktop client. Instructions on using the smartphone applications for Android
and 0S8 are presented in their own sections at the end of the chapter.

A.1 Desktop application

This is a user manual for the desktop client. It will provide guides on how to use the client
and the different functionalities it holds. The screen shots shown in this document are made
from a Linux machine, but the application also runs on Windows or Mac, and will follow the
design principles thereafter. Because of this, some details of the look of the client may vary,
but the functionality is the same.

A.1.1 Login and startup

When you start this application the first thing that’s displayed is a login screen, as illustrated
in In this screen you enter your username, password and the IP-Address for the
server and then press the login button to enter the Genomizer Desktop.

Genomizer Login

MName Username

Password Rk

IP 127.0.0.1

Login

Figure A.1: Screenshot of the login screen.

The application is built with tabs, as illustrated below in Each tab contains
separate features of the application. There are seven tabs: Search, Upload, Process, Workspace,
Administration, Convert and Settings.

Genomizer

desktop

| sEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION | CONVERT | SETTINGS |

Figure A.2: Illustration of the different tabs of GenomizerDesktop
and displaying the Search tab.

60

APPENDIX A. USER MANUAL 61

A.1.2 Search

The first tab you see after logging in is the Search tab, illustrated in The Search
tab uses the same query building technique as the Pubmed Advanced Search Builder[6]. It has
one text field where you either can type in the query yourself or you can use the query builder
to build the query.

To switch between manually editing the query and using the query builder there are two
radio buttons to the left of the text field. Each row in the query builder has at most five
components. These are a logical expression, an annotation name field, a free text field or a
drop down menu to insert search words, a minus button and a plus button. The plus button
is only available in the last row and it adda another row to the query. The minus button is
used to remove a row and it exists on every row except if there is only one row in the query.
The logical expressions combines the annotations, so they are available in every row but the first.

By writing in the annotation text field or selecting a value in the drop down menu you can
specify the query the row will produce. Together each row builds a full query. As illustrated

in [Figure A3 below.

Genomizer

desktop Logout

SEARCH | UPLOAD | PROCESS T WORKSPACE T ADMINISTRATION 1
Genomizer Advanced Search Builder
—
(® queryBuilder () Manual edit | (Fly[Species]) AND Raw(FileType] Q m
[species I [my -
|anD || [FileType q | Raw q - +

Figure A.3: Illustration of a query, made by the query builder.

A.1.2.1 Search results

When you press the search button the search tab will change it’s view to display the search
results as illustrated in The results are displayed as experiments in a tree table.
Each row is an experiment that can be expanded to show more information and the files
associated with the experiment.

The tree table can be sorted both vertically or horizontally by clicking the headings or by
dragging and dropping the columns. You can choose which columns to display by using the
menu in the upper right corner of the table. In the same menu there are also buttons for
expanding and collapsing all experiments in the search results.

To go back to the previous view, you can click the Back button. There is also a button called
Add to workspace for adding the selected files or experiments to the workspace. The last
button, Edit experiment is used to upload more files to an experiment or to edit information
in the marked experiment.

61

APPENDIX A. USER MANUAL 62

Genomizer

[testuser Logout

SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION | CONVERT | SETTINGS |

i Search Builder

o= | Add to workspace | | Edit experiment |
| ExpD | Development_Stage | species | sex | test £
[> Exp1 | Adult [Human [Unknown [- I
> Exp2 child Human Does_not_matter
> Exp3 Rat =

Expa = -
» ExpBig - Iy
+ ExpSmall - nsect - -
> test123 - Human Does_not_matter ta
> test23 - Human - -
> tets - Human

Figure A.4: Tllustration of search results.

A.1.3 Upload

If you need to upload files to the database it can be done through the upload tab. When the
tab is pressed you get presented with a button to create a new experiment shown in figure [A.5]

Genomizer

desktop Logout

SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION |
Upload
Experiment name: | Search for existing experiment | | Create new experiment |

Figure A.5: Tllustration of the starting view of the upload tab.

A.1.3.1 Existing experiment

In order to edit files or upload files to an existing experiment you need to search for the
experiment in the search tab and then press the Edit experiment-button. When this is done
the experiment information get retrieved from the server and presented to you.

To edit the experiment, change the annotation values and press the Save changes-button. To
add files to the experiment you can press the button labeled Browse files. A file browser
window will appear, it is illustrated in figure [A-8] Here you can select the files you want to
add to the experiment. The files will be added to the upload tab and there will be some new
choices available for you. Each file will be associated with one file row, this is also shown in@

The new choices are whether the new files are either raw, region or profile files. And if it is
region or profile there is another choice for which genome release. There is also the possiblity
to delete the file row, by clicking the X-button, in case this file is not suppose to be added to
the experiment. When all fields have been filled and the files are correct, you simply click the
button labeled Upload files. The progress bar will start to progress and if all goes well it will
reach 100% and the files will be added to the existing experiment.

62

APPENDIX A. USER MANUAL 63

Genomizer

desktop Logout
SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION |
Upload
Experiment name: TestExperiment |_search for existing experiment | | Create new experiment |
Experiment ID BLAHABA 89529 1s forced cell line Rename OllesOST Testar
TestExperiment Yes Yes yes maybe osthatt T
Glass Species pleaseRemoveMEEEE desktestar

vanilj Fly nope. test
BG3_EZ_standalone_2006.wig

0% |Region | |fos v| [x
Rb_CEP_reg.gff
0% | Region v | |fbs vl [x

Browse for files Upload files

Figure A.6: Illustration of the add to existing experiment part of
the upload tab.

A.1.3.2 New experiment

The first thing you need to do when creating a new experiment is pressing the button
labeled Create new experiment in the upload tab. After pressing this button all the different
annotations get retrieved from the server. If the annotation is of freetext type there is a
textfield to be filled out. If it is a multiple choice annotation there is a drop-down list of the
different choices. The annotations who have bold text are forced and needs to be filled out in
order to create the experiment.

In order to add files to this experiment you need to press the Browse files-button. A filebrowser
will appear and you can choose which files to add. You can also drag and drop files from a
folder on your machine onto the upload tab of the client. When the files are added they each
get displayed in a file row. The file row consists of the file name and a progress bar.

Apart from the add experiments there are also three buttons and a checkbox. The checkbox
will be explained in section m below. The other three buttons are used in the same
manner as in section [A.1.3.1] above. When all the annotations that are needed is filled in and
the associated files are added you press the button labeled Create with all files to create the
experiment.

ltestadmin Logout
SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION | CONVERT | SETTINGS |
Upload

Create new experiment

Experiment ID Development_Stage Tissue Species Sex
Exp0001| embryo tissue | Human q | mate q
Bold text indicates a forced annotation.
test2.fastq (9.97 kB)
0% | Raw vl na X | select: ()
testl fastq (9.97 kB)
0% | Raw ¥ [na X | select: (]

Browse files | | Craate with selected files | | Create with all files |

Figure A.7: Illustration of the create new experiment part of the
upload tab.

63

APPENDIX A. USER MANUAL 64

A.1.3.3 Batch upload experiments

The Genomizer desktop client has support for batch uploading of experiments. The following
steps describes how to batch upload experiments:

1. Create a new experiment by pressing the button labeled Create new experiment.

2. Press the button labeled Browse files and select all the files to be included in the batch
upload.

3. Fill in the experiment ID and annotations of the first experiment

4. Select one or more files to upload to the first experiment by ticking the check-boxes
next to the files.

5. Select filetype and genome release if needed.

6. Press the button labeled Create with selected fiels and wait for the file(s) to be uploaded.
When the upload is complete, the file row will disappear.

7. When the files have been uploaded, repeat steps 3-6 with the desired changes to
annotations and experiment ID’s.

Using this method let’s the user make small changes to annotations while creating multiple
experiments.

(& android-sdks (& hej [private (& vided
(5 Desktop (5 1deaProjects (&5 Public (&5 work
(i Documents (& Mail (& pvt (&8 work]
[E5 Downloads (& Music (& Templates [%10/
(5 edu (& Pictures (5 video |l expQ
ELS >
File Name;
Files of Type: | Al Files B
Open cancel

Figure A.8: Illustration of the file browsing window.

A.1.4 Process

From the process view (see the user can process files uploaded to experiments.
The view consists of three panels; one panel at the top with a drop-down list with process
commands, one panel to the left that lists command components (see example in ,
and one to the right where feedback from processing tasks can be seen. The top-panel also has
a button for adding commands to the list on the left panel.

To prepare an experiment for processing the following steps must be performed:

o Search for the desired experiment and add it to the workspace, as described under the
search section.

o Select the experiment from the worksapce view and press the button labeled Process.

After performing these steps, the user can process the files of the selected experiment. The
user can perform several process steps in a sequence, and also perform each step on several
files. A command component in the list on the left panel represents a step in the processing
sequence. Each command component has a row for input fields, where the user can select
files to apply the command on, specify names of resulting files, and define other parameters.

64

APPENDIX A. USER MANUAL 65

Genomizer X
testadmin Logout
SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION | CONVERT | SETTINGS |
Choose Command
Experiment ID ExpSmall step v +
Processing Information
rawToProfile . v ExpID: UNKNOWN EXPERIMENT [a
» ProcessiD: fecfd52b-930e-41d5-3305-169265947¢
m v ProcessiD: 878b559f-61da-4ed1-9094-1b0dd1701d
Author: UNKNOWN AUTHOR
Infile Outfile Flags GR Keep .SAM Files: Files
status: Finished
testLfastq [v] [testlwg @S (ero. 7] @ TimeAdded: 2015-06-01, 13:18
TimeStarted: 2015-06-0L, 13118
TimeFinished: 2015-06-01, 13:18
infile Outfile Flags GR Keep .SAM » ProcessID: 8b37e8cd-507e-4111-22d8-06307914b
testafasta [v) |testzng = Geno.. v @ —t » ProcessiD: 0b014241-8652-4dcf-8189-42698446a:

» ProcessID: 0d0c5659-f054-4e82-86ccf3fa539d6ffS
» ProcessiD: f2ase082-7a7a-41ae-aeeb-eb23ddes]|
» fdfdaadl-26: 4 b 1f24122e!
» ProcessID: 2379160c-bb75-4870-af2e-5¢4537a7 9
» ProcessID: 134810al-c212-4f89-8072-dc7e471ale
SIEE . » ProcessiD; 77393e75-9506-4654-9c21 fdc99ea3sl
» ProcessiD: 5abbl8dd-3d52-4e41-9778-7a508adef:

i} » ProcessiD: agad7al6-0ed0-45cc-9d54-dbcccdglas

» ProcessiD: 088¢7e2d-bfe5-40f7-93e4-bff063f43b 4

Infile outfile S » ProcessiD: 85ca3065-f5¢-41f1-8623-2¢64639a30¢

= » ProcessiD: 6b5123bd-4ca9-4d25-3895-781fd5e22]

testlwig [v] [testisgr s » ProcessiD: 28da0] ef-4561-415f-8537-5¢1€86086€

» ProcessID; f2delafe-ccld-41ef-801d-e13a388abl:

nfile outfile Step size » ProcessD: 03f2aBe5-4386-4875-abab-b40d96943!

» ProcessID; 3bbdc874-3dd8-4789-ab29-2848d6eb

test2.wig \:] test2.sgr 10 fj -+ » ProcessID: 6acc0cb8-476f-465c-b321 -dfbb4e229b
> ProcessiD; 98791411 fa24-4dfe-b523-c538d15/932 y

s >

| @et process feedback | | Abort process |
Sl SRRl
JExosmail was added 10 the Workspace.

Figure A.9: The process view of the Genomizer desktop client.
The top-panel (red) has a drop-down list and an add-button. The
left panel (green) lists process commands to be performed in the
processing sequence. The right panel (blue) shows the status of
different processing tasks.

The command component also have buttons for adding and removing extra input-rows, and a
button for removing the whole component.

The following describes how to process one or more files:

e Select a process command from the drop-down list located on the top-panel of the tab.

e Click the plus-button next to the drop-down list to add the command to the command
list located below.

e In the command component in the list, fill in the needed parameters. Click the plus-
button on the command component to add more files to process, or remove unwanted
files by pressing the minus-button.

e To add another command to the sequence, repeat the above steps.

e To remove undesired commands, press the trash can icon in the upper-right corner of
the command component. To remove all commands press the button labeled Clear.

e When the desired process commands have been added and parameters have been filled
in, press the button labeled Start Processing to start processing.

The server will now start processing the specified files with the specified commands and
parameters, in the same order the commands were added by the user. To get feedback from
the processing task, the user can press the button labeled Get process feedback. To abort
ongoing process tasks, the user can press the button labeled Abort process. The feedback panel
lists experiments, which can be expanded to show the status of processing tasks, associated
with the expanded experiment.

65

APPENDIX A. USER MANUAL 66

rawToProfile

Bt

Infile Outfile Flags GR Keep .SAM

testl.fastq |l] testl.wig -a-S | Geno... |¥|]

Infile Outfile Flags GR Keep .SAM

test2.fastq |:] test2.wig -a-s | Geno... |»|]

Figure A.10: A command component representing a raw-to-profile-
process. The component has rows for input parameters (red),
buttons to add and remove input rows (blue), and a button to
remove the entire component (green).

A.1.5 Workspace

The workspace Tab seen in is a tab where you can temporarily store experiments
and their files, and choose different options for action. Results from various searches can be
stored here, and the contents of the workspace is saved as long as the program is running.
Files and/or experiments are chosen by clicking them, multiple files by using either Shift-click,
Ctrl-click or simply holding down the mouse button and dragging the cursor over multiple
files. By choosing an experiment, all of the containing files are selected.

A.1.5.1 Delete from workspace

Items can be deleted from the Workspace by pressing Remowve from workspace.

A.1.5.2 Delete from database

To delete the selected data from the database the Delete from database button should be used
instead. When pressing the delete button a small popup window with a progress bar will be
displayed. By closing this window the deletion of data can be aborted.

A.1.5.3 Upload to

If you want to upload files to an experiment you have in the workspace, you can simply click
the Upload to button to switch to the upload tab and upload to the experiment they have
selected. If multiple experiments have been selected, only the first one will be uploaded to.

A.1.5.4 Process

If you want to add files to the process tab there is a Process button which transfers the selected
experiment to the process tab.

66

APPENDIX A. USER MANUAL 67

A.1.5.5 Download

You can make the choice to download files to their local computer. If you press the Download
button seen in you get to choose a directory where you want to save the files.
When a directory has been chosen, the files get downloaded and all current and completed

download can be seen in the tab downloads, see

Genomizer

testadmin Logout
SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION | CONVERT | SETTINGS |
Workspace
I Delete from database] [Remove from workspace { Download] Upload to Process Convert
Workspage | Downloads
| BxpiD | Tissue | sex | Development_stage | species E]
| EviExp |1 [Male [1 [Rat I
- Expl Arm Unknown Adult Human
xp?2 Armar Female
» Exp3 - - child Rat
Expd
aa aa - aa Human
» processpool_test | butt | Does_not_matter [ass [Insect
300 x = [- [Human
Figure A.11: Screenshot of the workspace tab in the program.
Genomizer
testadmin Logout
SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION | CONVERT | SETTINGS |
Workspace

Delete from c Remove from workspace Downloac Upload to Process Convert

Workspace |[Downloads

file1.Fastq (0.0MiB/s)
|

0% \w
bigtestl.fastq (0.0MiB/s)
‘ o =)
bigtest2.fastq (0.0MiB/s)
‘ » (E3)
smalltest1.fastq (0.0MiB/s)
| 0% [E3)]
smalltest2.fastq (0.0MiB/s)

0% [E3)]

Completed: 1.png

Figure A.12: The downloads tab of the workspace

A.1.6 Administration

A.1.6.1 Annotation

The system administration tools for the desktop client is available under the Administration
tab. There are two different tools: Annotation and Genome files. The annotation tab is the
first sub tab in the Administration tab. Annotations are used for specifying properties of
uploaded data. For example, if new data from an experiment done with rat tissue is uploaded,
the data shuld have an annotation called "species" with the value "rat". The Annotations sub
tab in the Administration tab gives you the tools to create, edit and remove annotations and
annotation values.

In the annotations tab, when you press the button labeled Add in the sidepanel a new popup
window appears. It is possible to write the name of the new annotation and the new values in
this popup, as well as check a "forced annotation"-box. The "forced" value determines if the

annotation will have to be present in all future file uploads. See

67

APPENDIX A. USER MANUAL 68

Genomizer

testadmin Logout
SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION | CONVERT | SETTINGS |

System administrator tools

Annotation
Genome files || Name | Types | Forced || Modify |

Users Tissue frestext true add
Sex Female, Male,Unknown, Does_not_matter false
Species Human,Fly, Rat,Insect true Remove
Development_Stage freetext false

Figure A.13: The annotation view

Add new Annotation

DropDownLists | Free Text

4
Annotation name: Sex -
Not adding any values will result in a Yes/No/Unknown drop down annotation,
V] Add Values
Value: | Unknown +
Value: Male =
Value: Female —
Forced Annotation: | | Yes | Create annotation :

Figure A.14: The add annotation popup

If you want to have free text as a value, for example if the annotation is pubmedID, the value
of that annotation will not be able to be chosen from a drop-down menu, since the number
available values is enormous. You might then want to use a freetext annotation, which allows
you to type any value you want. To create a freetext annotation you click on the freetext tab
on the "add" popup.

To remove an annotation, you select an annotation from the table in the center of the view,
and click on the remove button on the right side. You then have to confirm this deletion. After
this the annotation is completely removed and cannot be brought back to life, see
Some annotations cannot be removed for security reasons, ’Species’ is such an annotation.
Trying to remove it will generate an error message.

A.1.6.2 Genome files

The genome files tab shown in contains a table with information about which
genome release versions are stored on the server. If you click on one of the entries, a smaller
frame is displayed at the bottom of the table showing which files are included in the selected
genome release. To the right of the genome release tab are the tools for adding new genome
releases. You can name the new genome release in the text field and you are then able to
upload the files associated with that genome release.

When the desired files are selected, progress bars representing the upload of those files appear

68

APPENDIX A. USER MANUAL 69

Lenume researcher 1 (Desktop User)

Logout
SEARCH | UPLOAD | PROCESS | WORKSPACE | SYSTEM ADMINISTRATION |

System administrator tools

Aannotation | *=*"

[Genome files || name

| Types | Forced

| Modity |
Development Stage freetext true =
ExpID freetent false
Sex Female, Male,Unknown, Does not matter true Remove
Species Human, Fly.Rat true (L pemore J

Select an Option

@ Are you sure you want to delete the Tissue annotation?

cancel | [No

Figure A.15: The remove annotation popup.

at the bottom of the Add Genome Release-frame. When you press the button labeled Upload,
the upload of the selected files will start and you can follow the upload progress from the
progress bars. After the upload is finished, you will be notified of its success or failure with a
message dialog. Genome releases can also be removed by selecting the release version from the
table and pressing the Remove genome release-button which appears at the bottom of the

table when a release version is selected. This will remove the genome release and all associated
files.

Genomizer
testadmin

Logout
SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION | CONVERT | SETTINGS

System administrator tools

Genome releases
Add new species
Genome files | version | Species
Users hg3s Human Species

GenomV1 Insect —
e B Add Species
ma Rat
m3 Rat Add new genome release
ms Rat
hgls Human Genome release version:

Species:

Genome files:

Browse files... Upload Clear

Figure A.16: The genome release view.

If you want to add a new species to add or remove genome releases for, this can be done in the
top right corner of the genome release tab. You simply writes the name of the new species and
presses the add-button and the species will be added to the "Species" annotation.

A.1.6.3 Users

The Users tab shown in contains four different panels, one to create a new user,
one to update an existing user, one to delete an existing user and one to show all the users.
Just fill in all information in the text fields and press one of the buttons to do that command.

There is three different kind of users, the Guest, User and the admin. The Admin is the only
one to have access to this User tab.

69

APPENDIX A. USER MANUAL 70

Genomizer

testadmin Logaut
SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION | CONVERT | SETTINGS |
System administrator tools

Create List Usernames
Annotation
Genomefiles ||| Username
Users

Password

Real name Create User

Mail

Role USER -

Update

Username

Password

Real name Update User

Mail

Role USER -

Delete

Username Delete User

| Get Names J

[Loain successfl

Figure A.17: The Users admin view.

A.1.7 Convert

The Convert tab shown in contains buttons to convert and remove selected files,
and buttons to choose what to convert into. The panel Convert from shows the files sent
into the convert tab, and the panel Converted files shows the finished files that have been
converted.

To convert files, begin with selecting the wished files to convert in the and press
the convert button. You will be directed to the convert tab with the files, check all the files you
want to convert (only possible to convert one filetype at a time) and press the Convert selected
files-button. If the files managed to convert successfully they will appear in the Converted
files-panel to the right.

Notice that you need to choose which filetype you want to convert into in the Conwvert to-panel
if the selected files can be converted into many different filetypes. The convert from panel is
only in the panel for show, to show which filetypes you have selected.

Remove files from the list by pressing the Remowve selected files-button, and clear the list with
finished conversions by clicking on the Clear converted files- button.

A.1.8 Settings

In the settings tab you can change password and information about your user.
To change information, all fields must be filled. When the fields are filled, press the update
settings.

70

APPENDIX A. USER MANUAL 71

SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION | CONVERT | SETTINGS |

Upload
Convert from Convert to
Convert Delete
O BED
) GFF %
| convert selected files | | Delete selected files | | Clear converted files | ; R B
O WG ® wie
Convert from Converted files
(] BED-testdata.bed - Rat SGR-testdata-2.wig
(] GFF testdata.gff - Rat 5GR-testdata-3.wig
(] SGR+testdata.sgr - Rat SGR-testdata-4.wig

V) SGR-testdata-2.sgr - Rat

¥ 5GR-testdata-3.sgr - Rat

¥ 5GR-testdata-4.sgr - Rat

(] WiG-from-SGR-testdata.wig - Rat
) WiGtestdata.wig - Rat

(L) wigvarstepTest.wig - Rat

(] BED-testdata.wig - Rat

) GFF-testdata.wig - Rat

Figure A.18: The Convert tab.

testuser

| SEARCH | UPLOAD | PROCESS | WORKSPACE | ADMINISTRATION | CONVERT | SETTINGS |
User Settings

Old Password |

Mew Password

Update settings
Name

Email

Figure A.19: The Settings tab.

A.2 Web application

To access the web application, navigate to a domain and directory that publicly serves the web
page. An example of this could be: https://scratchy.cs.umu.se:8000/app/. All functionality
of the web application is (or rather should be) fairly self-explanatory and intuitive. A short
description and explanation will be given for each component that has been implemented so
far.

A.2.1 Using the interface

This section describes how to use the interface and how to interact with it.

A.2.1.1 Start view

When first entering the web page, the login pop-up window in is shown and the
user will have to enter their username and password to gain access to the application.

When the user has logged in, the user is taken to the search page as shown in

71

https://scratchy.cs.umu.se:8000/app/

APPENDIX A. USER MANUAL 72

Login

Username

Password

Figure A.20: The login pop-up window.

Genomizer x

GG Gy BxbHps//130,.239.192.110 D@ =
 Bookmarks (*1 Other bookmarks
Genomizer Search Upload Process Convert Administration Q- Lag out
Type query & Qsearch & Process | ¥ Convert ® Download | @ Uploadto | i Remove

Figure A.21: The start view of the web page.

The navigation bar at the top has a number of buttons to the left and two buttons to the right
with the following functionality:

o Clicking the “Genomizer” logo takes the user right back to the start view.

o The “Search” button will bring up the search view where the user can enter search
strings to be sent to the server, and view search results.

o The “Upload” button will bring up the upload view where the user can select files to be
uploaded and input annotation to a new experiment.

o The “Process” button will bring up the process view where the user can select an
experiment to process.

e The “Administration” button will bring up the admin view where the user can handle
genome releases and annotations.

e The inbox icon on the left side opens a dropdown list which displays the statuses of
files currently being processed.
e The “Log out” button will log out the user.

This navigation bar is persistent through all sub pages and can easily be accessed.

A.2.1.2 Search view

In the search view, below the navigation bar, a “search-and-functionality” bar is visible. There
is a search field and there are seven buttons that are explained below, starting with the
left-most button:

e "Query builder”, represented by a paperclip, brings up a query builder, shown in
that helps unexperienced users construct a valid query used for searching

72

APPENDIX A. USER MANUAL 73

experiments. Just select a value in the three fields and press add. The correct pubmed-
styled query will be shown in the search field and the three query fields will be reset so
the user can add more things to search for in their query.

o “Search” searches for the query in the search field.
o “Process” processes the selected files.

e« “Convert” converts the selected files. This feature is demonstrated further in section

A2T14

« “Upload to” opens the upload view with the selected experiments selected where the
user can upload new files to an already existing experiment.

o “Remove” opens a new view where the files which are going to be deleted are presented
along with a confirmation dialog that the user really wants to delete those files and

experiments.
& 5ty [hermione.cs.umu.se: 8090 | =
Genomizer Search Upload Admin O~ Logout
Type query & | Qsearch 82 Process | @ Download | ® Uploadta | T Remove
Query builder
NOT - sSpecies - | Ry - |
Human
Fly
Rat

Figure A.22: The query builder.

When first entering the search view, only the query builder button and the search button are
clickable. The rest of the buttons become clickable once the user selects experiments or files.
To search, the user can either write a pubmed style query (for example: ”Fly[Species]” to
search for every experiment with "Fly” as value of the annotation ”Species”) or use the query
builder. When clicking the search button, a loading screen is shown. The experiment data is
displayed once it has been retrieved from the server.

@ Genomizer *

@D _'5‘ @y [hermione.cs.umu.se:8090/#search/Fly[Species] 97 =
Genomizer Search Upload Admin O~ Logout
Fly[Species] # Qsearch 82 Process | @ Download | ® Uploadto | T Remove

Search Results

Experiment name asd asd as test Species Sex
+ 0 flyg fula fluga Yes No Fly Unknown
+ 0 sadsad No Yes Fly
+ 0O sadsad12 No No Fly Unknown

Figure A.23: The search tab after searching for “Fly/Species]”.

The view in [Figure A.23|is shown when the user has searched for the query ”Fly/Species]”.
The displayed list contains all experiments returned from the search and a header on top with

73

APPENDIX A. USER MANUAL

74

all annotation types. Every experiment can be expanded by clicking it to show the file types it
contains. Each file type can be further expanded to show all files of that type in the experiment.
Every file and experiment has a checkbox next to it that is used to select it. In
an experiment called Ratiotest and its contained collection of raw files have been expanded.
Furthermore, the files test.fastq and test2.fastq have been selected. These files can now,

for example, be processed or removed by using the buttons in the “search-and-functionality

”

bar.
Search Results
Experiment name asd asd
+ flyg fula fluga Yes
+ HumanPrac
+ jhav Yes
- = Ratiotest
- Raw Files
Filename Genome release
o test fastq
< test2 fastq
+ Prafile Files
+ sadsad No

as test

Metadata

default

default

Species Sex

Fly Unknown

Human Unknown

Human

Human Daoes nat matter
Uploaded date Author
May 17, 2015 testuser
May 17, 2015 testuser

Fly

Figure A.24: The search results table zoomed in, displaying the
information of a raw file after having expanded an experiment.

If no experiments match the search query, the Search Results table will be empty stating “No

search results found”.

74

APPENDIX A. USER MANUAL (0]

A.2.1.3 The processing view

If the user wants to process files from an experiment they first have to enter the search view
and search for the experiment in which they wish to process files. Check the box for the
experiment and then click the process button (Figure A.25). When the process view is

m

& (5 | B beprs://sirius.cs.umu.se: 10000/ app/#search/Exp1[expid] =
Genomizer Search Upload Process Convert Administration Q- Logout
Exp1[expid] & Qsearch 8z Process | Y Convert | ®Download | ®@Uploadto | i Remave

Search Results

Experiment name Tissue sex peci D p Stage

+ # Exp1 Arm Unknown Human Adult

Figure A.25: Selected Expl.

_

<§o \3‘ @b.t—l'pgﬂ'fslrlus.(s.umu‘se 10000/ app/##process/Expl =
Genomizer Search Upload Process Convert Administration Q- Logout
RawToProfile A Add

Figure A.26: The process view opened with Expl selected.

opened choose which process step you want to do in the dropdown list and then press the add
button (Figure A.26). To add a new file to the selected process step press the ”+” button

@ Genomizer x

&o (& | [sked.cs.umu.se:8080/#process/Expl =
Genomizer Search Upload Process Convert Administration @~ Logout
RawTaProfile v Add
A L

Figure A.27: Scrollbar which shows the different process steps.

(Figure A.27). After pressing the "add” button the view will now show a new set of processing

75

APPENDIX A. USER MANUAL 76

@ Genomizer

@ [[sked.cs.umu.se 8080/#process/Expl

»

Raw to profile

Infile Outfile Genome Parameters Keep
release .SAM

RawTaProfile

Figure A.28: Process view after a process step has been selected.

options. The ”Infile” dropdown list chooses which file is going to be processed. ”Outfile” is
used to set the name for the new processed file. ”Genome release” sets which genome release
to use for the process and "Parameters” sets which parameters to be used. If the user wants
the .sam file to be saved the "Keep .SAM” box has to be checked . To start

_

& @ [sked.cs.umu se:8080/#process/Expl |

Genomizer Search Upload Process Convert Administration G~ Logout

Raw to profile

Infile Outfile Genome Parameters Keep
release .SAM
file1 fastq v hg ~ -a-m @
¥
RawToPraofile v Add

Figure A.29: Process view after adding a file for a process step.

processing simply press the ”Process” button (Figure A.29)).

76

APPENDIX A. USER MANUAL 7

A.2.1.4 The convert view

The web application allows conversion between a number of file formats which both are of
profile type. More specifically, the user may convert any of the file formats .sgr, .wig, .bed
and .gff to either .wig or .sgr, with the exception that a file cannot be converted to the
same file format.

Genomizer

< C' | B b#pS//130.239.192.110:4435/#search/ExampleExperiment[Exp| D] =

Genomizer Search Upload Pracess Convert Administration Q- Log out

ExampleExperiment{ExpiD] & | Qsearch 82 Process | ¥ Convert | ®@Download | @ Upload to | [Remave

Search Results

Experiment name Development_Stage Tissue Species Sex
- @ ExampleExperiment greger Leg Rat unknawn
- Prafile Files
Filename File size Genome release Metadata Uploaded date Author Uploader
|I (73] file grt 4051 KB m3 default Jun 2, 2015 testadmin testadmin

Figure A.30: Selecting a file to convert.

Assume that there is an experiment ExampleExperiment which contains a profile file file.gff.
Then the experiment will show up in the search view, see [Figure A.30} when typing "Example-
Experiment|[ExpID]” as search query and then clicking the search button. If the user wants
to convert file.gff to a new file of format .wig called file.wig, the following steps can be
taken:

e From the view in select file.gff by clicking in its checkbox.
o Click the “Convert” button next to the search text field.

e The user will now be taken to the convert view shown in

o Select file.gff by clicking on it.

e Mark the .wig checkbox in “Convert to” and click the “Convert” button.

The file conversion will now start on the server. Once the conversion is done, the user will
be able to see file.wig listed together with the old file file.gff when searching for the
experiment.

If multiple files are selected for conversion, all of them will appear as a list in the convert view.
If the user quickly wants to select all files of a specific file format, for example all .wig files,

the GFF option can be marked in “Select all”. Then all files in the list of the format .wig will
automatically be selected.

A.2.1.5 The remove pop-up window

T

APPENDIX A. USER MANUAL 78

@ Genomizer x

€ - C | Bberps//130.239.192.110:4435/#corvert/~, 20~ file.gff =

Genomizer Search Upload Process Convert Administration a- Log aut

Convert

Select all
' SGR ' WIG ' BED "' GFF

Select files
(“file.gff

ConvertTo
L WIG '® SGR

Figure A.31: The convert view.

Confirm Removal

The following experiments will be removed:

Experiment Exp1 containing 2 files

The following files will be removed:

file1.fastq from experiment Exp1
file1.sam from experiment Exp1

Do you want to proceed? Cancel

Figure A.32: The remove pop-up window.

When the remove button is pressed the pop-up window in is shown displaying
which files and experiments will be removed when the remove button is pressed.

A.2.1.6 The process status dropdown

78

APPENDIX A. USER MANUAL 79

Q- L
Raw processing status
Experiment Added Started Ended |
2arch lem

real_test_experiment 14:48 14:48 14:48

c11vigtest2 14:48 14:48 1448
c11vigtest2 14:47 1447 1447
:iesBd
| test1 14:26 14:32 14:32 |
c1lvigtest 14:22 14:32 1432 |

real_test_experiment 14:00 14:32 14:32 |
real_test_experiment 12:49 1321 13:35 |
real_test_experiment 12:49 12:49 13:21
real_test_experiment 11:14 11:14 11:14
real_test_experiment 13:37 13:37 14:32 l

real_test_experiment 11:14 11:14 12:02

Figure A.33: The process status dropdown.

When pressing the inbox icon, a dropdown is shown as indisplaying the status of
experiments currently being processed. There are four different statuses a processing can have,
all grouped into colors: Waiting (yellow), Running (blue), Complete (green) and Failed (red).
For example, in the figure, the two bottom experiments are complete and the rest have failed.
If there are no experiments being processed, the dropdown will simply display “No process
status available”.

A.2.1.7 The upload view

@ Genomizer *®

&o & @y | [draco.cs.umu.se:8090/#upload T =
Genomizer Search Upload Admin Q- Logout
Experiment name © Add to existing experiment © Create new experiment

Figure A.34: The upload view.

When the user clicks the upload tab in the navigation bar, the view in [Figure A.34] will appear.
The user has the option to create a new and fresh experiment or to load an existing experiment
by entering its experiment name.

After clicking the “Create new experiment” button, the view in will appear.
Here the user can input the annotations for the experiment through either freetext fields or
dropdown lists. If a freetext field has a red border around it, that annotation is required and
the experiment cannot be uploaded before all required fields have been filled in and at least

79

APPENDIX A. USER MANUAL 80

@ Genomizer *

&e \j iy [draco.cs.umu.se 8090/#upload i? =
Genomizer Search Uplaad Admin Q- Log aut
Unnamed Experiment ®
name Develop Stage Tissue Species Sex
Human v Female v

Select files to upload o drap files here

Clone Experiment ‘ ‘

Experiment name existing experiment © Create new experiment ‘ ‘

Figure A.35: Creating a new experiment.

one file has been added.

The user can create more experiments by clicking the “Create new experiment” button and a
new empty experiment will be placed below the first experiment. The user can also clone an
experiment by clicking the “Clone Experiment” button. What happens in this case, is that
the every filled-in annotations gets copied to the new experiment.

To add files to the experiments the user can browse for local files and upload them by clicking
the “Select files to upload” button. The user will only see file types that have to do with
experiments but have the ability to search for all file types. There is also a way of adding
files to the experiment by dragging them from a file browser and dropping them onto the
experiment “drag and drop”.

An experiment can only contain two raw files and if the user tries to upload more a message
with this information will appear and the experiment cannot be uploaded before the extra raw
file/s is removed.

To add files to a existing experiment the user types the name of the experiment in the field
next to the “Upload to existing experiment” and clicks the button. If the experiment exists
on the server it will appear in the experiment view the same way that a new experiment is
shown. The annotations of an existing experiment cannot be changed from this view and if
there are files already in this experiment they cannot be manipulated. Adding new files to
existing experiments works the same way as to a new experiment.

When the user selects files, they will appear below the annotations as in The
file name is displayed in a text field on the left side of the file view. Next to the file name is
a box that shows the size of the selected file. On the right side there is an option to select
what type of file is being uploaded and an option to remove the file from the experiment. If
the file type is either profile or region, there is an option to select what genome release the
file is mapped to. The file type option will automatically be filled in with a guessed value
depending on the file ending as follows: .fastq files are considered raw and all other formats
(.sgr, .wig, .gff) are interpreted as profile.

When the user is done selecting files, filling in annotations and clicks the “Upload experiment”
button the experiment view will be minimized showing only the name of the experiment and
the progress bar of the files being uploaded. When the progress bar is done it turns green and
now the experiment with all the files have been uploaded to the server. The user also has a
way of uploading several experiments at the same time by clicking “Upload all experiments”.

80

APPENDIX A. USER MANUAL 81

@ Genomizer *

&= S @y [hagrid.cs.umu.se 80 90/#upload | =
Genomizer Search Uplaad Admin O~ Logout
Experiment 322 x

experiment name Development Stage Tissue Species Sex
Experiment 322 47 Leg Fly v Unknown v
BG3_EZ_standalone_2006_2 wig 40.51 KiB v Profile T x
Author testuser Metadata
MOF _unknown_reads_sample fastg 26.31 MiB Raw v x
Authar: testuser Metadata:
Select files to upload or drop files here
Clane Experiment ® Upload experiment
Experiment name © Add to existing experiment | € Create new experiment | [+ JUNELETNSERGED S

Figure A.36: Files selected for upload.

A.2.1.8 System administration view

This part of the web application is only accessible if the user has administrator rights. It is
integrated with the rest of the web user interface and accessible through the “Administration’
tab. The administrator can through this site see all annotations, add new annotations and
edit existing ones.

i

The start page of this section has a “Create New Annotation” button, a list of existing
annotations in the database and an edit button per existing annotation. The view looks like

in [Figure A.37

For each annotation in the annotations list, an “Edit” button is available. When pressed, it
will take the user to a page in which they can edit the selected annotation to change its name
and what values the dropdown list will have if it is not a freetext field (see [Figure A.38)).

In the edit page, the admin can see the attributes of the chosen annotation and is able to delete
the chosen annotation or change the information of it. The “Delete Annotation” button will
delete the whole annotation, and for that reason two pop-up windows will appear to confirm
that the administrator is sure of the action.

The administrator can change the list of annotation values. The site will automatically check
whether something is added, removed or both and sends a request to change the annotation

values to the server when the “Update Annotation” button is clicked.

If the admin clicks on the “Create new annotation” button from the admin start page, another
view will open with the following structure:

81

APPENDIX A. USER MANUAL 82

@ Genomizer x

L (& @ | [3 hagrid.cs.umu.se:8090/#admin | =

Genomizer Search Upload Admin Q- logout

TS TS Create New Annotation

Genome-
releases | |i~ea|’-:h Annotation

Name Values Forced

Development Stage frestext false Edit
Tissue frectext true Edit
Species Human Fly Rat true Edit
Sex Female Male Unknown Does not matter false Edit

Figure A.37: The start page for the administrator in the web client.

¢ Annotation Name
Admin can enter a name for the annotation.

¢ Annotation Types
Yes/No/Unknown - creates a dropdown list with those three options.
freetext - creates an annotation where the users will be able to enter anything.
Dropdown list - will enable a fourth field enabling the admin to enter which items
that this list will contain.
e Forced Annotation
Admin can choose if the new annotation should be required by users to enter.

A Create Annotation will, if all necessary information has been entered, result in a popup (see
showing the resulting annotation and if confirmed, the annotation is added to the
database. If canceled the administrator can keep making changes or go back to exit this view.
If not all values is entered the admin will be alerted of the mistake and nothing will be created.

The example in [Figure A.39] will result in a drop-down annotation with the name Number of
toes and possible values: 0, 1, 2, 3, 4, 5 with 0 as default and is not forced.

A back button which takes the user back to the annotations start page is also available in this

view. In[Figure A.40] the create annotation view can be seen.

The “Genome-releases” link on the sidebar takes the administrator to a page where it is possible
to add and remove genome releases to and from the server (see [Figure A.41]

The button “Select files to upload” opens the native file explorer where the user can select

one ore multiple files and click on “OK”. This will open a popup-window, seen in
showing what files that where chosen and asks for species and genome version before uploading.

When the upload begins the popup closes and a progress-bar appears showing the progress,
showing ”Upload completed” when done. The user can at this stage move between pages
without disturbing the upload but should not close or refresh the web browser.

Every genome release in the table can be deleted by clicking on the “Delete” button next to

the release. This will prompt a small popup asking for user confirmation and if given a positive
response, deletes the genome release from the server and updates the view.

82

APPENDIX A. USER MANUAL 83

@ Genomizer x

e C)' @y | [hagrid.cs.umu.se:8090/4admir/editannotatior/Species v =

Genomizer Search Upload Admin Q- logout

Edit annotation: Species

Annotations

Annotation Name
Genome-
releases Species

Annotation Values (on the form "female,male,unknown,...")

Human Fly Rat

Forced Annotation

true v

Update Annotation Back

| Delete Annotation |

Figure A.38: The edit annotation view.

If any genome release is used by an experiment already an error will appear telling the user
exactly that.

A.2.2 Setting up the application

To setup the application, move the content of the folder genomizer-web/app/| to the desired
location from where the application should be run. To run the web page, open a web browser
and enter the url to the folder which contains the index.html file (where the content of app
was placed). For example, given that the genomizer-web) folder is placed in the home folder of
the Umeda university CS user cllabc and that user wants to put the web app in a folder called
public_html/ which is also in the home folder of the user. In Linux, do the following steps:

1. Navigate to the app folder: "cd ~/genomizer-web/app/"

2. Move the contents of app to the folder public_html} "mv * ~/public_html/"
3. Given that the url to public_html|is: "www8.cs.umu.se/~cllabc/"
4

. To run the application start a web browser and type "www8.cs.umu.se/~cllabc/"

This will open the web page in the browser.

83

genomizer-web/app/
genomizer-web
public_html/
public_html
public_html

APPENDIX A. USER MANUAL 84

Confirm New Annotation

Name
Number of toes

Type
Drop-dawn list

Forced
No

Values

Mok ow = o

Cancel Confirm

Figure A.39: The confirm annotation pop-up.

@ Genomizer ®

& @ 1@\) [1 hagrid.cs.umu.se:8090/#/admin/createannotation | =
Genomizer Search Upload Admin 8- Logout

Annatations Create new annotation

Annotation Name
Gename-

releases

Annotation Type

Yes/No/Unknown v

Forced Annotation

Yes ¥

Items in drop-down list: (Example: Male,Female,Unknown)

Create Annotation Back

Figure A.40: The view for administrators where new annotations
can be created.

84

APPENDIX A. USER MANUAL 85

@ Genomizer x

& I« @ .D hagrid.cs.umu.se:8090/#admin/genomereleases 2=
Genomizer Search Upload Admin @~ Logout I

ke Select files to upload

Hint: index files for bowtie

Gename-
releases . - .
Species Version Filenames
Human hg3g hg38 fasta, ...
Human hg19 hg19 fasta, ... Delete |
Human hg18 hg18 fasta, ...
Insect Genomv1 d_melanogaster_fh5_22.1 ebwt, Delete

Figure A.41: The genome-release view.

Upload Genome Release File

File Name
GR1337 ebwt

Species

Human v

Version

1] I

Figure A.42: Popup for uploading genome releases.

85

APPENDIX A. USER MANUAL 86

A.3 Android application

In this section instructions for the usage of the Genomizer Android application is presented.
In [subsection A.3.] there is a description on how to set up the server URL, in [fubsection A.3.2]
you get descriptions on how to login and gives instructions on how to search

for experiments.

A.3.1 Setting up the server URL

Start with selecting a server that the application will connect to by pressing the cogwheel in

the top right corner seen in [Figure A.43] This will take you to a view where you can do any of
the following:

¢ Select one of previously used server URLs

~ See [Figmre AT,

e Add a server URL

— The + sign in the topright corner of , will take you to the view
displayed in [Figure A.44] B where you can add a server.

¢ Remove a server URL

— The - sign in the topright corner of [Figure A-44h, will show a dialog where you
can remove the selected server URL

o Edit an existing server URL

— The Edit URL button seen in [Figure A.44h, will show a dialog where you can
edit the selected server URL

When you are satisfied with the server URL simply go back to the login screen by pressing the
genomizer icon seen in the top left corner of [Figure A 44h.

A.3.2 Logging in

In order to login to a server first make sure that the correct server is displayed. If it is, simply
insert your username and password in the corresponding boxes and press the sign in. If
the server is incorrect see on how to fix it. If you don’t have a username
or password, the system administrator should be contacted to help with the creation of an
account.

86

APPENDIX A. USER MANUAL 87

° Genomizer 2.0

Genomizer 2.0

Username

Password

Signin

Figure A.43: Login View

(° Server settings 8 5
Select a server URL
http://server4/ 4
http://server1/ O
http:/server2/ O
Add URL Edit server
http://server3/ @]
http:// http:
http://servera/ @® P: p://server/

Cancel

Figure A.44: Settings View

A.3.3 Navigation

To navigate in the application you can open the navigation menu shown in by
pressing the top left corner of any base view (Search and process or Active processes). In

this menu you can logout or navigate to the diffent base views of the application which are
described below.

87

APPENDIX A. USER MANUAL 88

U 1 1:00

(—° Genomizer 2.0
C search and process
& Active processes

Logout

Figure A.45: The Navigation Menu

A.3.4 Search and process

The search view has two tabs, one for regular searches and one for pubmed searches.

88

APPENDIX A. USER MANUAL 89

m ““A PREL
E@ Search and process E@ Search and process

REGULAR PUBMED REGULAR PUBMED

Development_Stage
PubMed-style

Development_Stage O
Tissue
Tissue D
Species
4 U
Sex
4 U
Search Search
a b

Figure A.46: The Search View

A.3.4.1 Regular search

When entering the regular search view illustrated in [Figure A.46ph, you will be represented
with a list of all annotations that experiments in the database have. Chose which value you
want for the annotation and press the checkmark next to it in order to add it to the search.
Start the search of experiments with the checked annotations by pressing the Search button at
the bottom of the view.

A.3.4.2 Pubmed search

When entering the pubmed search view illustrated in [Figure A.46p, you will be represented
with a text field that you manually can fill with a pubmed query if you want to. The query
can use perentheses and the logical connectives AND, OR and NOT. Start the search of
experiments with the pubmed query by pressing the Search button at the bottom of the view.

A.3.4.3 Search results

After a search have been performed you will come to the search results. Here you will see a list of
all experiments that have annotations with values corresponding to the search (see.
To receive more information about data files that are available for each experiment you can
click on each experiment in the list. This will take you to the view seen in and is
described further in [subsubsection A.3.4.5l

89

APPENDIX A. USER MANUAL 90

Ee Search and process

Search result

Experiment Exp1
Development_Stage [Adult]
Tissue [Arm]

Species [Human]

Sex [Unknown]

Experiment Exp2
Development_Stage [Child]
Tissue [Arm]

Species [Human]

Sex [Does_not_matter]

Experiment Exp3
Development_Stage [Child]
Tissue -]

Species [Rat]

Sex|[-]

Experiment ExpBig
Development_Stage [-]
Tissue -

Species [Insect]

Sex|[-

Experiment ExpSmall
Development_Stage [-]
Tissue -]

Species [Insect]

Figure A.47: The Search Results View

A.3.4.4 Search result settings

Clicking on the cogwheel button in the top right corner of the view seen in[Figure A.47] will take
you to the search result settings (see . Here you can Modify which annotations
are presented on the experiments of the search result by marking them in the list. You can
also order the experiments by one annotation in alphabetical order by chosing that annotation
under the Sort by header.

=@ search and process

Set visible annotations
Development_Stage
Tissue

Species

d 49

Sex

Sortby

Development_Stage

Check All Uncheck All

< o o
Figure A.48: Search Settings View

A.3.4.5 Experiment file view

Pressing on an experiment in the list of search result seen in will take you to the
experiment file view (see) You are represented with three lists of files associated
to the experiment, one for each type of data file (raw, profile and region). To receive more
information about a file, simply click on that file and the information seen in will
be shown. In the bottom there’s a button Go to processing which will take you to the raw to
profile processing stage described in [subsubsection A.3.4.6]

90

APPENDIX A. USER MANUAL 91

4l 1 1:55

Ee Search and process

EXPERIMENT FILES
RAW DATA
file1.fastq O
filel.sam
Exp id: Exp1
Type: Profile
GR Version: hg38
EROGIEDATA Author: Genomizer
filel.sam 0 Uploaded by: user1
Date: May 28, 2015
File size: 0
Path: /var/www/data/Exp1/
profile/0/file1.sam
REGION DATA

OK

Go to processing

a b

Figure A.49: The Experiment File View

A.3.4.6 Processing

After pressing the Go to processing button seen in the bottom of [Figure A.40h which will take
you to the view seen in Here you can do a few things before starting the process.

o Input file - Chose which raw-file you want to run the processing on.
o Genome release - Chose which genome release you want to use in the processing.
e Output file - Chose the name of the region file that will be created by the processing.

e Parameters - Open a dialoge where you can chose the parameters for the raw to profile
processing stage called bowtie.

o Keep sam - Check this box to keep the sam files that are created during the processing.
o green plus in top right corner - add a file to process.
o red cross next to input file - remove this file from beeing processed.

e Process - starts all processing of the files that are in the list.

91

APPENDIX A. USER MANUAL 92
Ea Search and process 5
Input file
v

file1.fastq 4
Genome release

hg19 Y Parameters
Output file Keep sam

file1.wig O

Process

Figure A.50: The Processing View

A.3.5 Active processes

The active process view, illustrated in is where you can see the current workload
on the server. The view contains a list of tasks that has been assigned to the server. Each

task contains:

e The name of the experiment the process is running in.

e The author of the processing.

o The time when the process was added.

e The time when the process was started.

e The the time when the process was finished.

¢ Information about the process current state:

— Waiting - The task is awaiting processing by the server

— Started - The task is currently being processed by the server

— Finished - The task has been completed

— Crashed - The task was not successfully completed

To abort a running or remove a finished process you can press the red cross seen on each
process. This will open a dialog where you have to confirm the removal.

92

APPENDIX A. USER MANUAL 93

=@ Active processes

Experiment: processpool_test %
Author. UNKNOWN_AUTHOR

Process added: 6/2/158:53 AM

Process started: 6/2/15 853 AM

Process finishec: Pending.
Stotus: Started

Experiment: processpool_test %
Author. UNKNOWN_AUTHOR

Process added: 6/2/158:53 AM

Process started: 6/2/15 853 AM

Process finished: Pending
Status: Started

Experiment: Expl ®
Author. UNKNOWN_AUTHOR

Process added: 6/2/158:53 AM

Process started: 6/2/15 8:53 AM

Process finished: 6/2/15 8:53 AM
Status: Crashed

Refresh

N o u]

Figure A.51: The Process View

A.4 iOS application

A.4.1 How to run the app in Xcode

In order to use the program, import the project from github into Xcode from the following
repository: https://github.com/genomizer/genomizer-i0S.git

To compile and run the program, press ecmd+R. A simulator will start and the login screen

will be shown as seen in [Figure A.52h.

A.4.2 How to login

1. Tap the Gear in the upper right corner and enter the url and port for the server you
want to use and press Done. See[Figure A.52h,c.
2. Tap on the Username textfield and enter your username.

3. Tap on the Password textfield and enter your password.

4. Tap on Sign in to sign in.

A user gets logged in when accepted credentials are entered in the ‘username’ and ‘password’
fields and the ‘Sign in’ button is pressed. If incorrect credentials are entered, a popup message
is shown, informing the user that the username or password is incorrect.

93

https://github.com/genomizer/genomizer-iOS.git

APPENDIX A. USER MANUAL 94

eeec0 TELIA 4G 09:08 © 82 % W} 4

o}
Enter server URL:
’T’uhp://dumbledore.cs.umu.se:7000/1]
Genomizer
Done Cancel
Please enter username and password.
OK
Sign in QWERTYUIOPA
ASDFGHJKLOA
ZXCVBNM
o o
a b ¢

Figure A.52: The login screen.

A.4.3 How to logout

1. Tap Gear-symbol on the tab bar at the bottom of the screen and a Setting-screen will

appear. See [Fignre A.53

2. Tap Logout to logout.

Settings.

Loggedinas

testuser

at server
hitps://130.239.192.110:4433/api/

Logout

&

Figure A.53: The settings screen.

A.4.4 How to search for experiments

1.

Tap on leftmost button(magnifying glass) on the tab bar which you can find on the
bottom of the screen to get to the Search-view.

Tap on the annotation you want to search for and a spinning wheel with options will
appear from the bottom of the screen. See [Figure A.54h.

Drag the wheel up or down to select the option you want or enter the value with the
keyboard depending on the type of annotations is tapped.

Enable the annotation to use when searching by toggling the switch to the right of the
annotation. See [Figure A54p.

Do steps (2)-(5) for more search criteria.

Tap Search to search.

94

APPENDIX A. USER MANUAL 95

Carrier = 207 PM - Carrier & 2:07 PM -
Search K4 Search A

Advanced Search

(Fly[Species]) AND Male[Sex]

Fly

ON®,

Male

Close Search

Q Q

a b C

Figure A.54: The search screen.

A.4.5 How to use advanced search

1. Tap on leftmost button(magnifying glass) on the tab bar which you can find on the
bottom of the screen to get to the Search-view.

2. Tap on the symbol to top right of the screen and a new view will appear with the title
Advanced Search. See [Figure A.54k.
3. Write your search criteria in PubMed-style and tap Search

The annotations you select on the search-screen will also show in advanced search.

A.4.6 How to process files

1. Search for experiments

2. In Search Results-screen tap on an experiment and the Files-screen will appear showing

the files which belongs to the experiment. See
3. Tap the Plus-symbol next to the file you want to process.

4. Do step (3) for every file you want to process. Same file can be used more than once. A
counter will appear next to the Plus-symbol to keep track on how many times the file

will be used in the process-step, see [Figure A.55p.

5. Tap the Process-button and Make a process-view will appear with every file you have
selected. See

6. Tap Add Process and select what kind of process you want to do on the selected files.

7. After you have selected a process the input files and output files will appear with
the selected process separating them. You can add parameter values by tapping the
parameter fields below the input files. The output files can be renamed by tapping on
the filename. See

8. Do step (6) to create a sequence of processes to be made on the selected files. See

for an example of a process sequence.

9. Tap Done-button to send the sequence of processes to the server.

95

APPENDIX A. USER MANUAL 96

Carrier ¥ 2:06 PM 1) Carrier & 2:04 PM (—
< Back Files < Back Files
Raw data Raw data

0]

@ smalltest1.fastq @ smalltest1.fastq

@ smalltest2.fastq @ smalltest2.fastq

Profile data Profile data

@ stepTestinfile_step20.sgr stepTestInfile_step20.sgr

smalltest176549.wig smalltest176549.wig
stepTestlInfile.sgr stepTestlnfile.sgr
stepTestInfile_step20iossmo...

stepTestInfileiosstep.sgr stepTestinfileiosstep.sgr

CHCNCONCHCNC)

®
®
(i) stepTestinfile_step20iossmo...
@
®

stepTestInfilesmooth.sgr stepTestInfilesmooth.sgr

CHONMCOMONMOMONNONMCO
® 606066 0

)
)
)

Clear Process Clear Process (2)

Figure A.55: Files view.

Carrier & 2:04 PM (- Carrier ¥ 2:05 PM - Carrier & 2:05 PM -

{ Files Make a Process Done { Files Make a Process Done { Files Make a Process Done

stepTestinfile_step20.sgr

Mean stepTestinfile_step20.sgr

Switch

stepTestinfile.sgr
stepTestinfile.sgr
Mean

stepTestInfile_step20.sgr
stepTestinfile_step20.sgr Mean

stepTestinfile.sgr

stepTestinfile_step20.sgr

Clear Add Process Clear Add Process Clear Add Process

Figure A.56: Create processes.

96

APPENDIX A. USER MANUAL 97

A.4.7 How to set which annotation to be visible on Search Results

1. In Search Results view, tap Edit and Select Annotations-screen will appear
2. Select which annotations to show by toggle the switch next to each annotation.

3. Tap Back to go back to Search Results. See[Figure A.57h-c

A.4.8 How to change the order which search results appear in

1. In Search Results view, tap Edit and Select Annotations-screen will appear

2. Under the Sort by header, drag-and-drop the annotation-names in the order you wish
to sort the search result

Carrier & ¢ 2:06 PM 3 Carrier ¥ 3! 2:06 PM - Carrier = 3 2:06 PM L]
{ Search Search Results Edit { Back Select annotations { Search Search Results Edit
Name: ExpBig Show annotations Name: ExpBig
Created by: 7 Created by: 7

Species: Insect

Development_Stage Tissue: ?

Name: ExpSmall
Created by: ? 7
Tissue {) Name: ExpSmall
A/ Created by: ?
Species: Insect

Species U Tissue: ?
Sex
Sort by
Name
Created by
Species

Q Q Q
a b C

Figure A.57: Select annotation

A.4.9 How to view process status on the server

1. Tap Process-symbol (the percentage symbol) to view the processes on the server.

2. To refresh the view, drag the view down until an activity indicator icon is visible below

the title of the screen and release. See

97

APPENDIX B. DEPLOYMENT AND MAINTENANCE 98

Carrier ¥ 2:06 PM —

Processes

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 4m ago. Started 4m ago.
Finished

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 4m ago. Started 4m ago.
Crashed

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 5m ago. Started 5m ago.

Crashed

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 7m ago. Started 7m ago.

Crashed

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 8m ago. Started 8m ago.

Crashed

UNKNOWN EXPERIMENT - UNKNOWN A...
Added 8m ago. Started 8m ago.

Figure A.58: The process screen.

B Deployment and maintenance

This chapter is directed towards administrators and developers that wants to set up a server
and install the software needed to get a fully functional system. It also gives instructions on
how to maintain the system in case of problems that can arise.

B.1 Configure server

This chapter is directed towards administrators and developers who want to set up a server
and install the software needed to get a fully functional system. It also contains instructions
on how to maintain the system in case problems arise.

B.2 A brief introduction to vagrant

B.2.1 Basic usage

Vagrant is configured by a Vagrant file, which defines how the virtual machine is constructed.
This should not be modified unless you understand what you are doing.

To start a vagrant instance, run vagrant up. The vagrant instance will now either (a) or (b):

a) Create a new virtualmachine with correct configuration
b) Start an already built virtual machine

If the instance is stale or needs to be rebuilt, it can be achieved with

vagrant destroy
vagrant up && vagrant ssh -c 'bash startup.sh'

98

APPENDIX B. DEPLOYMENT AND MAINTENANCE 99

If you simply run the server using vagrant up, then vagrant ssh -c 'bash startup.sh'
starts the genomizer server in the virtual machine, inside a screen session labeled server.

B.2.2 Modifying the configuration

To make vagrant set up a specific branch, modify the corresponding script, such as scripts/provision/install_genomizer_server
to checkout yourBranch instead of develop.

If your feature requires changes to the settings.cfg it is located at scripts/provision/config/settings.cfg
and is installed along with a fresh instance of the virtual machine.

B.2.3 Entering the vagrant virtual machine

If you need to reach the environment using SSH, simply go to the environment you require
with

cd development-1
vagrant ssh

and you will be logged in using ssh to the virtual machine.

B.3 Systems overview of production

The production server runs currently on 130.239.192.110. The production server is constructed
of several virtual machines, configured by vagrantEl

The system is entirely scripted, that is, everything can be set up using the scripts located in the
vagrant giiﬂ The scripts located under scripts/provision deal with the virtual environments,
while the scripts under scripts/environment deal with the server, such as setting up the
firewall and external directories used by the virtual machines.

B.3.1 Using the toolchain

This is a short introduction to the tools used in the environments.

B.3.1.1 Using gnu screen

To ensure processes run even when nobody has a terminal open to the server screen is used.
screen is a terminal multiplexer, which could be viewed as a in-terminal window manager. To
start a new screen you run the command

$ screen

which then starts a screen and attaches your current terminal to it. screen is controlled by
prefixing a command with a modifier. For example, to detach from a screen window, you use

1Vagrant is a virtual machine configuration manager. The manual is available at
https://docs.vagrantup.com/v2/
Qgit.cs.umu.se, access required.

99

APPENDIX B. DEPLOYMENT AND MAINTENANCE 100

Host system

Development-1 Development-2 Development-3

Client-Development Web-development

Production

Figure B.1: Illustration of system setup

<C-a> which you then release, indicating you wish to send a command to screen. You then
press d, which is the hot-key for detach. You are now detached from the screen.

You might not be surprised when I tell you that several screen windows can be running at the
same time. To list the currently running screen sessions, you run the command

$ screen -list
If there is only one session running, you can attach to it using simply the command
$ screen -r

to attach. If there are several running screens, you must specify which session to attach to.
The following is an example of this. It starts two sessions, first and second in a detached
state. The -dmS flag means they are started in a detached state. We then list the sessions and
see that several are running, as expected.

[vagrant@localhost ~]$ screen -dmS "first"
[vagrant@localhost ~]$ screen -dmS "second"
[vagrant@localhost ~]$ screen -list
There are screens on:

15073.second (Detached)

15053.first (Detached)
2 Sockets in /var/run/screen/S-vagrant.

We can now attach to these sessions by running the command, replacing <session-name with
the name of your session.

$ screen -S <session name>

100

APPENDIX B. DEPLOYMENT AND MAINTENANCE 101

To terminate a screen, attach to it and run exit.

B.3.2 Configured environments

The environments as currently configured are described below.

B.3.2.1 Production

This environment runs the production code. Hands off if you are unsure of or have not
communicated your change clearly to everyone else.

e Virtual hardware

— 45000 MB RAM
— 8 CPU Cores

e Ports
— Genomizer-server: 7000
— Http: 80
— Https: 443
e Local IP: 192.168.33.10
o Directories
— Temporary files

x External directory: /Data/tmp
* Internal directory: /tmp

— Data files

* External directory: /Data/production-data
* Internal directory: /data

B.3.2.2 Development-1

This environment is assigned to the database group.

e Virtual hardware

— 4000 MB RAM
— 1 CPU Core

e Ports

— Genomizer-server: 7001
— Http: 8081
— Https: 4431

e Local IP: 192.168.33.11
e Directories
— Temporary files

* External directory: /Data/development-1-tmp
* Internal directory: /tmp

— Data files

* External directory: /Data/development-1-data
* Internal directory: /data

101

APPENDIX B. DEPLOYMENT AND MAINTENANCE

102

B.3.2.3 Development-2

This environment is assigned to the business-logic group.

e Virtual hardware

— 4000 MB RAM
— 1 CPU Core

¢ Ports

— Genomizer-server: 7002
— Http: 8082
— Https: 4432

e Local IP: 192.168.33.12
o Directories

— Temporary files

* External directory: /Data/development-2-tmp
* Internal directory: /tmp

— Data files

* External directory: /Data/development-2-data
* Internal directory: /data

B.3.2.4 Development-3
This environment is assigned to the processing group.

e Virtual hardware

— 4000 MB RAM
— 1 CPU Core

e Ports

— Genomizer-server: 7003
— Http: 8083
— Https: 4433

o Local IP: 192.168.33.13
e Directories

— Temporary files

* External directory: /Data/development-3-tmp
* Internal directory: /tmp

— Data files

* External directory: /Data/development-3-data
* Internal directory: /data

B.3.2.5 Client-development
This environment is assigned to the desktop group.

e Virtual hardware

— 4000 MB RAM

102

APPENDIX B. DEPLOYMENT AND MAINTENANCE 103

— 1 CPU Core
e Ports

— Genomizer-server: 7004
— Http: 8084
— Https: 4434
e Local IP: 192.168.33.14
e Directories
— Temporary files

* External directory: /Data/development-client-tmp
* Internal directory: /tmp

— Data files

* External directory: /Data/development-client-data
* Internal directory: /data

B.3.2.6 Web-development

This environment is assigned to the web and app groups.

e Virtual hardware

— 4000 MB RAM
— 1 CPU Core

e Ports

— Genomizer-server: 7005
— Http: 8085
— Https: 4435

e Local IP: 192.168.33.15
e Directories

— Temporary files
* External directory: /Data/development-web-tmp
* Internal directory: /tmp

— Data files

* External directory: /Data/development-web-data
* Internal directory: /data

B.3.3 The important scripts

The machines are configured using a myriad of scripts with various responsibilities. The
Vagrantfile defines how the virtual machine is built. This includes which provisioning files are
to be executed, and how much memory and resources to give the machine. It also configures
the port forwarding into the machine, and which shared data folders are available to the
machine. Messing with these configurations is inadvisable.

The Vagrantfile runs, as previously said, configuration scripts. Their names and basic responsi-
bilities are listed below. Unless otherwise specified, they are located under scripts/provision.

1. install_apache.sh - Installs and configures the apache server. It installs the config
files httpd.conf, ssl.conf, and proxy.conf located under scripts/provision/config,
along with running the install_certificates script.

103

APPENDIX B. DEPLOYMENT AND MAINTENANCE 104

2. install_postgresql.sh - While the name may seem confusing, this installs puppet and
the puppet/postgresql module. This allows the Vagrantfile to run puppet provisioning
on the machine to install postgresql with the settings provided in manifests/build.pp.

3. install_certificates.sh - This is an expect script, which is run by the install_apache
script. This is introduced to deal with the fact that you need to respond to questions
to generate a SSL certificate. It generates a SSL certificate, and moves it to the correct
location.

4. install_utils.sh - There are some tools and utilities which were requested or needed
by the scripts or persons working on the project. They are installed from this script.

5. install_startup_scripts.sh - Installs various scripts that are used for server adminis-
tration.

6. install_genomizer_server.sh - Installs the genomizer-server

7. install_genomizer_webclient.sh - Installs the genomizer-web client to the apache
server.

If you are confused by what a script does, reading it can give you a clearer picture of what it
does.

B.3.4 Creating a new environment

B.3.4.1 Considerations

Before setting up a new environment, you should consider the memory and CPU footprint
inherent in running a virtual machine. The host machine as currently configured can run
6 environments with no noticeable slowdown, with five machines at 1 cpu core and 4GB of
RAM, and a production environment that is assigned 8 CPU cores and 45GB of RAM. It is
not recommended to exceed this configuration, as unexpected side-effects could occur.

B.3.4.2 Checking out the correct files

When building a new environment, you may wish to configure which versions of the server soft-
ware and web client software the script installs. By default, the scripts are configured to fetch the
master branch of the genomizer-server and the master branch of the genomizer-web applica-
tion. These settings are modified by editing the scripts/provision/install_genomizer_server.sh
and scripts/provision/install_genomizer_webclient.sh respectively.

In order to change the version of the genomizer-server, edit the scripts/ provision/install_genomizer_server.sh
script. Locate the line(s)

We checkout the master wversion by default
git checkout master

and replace them with

We checkout the <desired branch> wversion by default
git checkout <desired branch>

To change the version of the genomizer-web client, edit the scripts/provision/ install_genomizer_webclient.sh
script. Locate the line(s)

We run the master branch by default
cd genomizer-web
git checkout master

104

oW N e

APPENDIX B. DEPLOYMENT AND MAINTENANCE 105

and replace them with

We run the <desired branch> branch by default
cd genomizer-web
git checkout <desired branch>

B.3.4.3 Setting up the files

When setting up the new environment, you may (or may not) want to run it with the same
settings as the production environment. In this section all relevant settings are explained and
motivated.

B.3.4.3.1 Editing the Vagrantfile

In the vagrant file, the primarily interesting settings are concerning port forwarding, local ip,
synced folders, and memory. Given that you wish to customize the environment, the provision
settings might be of use as well. The Vagrantfile is written in a Ruby DSL.

The port forwarding settings looks as follows.

config.vm.network "forwarded_port", guest: 80, host:8080
config.vm.network "forwarded_port", guest: 7000, host:7000
config.vm.network "forwarded_port", guest: 443, host:4443

The host field defines which port the virtual machine binds on in the host machine, while the
guest defines the port the virtual machine it binds on internally.

To define which local IP the virtual machine runs on, you modify the line below to suit
your needs. Note that the IP must be unique, and it is recommended to stay inside the
192.168.33.x subnet.

config.vm.network "private_network", ip: "192.168.33.10"

You may also need to mount a folder from the host machine as a drive inside the virtual
machine. This is achieved by editing or adding to the lines shown below. The first argument
is the hosts path to the folder to share, and the second is where the virtual machine should
mount it.

config.vm.synced_folder "/Data/production-data", "/data"
config.vm.synced_folder "/Data/production-tmp", "/tmp"

The actual hardware specifications given to the virtual machine is defined by these lines:

config.vm.provider "virtualbox" do |vbl
vb.memory = "45000"
vb.cpus = 8

end

These lines define that the machine should run with 45000 MB of RAM, and run on 8 CPU
cores. If other settings are desired, you modify these lines. For example, the development
environments might look like

config.vm.provider "virtualbox" do |vb]
vb.memory = "4000"

105

APPENDIX B. DEPLOYMENT AND MAINTENANCE 106

vb.cpus = 1
end

B.3.4.3.2 [Editing the settings.cfg

The settings.cfg file contains the settings that are installed to the genomizer-server. These
should need no modification, except perhaps to edit the tunneling settings.

If you however do want to edit some settings, note that the database settings must correspond
to the ones configured in build.pp, else the server will fail to connect to the database.

The settings available in the server settings are straightforward, and are commented such that
no further explanation is required.

B.3.4.3.3 Editing the httpd.conf

The httpd.conf file is dead-standard, except for the very last few lines. These lines assures
that SSL is forced, and that any traffic connecting to the non-SSL apache is told to reconnect
with SSL.

<VirtualHost *:80>
RedirectPermanent / https://130.239.192.110
</VirtualHost>

You may wish to edit where this reroutes to as needed.

B.3.4.3.4 Modifying the build.pp

The build.pp file details how the postgresql database is constructed, along with which sql files
are automatically run on the server. It is not recommended to change how this file functions
except to change the password and modify which sql files are run.

B.3.4.3.5 Creating the tmp and data folders

When constructing an environment, the machine requires a place to store temporary files, and
a place to store large data files. These are by default placed in /Data/<environment>-tmp and
/Data/<environment>-data. To create these folders, and give them the correct permissions,
you should run the following commands. The <your-user> should be replaced with the user
that runs the virtual machines, and <environment> with the name of your environment.

[user@your-environment]$ sudo mkdir /Data/<environment>-tmp
[user@your-environment]$ sudo mkdir /Data/<environment>-data
[user@your-environment]$ sudo chown -R <your-user> /data/<environment>-tmp
[user@your-environment]$ sudo chmod -R 1777 /data/<environment>-tmp
[user@your-environment]$ sudo chmod -R 777 /data/<environment>-data

B.3.4.4 Running the new environment

Once you have created an environment, you need to allow vagrant to construct the associated
virtual machine. This is done by running vagrant up in the directory associated with your
environment.

106

APPENDIX B. DEPLOYMENT AND MAINTENANCE 107

Vagrant should now start building the virtual machine, along with provisioning it. It will write
a lot of information to the terminal you run it in, and this is perfectly normal. The build takes
on average 5-10 minutes to complete.

Once it has finished, the environment is up and running, except for one detail: genomizer-server
is not running. You can start it by typing the following into the terminal.

[user@environment]$ vagrant ssh
Last login: Tue May 12 12:4032 2015 from 10.0.2.2
[vagrant@localhost]$ bash startup.sh

If you wish to view the server process, this can be done by running

[vagrant@localhost]$ screen -r

which attaches to the screen created by startup.sh.

B.3.5 Modifying an existing environment

While it is very useful to build an environment from scratch, you do not always want to
do everything from scratch. You want to modify an existing environment. Modifying an
environment is fairly straight forward, you simply edit the configuration files, as shown in
Creating a new environment. Once you have modified the files according to your preferences,
you run

[user@your-environment]$ vagrant destroy && vagrant up

if you wish to completely rebuild the machine. If you simply want the machine to reload the
Vagrantfile settings, you can run

[user@your-environment]$ vagrant reload

B.3.5.0.1 Checkout new branches

If you decide that you wish to run another branch in the environment, and do not wish to
rebuild the environment, you can simply ssh into the vagrant machine and checkout using git
as you normally would, compiling and running as you would normally.

[user@your-environment]$ vagrant ssh
[vagrant@localhost]$ cd genomizer-server
[vagrant@localhost]$ git stash
[vagrant@localhost]$ git checkout <branch>
[vagrant@localhost]$ git stash pop
[vagrant@localhost]$ ant clean build jar
[vagrant@localhost]$ java -jar server.jar

In this context, the stash ensures that our modified settings.cfg is preserved. If for some rea-
son settings.cfg is overwritten, you can get a fresh copy from /vagrant/scripts/provision/config/settings.cfg
inside the virtual machine.

107

APPENDIX B. DEPLOYMENT AND MAINTENANCE 108

B.3.6 Rebuilding an environment
Rebuilding an environment is dead simple, simply run

[user@your-environment]$ vagrant destroy && vagrant up

B.3.7 Deleting an environment

NOTE: The changes explained in this chapter are irreversible!

To delete an environment it is not sufficient to simply remove the folder containing the
environment. The virtual machine must also be deleted. The following steps removes an
environment cleanly.

Enter the environment folder.

Destroy the virtual machine with vagrant destroy.
Remove the .vagrant folder.

Remove the environment folder.

Remove the environments tmp and data folders.

CU e

The tmp and data folders are by default located under /Data/<environment>-tmp and /Data/<environment>-data.

B.3.8 Configuring the host system

Please note, all of these things can be achieved by running the script scripts/ environment/setup_host_environment.sh,
provided a CentOS host system. Never run this script without reading it through.

Seriously. Even if you want to configure manually, reading this script is useful to get examples

of the commands that are relevant.

B.3.8.1 External folders and their permissions.

The host machine is required to make available storage space for the virtual machines. By
default this is assumed to be /Data. In this folder, you should place tmp and data folders —
one for each environment — with the permissions 1777 for tmp. The data folder should have
the permissions 777. The tmp folder must be owned by the vagrant user.

B.3.8.2 Configuring the firewall

The firewall needs to allow at least the ports 80, 443 and 7000. There is a script which configures
these settings under scripts/environment/iptables_config.sh. The only advanced setting
here is a workaround to patch reserved ports into the virtual machines without requiring root
permissions.

The firewall is instructed to reroute traffic to port 80 to the port 8080 and traffic to the port
443 to the port 4443 which then the virtual machine can bind on.

Specifics on how to run these commands are illustrated in iptables_config.sh.
B.3.8.3 Prerequisite software

The setup requires vagrant and virtualbox to be installed.

108

© 0w N U A W N e

I T R o S ~ S S S S S
AW N = O © B N O oA W N = O

oW N e

APPENDIX B. DEPLOYMENT AND MAINTENANCE 109

Incoming Reroute W

80 —> 8080 ———> 80
443 = 1443 = 443
JF000 == 7000

Figure B.2: Illustration of rerouting

B.3.8.3.1 Virtualbox

To install virtualbox, you can run the following commands. Replace $VAGRANT_USER with the
vagrant user

Get the EPEL repo
rpm -Uvh https://download.fedoraproject.org/pub/epel/7/x86_64/e/\
epel-release-7-5.noarch.rpm

Install kernel headers and devel tools

yum -y install kernel-devel kernel-headers dkms
yum groupinstall "Development Tools"

yum update

Install oracle public key

wget http://download.virtualbox.org/virtualbox/debian/\
oracle_vbox.asc

rpm —-import oracle_vbox.asc

rm -rf oracle_vbox.asc

Add the virtualboz Tepo

wget http://download.virtualbox.org/virtualbox/rpm/el/\
virtualbox.repo -0 /etc/yum.repos.d/virtualbox.repo

yum update # Update repo info for safety

Time to actually install wvirtualboz

yum -y install VirtualBox-4.3

service vboxdrv setup # Setup vboz driver

usermod -a -G vboxusers $VAGRANT_USER # Add VB user

B.3.8.3.2 Vagrant
To install vagrant, you can run the following commands.

wget https://dl.bintray.com/mitchellh/vagrant/\
vagrant_1.7.2_x86_64.rpm

rpm -ivh vagrant_1.7.2_x86_64.rpm

rm -rf vagrant_1.7.2_x86_64.rpm

B.4 Administer the database

This chapter contains instructions for setting up the postgresql database and user accounts.

109

APPENDIX B. DEPLOYMENT AND MAINTENANCE 110

B.4.1 Set up postgresql account

This step is only required if you do not already have a psql username and password. If you
have been assigned this from a sysadmin proceed to Upload SQL Script to server.

1. Log in to the server:

> ssh <username>@<host>

2. Become sudo-user “postgres”:

> sudo su postgres

3. Add yourself as a postgresql user:

> createuser <username>

4. Log into postgresql as root:

> psql

5. Set your password:

> \password <username>

6. Create database:

> create database genomizer;

7. Grant yourself all permissions on the Genomizer database:

> grant all on database genomizer to <username>;
> \q

8. Navigate to postgresql configuration folder:

> cd /
> cd etc/postgresql/9.3/main

9. Navigate to postgresql configuration folder:

> sudo nano postgresql.conf

10. Change connection settings:
Locate line:

#listen_adresses = ‘<settings>’ # what IP address(es) to listen on;
Change to:
listen_addresses = 'x' # what IP address(es) to listen on;

11. Write changes and exit:
Hold down ctrl and press o
Hold down ctrl and press x

12. Open configuration file:

> sudo nano pg_hba.conf

13. Change Client Authentication Configuration:
Locate the heading:

110

APPENDIX B. DEPLOYMENT AND MAINTENANCE

111

IPv4 local connections:

Under the heading, add the line:
host all all 127.0.0.1/32 mdb5

14. Write changes and exit:
Hold down ctrl and press o
Hold down ctrl and press x

15. Restart postgresql:

> cd /
> sudo /etc/init.d/postgresql restart

B.4.2 Upload SQL Script to server

1. In a termainal window navigate to the folder where the genomizer_database_tables.sql

script resides.
2. Establish secure ftp connection to the server:

> sftp <username>@<host>

3. Create a new folder on the server:

> mkdir SqlScripts

4. Upload genomizer_database_tables.sql:

> put genomizer_database_tables.sql SqlScripts/

5. Exit sftp:

> exit

B.4.3 Create the Genomizer Tables

1. Log in to the server:

> ssh <username>@<host>

2. Log in to the database:

> psql genomizer

3. Run genomizer_database_tables.sql

> \i SqlScripts/genomizer_database_tables.sql

The Genomizer database is now ready to use.

B.5 Install the server

Installing the server requires these three programs to exist on the server machine.

111

APPENDIX B. DEPLOYMENT AND MAINTENANCE 112

e Java JDK: To run the server.
e (@it: To download the server source code.
e Ant: To build the server.

The source code for the server is hosted by Github and can be downloaded using Git or using
the home page and get it as a .zip.

Downloads using Git is done with the help of clone.

git clone https://github.com/genomizer/genomizer-server.git

After the source code has been downloaded the server needs to be compiled and built into
a runnable jar. This is done with the help of Ant. The repository has a build script in the
directory, and has a command to build a jar.

ant jar

All that is left before starting the server is editing the settings file in the main directory for
the server(same place as the jar). The settings file is named settings.cfg, it is designed as
followed.

Database settings.

databaseUser = genomizer
databasePassword = password
databaseHost = localhost:5432
databaseName = genomizer

Port number on which the server listens for HTTP connections.
genomizerPort = 7000

Directory on the server where uploaded files are stored.
fileLocation = /data/

Max. number of threads in the processing work pool.
nr0fProcessThreads = 5

Paths to various programs that we use.

bowtieLocation = resources/bowtie/bowtie
picardLocation = resources/picard-tools/picard. jar
bowtie2Location = resources/bowtie2/bowtie2
pyicosLocation = resources/pyicoteo/pyicos

Address and port of the publicly visible WWW server (if any)
that is tunnelling requests to the genomizer server.

'wwwTunnelPath' is the path on the WWW server that

requests to genomizer server are mapped to (usually '/api').

wwwTunnelHost = https://130.239.192.110
wwwTunnelPort = 4433
wwwTunnelPath = /api

Directory used for storing temporary files during uploading.
Should be on the same partition as 'fileLocation'.
uploadTempDir = /data/tmp/

112

APPENDIX B. DEPLOYMENT AND MAINTENANCE 113

All that is left after the settings is correct is to start the server.
java -jar server.jar [-debugl|-p <port> | -f <alternativSettings.cfg> | -nri]

As seen the server may be started with optional arguments.

o debug: Starts the server with a active debug logger. Printing everything to stdout.
o p: Alternativ port.
o f: Alternativ settings file other then settings.cfg

e nri: No remove inactive users. Halts the thread that removes inactive user tokens.

B.6 Set up processing

To be able to run the processes such as raw to profile convertion the right scripts and programs
need to be in the folder resources. The scripts needed for converting will be there but bowtie
need to be downloaded and extracted to resources, which need to be a folder in the servers
root directory.

The programs and scripts needed are:

e bowtie: base pair processing. Processes raw files into profile.
e picard: generates the profile to a sam file.
e bowtie2: Updated version of bowtie.

e pyicos: Mesuring tool for DNA and RNA.

113

APPENDIX C. USER STORIES

C User Stories

A User Story is a description of functionality in non technical terms. It describes the wishes of

a certain user group and a motivation for why the function is needed.

C.1 Implemented user stories

Annotation

To structure the data files
the researchers
want to be able to annotate the data files.

Figure C.1: Annotation user story

Single download

To scrutinize a single data file
the researchers
want to be able to download a specific file.

Figure C.2: Download user story

Single upload

To store a single data file
the researchers
want to be able to upload a specific file.

Figure C.3: Upload user story

Search for data

To analyse data
the researchers
want to be able to search for specific types of data.

Figure C.4: Search for data user story

114

APPENDIX C. USER STORIES

115

Raw to profile

To be able to analyse

the researchers

want to process raw data to profile data (using bowie and then Philge’s
code).

Figure C.5: Raw to profile user story

Delete data

To save space
the researchers
want to be able to delete data from the database.

Figure C.6: Delete data user story

Change annotation

To correct and update annotations
the researchers
want to be able to change data annotations.

Figure C.7: Change annotation user story

Backup

To prevent loss of data
the researchers
want the data to be backed up.

Figure C.8: Backup user story

Password protected

To protect the database from unauthorized use
the researchers
want the application to be password protected.

Figure C.9: Password protected user story

Add genome release / reference genome

To be able to annotate the data properly and extract genome reference
the researchers
want to be able to add genome releases and reference genome.

Figure C.10: Add genome release / reference genome user story

115

APPENDIX C. USER STORIES

116

Batch download

To scrutinize several data files
the researchers
want to be able to download multiple files at once.

Figure C.11: Batch download user story

Convert common file formats

To get data in a certain convenient file format
the researchers
want to convert between common file formats (WIG, SGR, GFF3, BED).

Figure C.12: Convert common file formats user story

Work queue

To reduce server load
the researchers
want to queue time consuming work.

Figure C.13: Work queue user story

User rights

To allow invitation of guests (postgraduate students or other researchers
etc.)

the researchers

what to have different users types with different rights.

Figure C.14: User rights user story

Batch upload

To analyse, share and have greater access to data

the researchers

want to be able to upload multiple files and batch annotate them to a
shared location.

Figure C.15: Batch upload user story

116

APPENDIX C. USER STORIES 117

Sort search results

To easier find specific result
the researchers
want to filter the search result.

Figure C.16: Sort search results user story

117

APPENDIX C. USER STORIES

118

C.2 Product backlog

Add chain file

To be able to convert between genome releases
the researchers
want to upload chain files (LiftOver).

Figure C.17: Add chain file user story

File traceabillity

To be able to access the underlying raw data or profile data

the researchers

want the raw data files to be traceable from profile files and the profile
files to be traceable from the region data (if available) when the files have
been generated on the server.

Figure C.18: File traceabillity user story

Convert genome release

To easier handle files
the researchers
want to convert files between genome releases (LiftOver).

Figure C.19: Convert genome release user story

Extract genome reference sequence

To analyse the reference genome
the researchers
want extract the reference genome sequence for a given region data.

Figure C.20: Extract genome reference sequence user story

Advanced batch upload

To simplify mass upload 500 files
the researchers
want to batch annotate files to be uploaded in a spreadsheet.

Figure C.21: Advanced batch upload user story

118

APPENDIX C. USER STORIES

119

Profile to region

To be able to find regions of interest
the researchers
want to process profile data to region data (Per’s code).

Figure C.22: Profile to region user story

Workspace

To be able to save work in a convenient way

the researchers

want to have some sort of workspace view where all kind of results/data
can be saved.

Figure C.23: Workspace user story

Unread results

To avoid missing results
the researchers
want to see which results are unread.

Figure C.24: Unread results user story

Preview of file

To correctly annotatate a file
the researchers
want to preview a portion of a file.

Figure C.25: Preview of file user story

Work scheduling

To strategically spread the servers workload over time
the researchers
want to be able to schedule the processing/analysis of data.

Figure C.26: Work scheduling user story

Time estimation

To warn for time consuming jobs
the researchers
want to have a time estimation for jobs.

Figure C.27: Time estimation user story

119

APPENDIX C. USER STORIES

120

Plot overlap analysis

To see region overlap of genomes
the researchers
want to plot an overlap analysis (see separate user story).

Figure C.28: Plot overlap analysis user story

Plot average regions

To view data
the researchers
want to plot average of regions with the profile data.

Figure C.29: Plot average regions user story

IGB Session

To be able to make IGB analysis
the researchers
want to retrieve a IGB session file.

Figure C.30: IGB Session user story

Combine regions

To find interesting regions
the researches
want to select multiple files and combine their regions (union, intersect).

Figure C.31: Combine regions user story

Create region subset

To retrieve certain parts of regions
the researchers
want to create region subsets using reference points.

Figure C.32: Create region subset user story

Calculate average of region

To find the average protein binding value for a region

the researchers

want to calculate average of regions with the profile data. (Possibly split
into a number of bins).

Figure C.33: Calculate average of region user story

120

APPENDIX C. USER STORIES 121

Overlap analysis

To conduct overlap analysis
the researchers
want to divide regions bins, either by value or by order.

Figure C.34: Overlap analysis user story

Save analysis results

To be able to return to previous work
the researchers
want to save analysis results(in workspace).

Figure C.35: Save analysis results user story

121

APPENDIX D. ANDROID APPLICATION: UML-DIAGRAMS 122

D Android application: UML-diagrams

In this appendix the UML-Class-diagrams of the Android application will be presented.

<lava Cass>
GenomizerHitpPackage

se.umucs putt51.com

—code: int

<<lava Cass=» ~body: Strng <=lava Cass=>

ComHandier =] GenomizerttpPackage(int, Stiing) Communicator

saumu s puris) com) +gatCode(yint s8 umu e purs1 com
-serverUR_- String 3 +getody ()String -connection: HitpURL Gonnection
~Comtander() » _out: DataOutputStream
+setsenverURL(string) voi e 3 ~--->|_unStrng: String
-+ioginiSiring String)-boolean token: String
+searcn(Has nMap<Siring String=) JSONArTay 9 ~Communicator(String)
+getServerAnnatations() ArrayList<Annatation- +setToken(String)-void
+generateRubmedQuery(HashNap<Siring String=) Sting i +setupConnection(String)-void
' <xlava Cass=> s endRe qUest[JSONO: g
MsgFactory

saumy ez puti5 T com

+MsgFactory() <<Java Class>>
createLogin{Siring String)-JSONObject ProcessingParameters
3 +createReguiarPackage()JSONODject [eseimn. se.umu cs pvt151

create SONObject

S i : _parameters: ArrayList<String>
-parametersToJson(FrocessingParameters] JSOMArTay in L =

+ProgessingParameters()
+addParameter(String)void
+getParameter(int)-Siring
+size()int

<=lava Class>>
MsgDeconstructor
seumucs put15t.com

3 <<lava Class>>
\ GeneFile

seumucs prtist

+asgDeconstructor()
JSOM{JSONAray) ArrayLi
~flesJSON(JSONArray) ArrayLisi<GeneFie>
+5earchISONISONATaY)-ArrayList<Sxperiment>
+deconsiruct{SONAmay) void

fieia: String
5 -expld: String
-type: String
%, |-name:sting
-authar: String
-upioadeaBy- string
v Z - -sPrivate: String
<<ava Class»» 4 = - -path: String
Annotation <slava Cass=> - st String
=2 umu es putist Experiment -ate: sting

seumucs prtist
St £ .. |+GencFien

-name: String +getPatn(y String
~createdBy: String -+setPath(String)void

—name: String
-value: ArrayListeString=

=) jetLe):Srin
+hnnatation) -annotations petEen, gefLi0:String
= +geiiame() String +seturi(String) voi
+getiafyint < i
2 [+sethName(String)-void +getDate() String
+setid(intjvoid] e
e +getCreatecy() String +setDate(String) void
+getiame() String
oy +seiCreatedBy(String) void +getsPrvate() Siring
+setName(String) v aid i
~geiFies() ListGeneFie> +setisPrivate(String) void
+getvalua(yArrayListString- i ; "
Sk +setFies(List<GensFie>)vaid +getFien) Strng
+seiValue(ArrayList<Sirings) vaid d
2 +getAnnatations() List<Annolation> +setFlekd(String)-void
+appendValue(String)void =
+setAnnaiations(List<Amnotation=)-void +etExpld)y String

sisFroeText()boolcan

+setExpiStringyvoid
+getType(:String
+sefType(String)-void
+gethame() String
+sethame(String):vaid
+getauthor() String
+setautnor(string) veid
-+getUploadedBy()String
+setUploadedBy(String)-vaid

Figure D.1: Android UML of model

122

123

APPENDIX D. ANDROID APPLICATION: UML-DIAGRAMS

a1 (spung dnoso wal

e v orouEILo:
OmpussT

ro

ubes

D0 (001 11 RN <2 e e OO

Osmpueis

a1 (apUNG 81015 MaLN eI

Rnovisruawadg
<essu0 waer>

o

WA

S|

<essen sner=>

wa
5uisS SENOHSRTINUSOR |
DU SSNOUSZY SALYORN

oA (aIungs Ao waIN

<essu onep>

Figure D.2: Android UML without model

123

APPENDIX E. 10S APPLICATION: UML-DIAGRAMS 124

E i0S application: UML-diagrams

In this appendix the UML-Class-diagrams of the iOS application will be presented.

SearchViewController

TabViewContraller

loginSeque

XYZLoginViewConlroller

SigninButtonTouchDown()

Figure E.1: Login sequence diagram.

124

125

APPENDIX E. 10S APPLICATION: UML-DIAGRAMS

I13]loIUEDMAIASIGELINS SR SS

UoIaULDIaNES

MaANNS31 YaIBaS MOYS

ynsopyoress Ansopodal ,

SSIoTIED KO D BUL oTess

YaleaguonEouLyaTEala

Sielawred qoives sndu 850

I1ajenuooNANYaRS

UoANGUIIEo:

MaJA §DIeas Maus Jnejap Ag

Iajj0NUODMBIATEL

Figure E.2: Search sequence diagram.

125

APPENDIX F. DESKTOP APPLICATION: UML-DIAGRAMS 126

F Desktop application: UM L-diagrams

UserPanel %
- Response
GUI - Request
AnalyzeTab < = izerView [
L
— _— # ResponseParser _—
et 1=

RequestFactory

Controller |

ProcessTab -1

— [-view: GenomizerView
-model: GenomizerModel

= i
'SysAdminTab) = ——— |
FileData | | TreeTable
. K> |
=
QuerySearchTab | =
o
| SupportNode
|
_———— |]
________ Data
AnnotationDataValue
7 FileNode
Data
X AnnotationDataType
+
id, String name)

— R R

Figure F.1: Desktop Overview with major class relations.

126

APPENDIX F. DESKTOP APPLICATION: UML-DIAGRAMS

127

()

[] [)

=

(

[
[[|
{ J 1

Az

+ AnabzeTab)

Proceseian

< Prcesiat)

eRelaseFles{rayLs<Siing>
Vlnﬂmlke\lis!i\!)

atFiemofinay sicFsepai> alFiepas)
P
~ Gemmarkadeos) sy scSiings +

- GoAMarkadFIoDala): ArayLsi<FiaData>
el reincercn

usedcapter)
 adiComertiseerAcionLsienes e
st

 SdaRanToProfeDaaL sane o
istenes

= addSclueEleLstener(AcionL iener Isener)
PincToCoeTen(Sirng message)

UpladTao

HExisingExpPane ArmoiaionDaaType]
oo

JoadToesisingEspPanel)
m-ﬂazmnnvsxwmﬁ
ingEspEutonLisenerAcionLsaner
m-n
INewExpBtonLsteer(AcionLisane seno)
CSaSainctbuton onar Ao saner enen
= ddUploadgutont sanerAcionL steer tner)

P ——
ZGeloadries) e

e
+ SeaschTab) Quenssaab
+ nitatoTabe0
« QuerysearTab)
* ipdatoScarchResuls(ExpormentDatal]
Sesrcitesuts)
~addron)
e + removefong
+ addSearchButon stenerAciont sener iene)
- arkepaceTabg. e
R S) ‘o-aaupannymunmuu;ans{»nnnumm
s et sonee iy
Expr mnumﬂhw(ﬂv-nmnm‘unm\mmh) -
Hem] RSl oot mmmwnTyvliannanM
R e * gotSelectadrisy FleDaial
etSeectd ledVahEperment):
D]
JSeected xoriment(): xper
i ovexwemﬁommemu Ffetimrien]
T * GaSesehstong
serpansi) N
 setUseriofsing wernane, Stig nane,
Bonian acmy
= diLogoutButontteneActontstene Isenes) D

¥
N
I

U0
b ms-vmﬁh(summ: s

+ setanabeTab i
+ addLognLstenerctontsenerIsener)

Conater

+ addSchocioFtoL sanerAcionLstoner ner)
Do A S
archPanei) JPape!
.n.l;..mzo;;.m
oginsindont

+ add.ogou ener(acontstene isener)
+ s et ner)
 SdacuarySenren

+ ConteCanomcaoy i, Gz o

owuumnn?umuner{mununmmmev)
riaadeie Senerihctont sene iner)

e S amoesiage)
ocessTab processTat)

ol ieneriAcionL sane tenr
+ UpdaleChosen(Sting diectonysSiing)
+ guQuerySsarchstingl) Sy

g pe, Sungranme)

|

e————
i, Suing nane)

oty Cpaan

Iy ltpemenoual apeien)

Data oxpoimentaia)

Daa]
 GeSelectudF sty A t<FleOall

DT

o
i, Sting name, Sting v

T
Genomizervion

“removeseiciedFiost)

I seners

b um‘veﬂ\echnumsmng drecionssing
ResUs{ray sHasapeSiing

Sing searens)

¥ geiquenySeaiehsiin) siing

© GelSelecadFnaW Experents): Aoyl 1<Expenenia>
e aetsaEsperimens)

Exuimenian

SenamionbaaTyeS
o S e, S

Vs, nclean forced)
o) Sum

o

(g name, Sting
crstedey, HleData] s,

+ Forcedo) bolean

+ getvaedi(on: Objct
* GeColumnCoum: m
+ geDalal) O]

S iesElaDita] newles)
~femovesiFibaia eoai)
© quls{Objct o) bosiean

Goamoaduinon

Figure F.2: Desktop Overview

(rrayiseStings les)
addOounloadFleLsiene(Actont tener isene)
+ getFles(): Aoyt iste lata

Suing et
geame: Sting
+ aauals(Objct o boolean

 FleData(Siig fled,Suing experimen, Sisg e,
‘St metaata.Suing auhor, g upoader, bosiean sPriate,
St grersion g dato, S pat, St

me)

127

with major class relations.

APPENDIX F. DESKTOP APPLICATION: UML-DIAGRAMS

128

COntroller.Controller

1
model. Genomizertode1) |

SysadminTab ()

s=tController (sysController
addAnnotationsPopup ()
createAnnotationListeners ()

gethnnotationsView ()
getSysController ()

+ o+t

creatslnnotationPopuplistensr ()
AnnotationsViewCreator
SysadminController

+ Controller (view : gui.Genomizerview, model
gui.sysadmin,SysadminTab
R 1 controller.Controller,Sendbatadbserver |
[+ update (o Chservable, arg Chiject) |

ActionListensr

Observable
—————

Vi
[Chasrver)

e 0/
gui.sysadmin. ANNOTAti0NSVieWCreator AN
+ AnnotationsViewCreator ()
+ buildAnnotationsView() : JPanel
+ popup (popuplistensr : ActionListener)
+ addAnnotationListener (addAnnotationListener : ActionListener)
+ clossPopup ()
+ getPopi) : SysadminAnnotationPopup
Qui.sysadmin.SysadminController
+ SysadminController (observer : Observer)
+ setSysadminPanel(sysTab : SysadminTab)
+ creatednnotationButtonlistener() : ActionlListener
¥ createAnnoCationPopupListensr () : ActionListensr
+ sendievhnnotation|)
gui.sysadmin.SysadminAnnotationPopup
+ SysadminknnotationPopup ()
+ closeWindow()
+ addAddAnnotationListener (listener ActionLiscener)

Figure F.3: The Controller and Sysadmin class relations.

128

APPENDIX F. DESKTOP APPLICATION: UML-DIAGRAMS

DownloadWindowListener

actionPerformed

)

-— |
getWorkspaceSelectedExperiments)

[DownloadWindow | new (selectedFiles)

addDownloadListener

new

DownloadFileListener

setDownloadWindow(downloadWindow)

actionPerformed

getDownloadWindow

Model Connection
|
|
[RequestFactory
downloadrite	I
makeD iesy,	_new,
[], [oomoadriencest)	
ode	
(=)	
T	
1	
(]	
ResponseParser	
parseD: esponse,	new
, ()	
new
[DownloadHandler]
downloadFile T
[}

Figure F.4: The download sequence.

129

APPENDIX F. DESKTOP APPLICATION: UML-DIAGRAMS 130

LoginListener Model Connection

actionPerformed

getl

RegquestFactory

makeLoginRequest new
LoginRequest
sendRequest(loginRequest)
getResponseCode

(D]

getResponseBody

getPassword

|

|

|

|

loginUser(uname, pwg) |
|
I
|

ResponseParser

—C®

parseLoginResponse, | new .
[LoginResponse]

userlD = loginResponse.token

true/false

updatelLoginAccepted/
updateLoginNeglected

Figure F.5: The login sequence.

130

APPENDIX G. DATA STORAGE: UML-DIAGRAMS

DatabaseAccessor

+ DROPDOWN : Integer

+ FREETEXT : Integer

+ DATAFOLDER : String

- conn ; Connection

-fpg : FilePathGenerator

- pm2sql : PubMedToSQLConverter

- userMethods : UserMethods

- experimentMethods : ExperimentMethods
- annoMethods : AnnotationMethods

-fileMethods : FileMethods
- genMethods : GenomeMethods

AnnotationMethods

- conn : Connection
- fileAttributesarray : String[]
- fileAttributes : HashSet<5tring>

UserMethods

GenomeMethods

+ UserType : enum
- conn: Connection

- conn: Connection
-fpg : FilePathGenerator

ExperimentMethods

- conn: Connection
-fpg : FilePathGenerator
- annoMethods : AnnotationMethods

FileMethods

- conn: Connection
-fpq : FilePathGenerator
- expMethods : ExperimentMethods

Figure G.1: The wrapper class DatabaseAccessor and the method

subclasses

+ addFile(FileTuple) : void
+ tosString() : String

Annotation

+ FREETEXT : Integer
+ DROPDOWN : Integer
+ label: String

+ dataType : int

+ isRequired : boolean
-values ; List<String=>
+ defaultwalue : String

+ Annotation{ResultSet)
- getValues(ResultSet) : List<String=
+ getPossibleValues() : List<=String>

Genome

+ genomeVersion : String
+ species : String

+ folderPath : String

- files : List<String=

+ Genome(ResultSet)

+ getFiles() : List<String=

+ getDownloadURLs() : List<String=>
+ getFilePrefix() : String

+ tostring() : String

Experiment FileTuple

-id : String RAW : int

- annotations : HashMap<5tring, String= PROFILE : int

-files : ArrayList<FileTuple> REGION : int

+ Experiment(String) \?,I:E:,-:‘énF

+ getID() : String thg- Strir

+ getAnnotations() : HashMap=String, String= pa tFil Sntgh st

+ addAnnotation(String, String) : void ‘t"p“ . ‘;t’ ath: string

+ getFiles() : ArrayList<FileTuple= fi}\rsia‘mewsgtrm

+ getNrRawFiles() : int d . g
ate : Date

metaData : String
author : String
uploader : String
isPrivate : Boolean
expld : String
grversion : String
status : String
checkSumMDS : String
fileSize : String

R R

FileTuple(ResultSet resSet)

getUploadURL() : String

getDownloadURL() : String

getinputFileUploadURL() : String

getinputFileDownloadURL() : String

getParentFolder() : String

getCheckSumMDS() : String

setCheckSumMDS(DatabaseAccessor db, String checkSumMDS) : void
+ getFileSize() : String

+ tostringl) : String

o+

+

Figure G.2: The container classes used to return information

131

131

G Data Storage: UML-diagrams

APPENDIX H. SERVER: COMMUNICATION UML 132

H Server: Communication UML

H.1 Overview

process

Execute
Abstract

server
command database
Doorman
Command
DatabaseAccessor
Abstract
RequestHandler
response
Response
Abstract

Figure H.1: Overview of the classes in communication parts

H.2 Request

response

ationFi GetAnnotationinformationResponse

Annotationinformation

GetExperimentResp

Delet

Get: ‘

GetProcessstat ‘ ingleFi

—‘— Abstract

HttpStatusCode Pre
ini Sear

Downl = . : urlL
Fileinformation LoginResponse

Figure H.2: Classes making the response package.

132

APPENDIX H. SERVER: COMMUNICATION UML

133

H.3 Command

command

i connection | search | convertfile | file
DeleteAnnotationFieldCommand DeleteLoginCommand searchcommand PutConvertFileCommand DeleteFileCommand

PostLoginC d

GetAnnotationCommand

PostAnnotationFieldCommand

PostAnnotationValueCommand

PutAnnotationFieldCommand

PutAnnotationValueCommand

GetFileCommand

PostFileC: d

Command |

] Abstract

user

PutFileCommand

DeleteUserCommand

PostUsercommand

PutUserCommand

process

Validatexception | | Annotation

experiments |

CancelProcessCommand

GetProcessDummyCommand

GetProcessStatusCommand

PutProcessCommand

PutUserAdminCommand

Process

DeleteGenomeReleaseCommand

mmand

I

GetGenomeReleasespeciesCommand

PostGenomeReleaseCommand

Figure H.3: Classes used for requests.

133

APPENDIX I. SERVER API 134

I Server API

The server relies on REST to handle communication between the server and the clients. There
are a set of valid requests that can be made, this section encompasses all of them. They are
divided into respective categories, those being Connection, Experiment, File, File conversion,
Search, User, Admin, Processing, Annotation handling, Genome release handling, GEO and
File upload/download.

All requests are briefly explained and example requests and responds are given.

Connection
Requests used to login/logout to and from the server.

POST /login

Logs in as a user.

Request:

POST /login HTTP/1.1
Content-Type: application/json

{
"username": "uname",
"password": "pw"
}
Response:
200 (0K)
Content-Type: application/json
{
"token": "token",
"role": "role"
}

DELETE /login

Logs out as a user.
Request:

DELETE /login HTTP/1.1
authorization: token

134

APPENDIX I. SERVER API 135

Response:

200 (OK)

Experiment

Requests used to add, retrieve, update and delete experiments.

POST /experiment

Creates a new experiment.

Request:

POST /experiment HTTP/1.1
Content-Type: application/json
Authorization: token

{
"name": "experimentId",
"annotations":

[

{
"name": "pubmedId",
"value": "abc123"

},

{
"name": "type",
"value": "raw"

},

{
"name": "specie",
"value": "human"

},

{
"name": "genome release",
"value": "v.123"

},

{
"name": "cell line",
"value": "yes"

},

{
"name": "development stage",
"value": "larva"

}’

{
"name": "sex",
"value": "male"

},

{
"name": "tissue",
"value": "eye"

}

]

135

APPENDIX I. SERVER API 136

Response:

200 (0K)

GET /experiment/<experiment-id>

Retrieves a specific experiment.

Request:

GET /experiment/<experiment-id> HTTP/1.1
Authorization: token

Response:

200 (0K)
Content-Type: application/json
Authorization: token

{
"name": "experimentId",
"files": [
{
"id": "id"’
"path“: "path",
"urlﬂ: Nurlﬂ,
thpeH: thpeu’
"filename": "filename",
"date": "date",
"metaData": "metaData",
"author": "author",
"uploader": "uploader",
"expId": "expId",
"grVersion": "realseNr",
"fileSize": "fileSize"
},
{
Hid": "id"’
"path“: "path",
"ur1H: Hurlﬂ’
thpeﬂ: thpe"’
"filename": "filename",
"date": "date",
"metaData": "metaData",
"author": "author",
"uploader": "uploader",
"expId": "expId",
"grVersion": "realseNr",
"fileSize": "fileSize"
}
1,
"annotations":
[
{

136

APPENDIX I. SERVER API

137

"name": "pubmedId",
"value": "abc123"

},

{
"name": "type",
"value": "raw"

},

{
"name": "specie",
"value": "human"

},

{
"name": '"genome release",
"value": "v.123"

}’

{
"name": "cell line",
"value": "yes"

},

{
"name": "development stage",
"value": "larva"

},

{
"name": "sex",
"value": "male"

},

{
"name": "tissue",
"value": "eye"

}

]

PUT /experiment/<experiment-id>

Edits an exisiting experiment.

Request:

PUT /experiment/<experiment-id> HTTP/1.1
Content-Type: application/json
Authorization: token

{
"name": "experimentId",
"annotations":
[
{
"name": "pubmedId",
"value": "abc123"
},
{
Ilnamell R Iltypeﬂ ,
"value": "raw"
},
{
"name": "specie",
"value": "human"

137

APPENDIX I. SERVER API 138

},

{
"name": "genome release",
"value": "v.123"

},

{
"name": "cell line",
"value": "yes"

},

{
"name": "development stage",
"value": "larva"

},

{
"name": "sex",
"value": "male"

},

{
"name": "tissue",
"value": "eye"

}

]

}
Response:
200 (0K)

DELETE /experiment/<experiment-id>

Deletes an existing experiment.

Request:

DELETE /experiment/<experiment-id> HTTP/1.1
Authorization: token

Response:

200 (0K)

File
Requests ued to add, retrieve (file information), update and delete files.

POST /file

Adds a file to an experiment.

138

APPENDIX I. SERVER API

139

Request:

POST /file HTTP/1.1
Content-Type: application/json
Authorization: token
{
"experimentID": "id",
"fileName": "name",
Iltypell . llrawll’
"metaData": "metameta",
"author": "name",
"grVersion": "releaseNr"
"checkSumMD5": "checksum"

}

Response:

200 (OK)

GET /file/<file-id>

Retrieves file information about a specific file.

Request:

GET /file/<file-id> HTTP/1.1
Authorization: token

Response:

200 (0K)
Content-Type: application/json
{
"id": Ilidll .
"path": "path",
Ilurlll: llurlll ,
"type" . lltypen s
"filename": "filename",
"date": "date",
"metaData": "metaData",
"author": "author",
"uploader": "uploader",
"expId": "expld",
"grVersion": "realseNr",
"fileSize": "fileSize",
"checkSumMD5": "checkSumMD5"

PUT /file/ <file-id>

Edits file information for a specific file.

139

APPENDIX I. SERVER API

140

Request:

PUT /file/<file-id> HTTP/1.1
Content-Type: application/json
Authorization: token
{
"experimentID": "id",
"filename": "name",
Iltypell . llrawll’
"metaData": "metameta",
"author": "name",
"grVersion": "releaseNr"
"checkSumMD5": "checksum"

Response:

200 (0K)

DELETE /file/<file-id >
Deletes a specific file.

Request:

DELETE /file/<file-id> HTTP/1.1
Authorization: token
Response:

200 (0K)

File conversion

Requests used to handle file conversion.

PUT /convertfile

Converts a file to a given format.

Request:

PUT /convertfile HTTP/1.1
Content-Type: application/json
Authorization: token
{

"fileid": "id",

140

APPENDIX I. SERVER API

141

"toformat": "format"

}

Response:

200 (0K)

Content-Type: application/json
{
llidll: l|id|l s
"path" . "path" s
llurlll . Ilurlll .
"type“ : "type“
"filename": "filename",
"date": "date",
"metaData": "metaData",
"author": "author",
"uploader": "uploader",
"expId": "expId",
"grVersion": "realseNr",
"fileSize": "fileSize",
"checkSumMD5": "checkSumMD5"

}
Search

Requests used to handle user information.

PUT /user

Edits the user information.

Request:

PUT /user HTTP/1.1
Content-Type: application/json
Authorization: token

{
"oldPassword": "oldPw"
"newPassword": "newPw",
"name": "John Johnson",
"email": "john@mail.com"

}

Response:

200 (0K)

141

APPENDIX I. SERVER API

142

GET /user/<username>

Request:

GET /user/<username> HTTP/1.1
Authorization: token

Response:

200 (0K)
Content-Type: application/json
{
"username": "myusername"
"privileges": "ADMIN",
"name": "John Johnson",
"email": "john@mail.com"

Search

Requests used to handle searching for experiments.

GET /search/?annotations=<pubmedStyleQuery>

Searches for an experiment using a pubmed query.

Request:

GET /search/?annotations=<pubmedStyleQuery> HTTP/1.1

Authorization: token

Response:

200 (OK)
Content-Type: application/json
[
{
"name": "experimentId",
"files": [
{
"id": "id",
l|pathll . l|pathll .
|Iur1 n : "l.lrl" .
|Itypell . l|typell .

"filename": "filename",

"date": "date",

"metaData": "metaData",

"author": "author",

"uploader": "uploader",

"expId": "expId",

142

APPENDIX I. SERVER API

143

"grVersion": "realseNr",
"fileSize": "fileSize"
3},
{
|Iidll: Ilidll ,
"path": "path" .
|lur1ll . llurlﬂ ,
lltype": "type" .
"filename": "filename",
"date": "date",
"metaData": "metaData",
"author": "author",
"uploader": "uploader",
"expId": "expId",
"grVersion": "realseNr",
"fileSize": "fileSize"
}
1,
"annotations":
L
{
"name": "pubmedId",
"value": "abc123"
},
{
llnamell : lltypell .
"value": "raw"
},
{
"name": "specie",
"value": "human"
},
{
"name": "genome release",
"value": "v.123"
},
{
"name": "cell line",
"value": "yes"
},
{
"name": "development stage",
"value": "larva"
},
{
"name": "sex",
"value": "male"
},
{
"name": "tissue",
"Val’lle" . |leyell
}
1

143

APPENDIX I. SERVER API

144

Processing

Requests used to process experiment data.

GET /process

Gets the statuses of all processes.

Request:

GET /process HTTP/1.1
Authorization: token

Response:

200 (OK)
Content-Type: application/json
[
{
"experimentName": "Expl",
"PID": "123",
"status": "Finished",
"outputFiles": [
"filel",
"file2"
1,
"author": "yuri",
"timeAdded": 1400245668744,
"timeStarted": 1400245668756,
"timeFinished": 1400245669756

"experimentName": "Exp2",
HPID": "124“,
"status": "Finished",
"outputFiles": [

"filel",

"file2"
1,
"author": "janne",
"timeAdded": 1400245668746,
"timeStarted": 1400245669756,
"timeFinished": 1400245670756

"experimentName": "Exp43",
"PID": "125"’
"status": "Crashed",
"outputFiles": [

"filel",

"file2"
])
"author": "philge",
"timeAdded": 1400245668748,
"timeStarted": 1400245670756,
"timeFinished": 1400245671757

144

APPENDIX I. SERVER API 145

"experimentName": "Exp234",
HPID": "126“,
"status": "Started",
"outputFiles": [

"filel",

"file2"
1,
"author": "per",
"timeAdded": 1400245668753,
"timeStarted": 1400245671757,
"timeFinished": 0O

},

{
"experimentName": "Exp6",
"PID": "127"’
"status": "Waiting",
"outputFiles": [],
"author": "yuri",

"timeAdded": 1400245668755,
"timeStarted": O,
"timeFinished": 0O

DELETE /process

Cancels a running process.

Request:

DELETE /process HTTP/1.1
Content-Type: application/json
Authorization: token

{
"pID": "PID"
}

Response:

200 (0K)

PUT /process/rawtoprofile

Starts a raw to profile processing.

Request:

PUT /process/rawtoprofile HTTP/1.1
Content-Type: application/json
Authorization: token

{

145

APPENDIX I. SERVER API 146

"expid": "expID",

"parameters":
[
"Bowtie parameters",
nn
llyl,l .
e
"10 1 5 0 0",
"y 10",
"single 4 0",
"150 1 7 0 O"
1,
"metadata": "metaData",
"genomeVersion": "hg38"
}
Response:
200 (0K)

PUT /process/processCommands

Lists files and processes to run on them.

Request:

PUT /process/processCommands HTTP/1.1
Content-Type: application/json
Authorization: token

{
"expId": ...,
"processCommands": [
{
"type": "bowtie",
"files": [
{
"infile": ...,
"outfile": ...,
"params": ...,
"genomeVersion": ...,
"keepSam": true/false
},
]
},
{
lltype“ . llratioll,
(not supported)
},
]
}

146

APPENDIX I. SERVER API 147

Response:

200 (OK)

Annotation handling

Requests used to handle annotations.

GET /annotation

Gets all existing annotations.

Request:

GET /annotation HTTP/1.1
Authorization: token

Response:

200 (0K)
Content-Type: application/json

{
"name": "pubmedId",
"values": ["freetext"],
"forced": true

},

{
"namell . lltypell ,
"values": ["freetext"],
"forced": true

},

{
"name": "specie",
"values": ["fly", "human", "rat"],
"forced": true

})

{
"name": "genome release",
"values": ["freetext"],
"forced": true

},

{
"name": "cell line",
"values": ["yes", "no"l,
"forced": true

},

{
"name": "development stage",
"values": ["larva", "larvae"],
"forced": true

},

{

147

APPENDIX I. SERVER API 148

"name": "sex",
"values": ["male", "female", "unknown"],
"forced": true
},
{
"name": "tissue",
"values": ["eye", "leg"],
"forced": false
}

]

POST /annotation/field

Adds an annotation field.

Request:

POST /annotation/field HTTP/1.1
Content-Type: application/json
Authorization: token
{
"name": "species",
"type" B [
"fly" R
"rat" s
llhumanll
1,
"default": "human",
"forced": false

}

Response:
200 (0K)

PUT /annotation/field

Renames an annotation field.

1.0.0.1 Request:

PUT /annotation/field HTTP/1.1
Content-Type: application/json
Authorization: token

{
"oldName": "species",
"newName": "mouse"

}

Response:

200 (0K)

148

APPENDIX I. SERVER API 149

DELETE /annotation/field/<field-name>

Deletes an annotation field.

Request:

DELETE /annotation/field/<field-name> HTTP/1.1
Authorization: token

Response:

200 (OK)

POST /annotation/value

Adds an annotation value.

Request:

POST /annotation/value HTTP/1.1
Content-Type: application/json
Authorization: token

{

"name": "species",
"value": "mouse"
}

Response:

200 (0K)

PUT /annotation/value

Renames an annotation value.

Request:

PUT /annotation/value HTTP/1.1
Content-Type: application/json
Authorization: token

"name": "species",
"oldValue": "mouse",
"newValue": "rat"

149

APPENDIX I. SERVER API 150

Response:

200 (OK)

DELETE /annotation/value/<field-name>/<value-name>

Request:

DELETE /annotation/value/<field-name>/<value-name> HTTP/1.1
Authorization: token

Response:

200 (0K)

Genome release handling

Requests used to add, get, and delete genome releases.

GET /genomeRelease

Retrieves all genome releases.

Request:

GET /genomeRelease HTTP/1.1
Authorization: token

Response:
200 (0K)
Content-Type: application/json
[
{
"genomeVersion": "hyl7",

"species": "fly",
"folderPath": "pathToVersion",
"files": ["filenamel", "filename2", "filename3"]
})
{
"genomeVersion": "ul2b",
"species": "human",
"folderPath": "pathToVersion",
"files": ["filenamel", "filename2"]
},
{
"genomeVersion": "wkim",
"species": "human",

150

APPENDIX I. SERVER API

151

"folderPath": "pathToVersion",

"files": ["filenamel", "filename2"]
1,
{

"genomeVersion": "fg2b",

"species": "rat",

"folderPath": "pathToVersion",
"files": ["filenamel", "filename2"]

1},

"genomeVersion": "abcl",

"species": "rat",

"folderPath": "pathToVersion",
"files": ["filenamel", "filename2"]

POST /genomeRelease

Adds a genome release.

Request:

POST /genomeRelease HTTP/1.1
Content-Type: application/json
Authorization: token
{
"genomeVersion": "hx16",
"specie": "human",
"files":
[
"name0fFilel",
"name0fFile2",
"name0fFile3"
1,
"checkSumMD5" :
[
"checkSuml",
"checkSum2",
"checkSum3"
]

Response:

200 (0K)
Content-Type: application/json
[

{

"URLupload": "urll"
1},
{

"URLupload": "url2"
1,
{

"URLupload": "url3"
}

151

APPENDIX I. SERVER API 152

GET /genomeRelease/<species>

Retrieves the genome releases for a specific species.

Request:

GET /genomeRelease/<species> HTTP/1.1
Authorization: token

Response:
200 (0K)
Content-Type: application/json
[
{
"genomeVersion": "fg2b",
"species": "rat",
"folderPath": "pathToVersion",
"files": ["filenamel", "filename2"]
1,
{
"genomeVersion": "abcl",
"species": "rat",
"folderPath": "pathToVersion",
"files": ["filenamel", "filename2"]
}
]

DELETE /genomeRelease/<species>/<genomeVersion>

Deletes a genome release.

Request:

DELETE /genomeRelease/<species>/<genomeVersion> HTTP/1.1
Authorization: token
Response:

200 (0K)

File upload/download

Requests used to upload and download files.

152

APPENDIX I. SERVER API 153

POST /upload?path=<path-on-server>

Uploads a file to the server.

Request:

POST /upload?path=/path/on/server/foo.bar HTTP/1.1

Authorization: token

Content-Type: multipart/form-data; boundary= 9051914041544843365972754266
Content-Length: 12345

9051914041544843365972754266
Content-Disposition: form-data; name="filel"; filename="foo.txt"
Content-Type: text/plain

Contents of foo.txt.

Response:

201 (Created)

GET /download?path=<path-on-server>

Downloads a file from the server.

Request:

GET /download?path=/path/on/server/foo.bar HTTP/1.1
Authorization: token

Response:

200 (0K)

Content-Description: File Transfer

Content-Type: application/octet-stream
Content-Disposition: attachment; filename=foo.bar
Expires: 0O

Cache-Control: must-revalidate

Pragma: public

Header: foo

[contents of foo.bar]

153

APPENDIX J. BACKUP 154

J Backup

J.1 Introduction

To backup the genomizer-server rsync and crontab are required. The backup can either
be stored on an external storage device (e.g hard drive or USB-storage) connected to the
genomizer-server or a remote backup-server.

Using a remote server requires setting up ssh keys for the genomizer-server to remote backup
communication. This can be achieved using ssh-copy-id or equivalent.

Keep in mind that rsync synchronizes the chosen directory trees on the genomizer-server and
the backup-server. This means that all deleted files on the genomizer-server will be deleted on
the backup-server.

In addition to the rsync setup, we include a script intended for use on the backup-server, which
packs the synchronized directory tree into a compressed archive. If added to the backup-servers

crontab, this script will automate the process, and also clean up old archives.

All backup scripts are located at resources/backup/ in the genomizer-server project folder.

J.2 File backup

Two scripts are available to perform the directory synchronization part of the backup of the
genomizer-server. These are named local_file_backup.sh and remote_file_backup.sh, and
correspond to the local or remote storage options mentioned in the previous section.

local_file_backup.sh will backup to a local path on the genomizer-server. Suggested use is
to mount an external storage device somewhere on the filesystem, and to backup to that.

Conversely, remote_file_backup.sh will backup to a remote backup-server. This is where the
ssh keys are required.

Both scripts need to be edited to work properly. The following variables must be set:

¢ READPATH: Path to the directory tree that you wish to backup
¢ SAVEPATH: Path to the synchronize to

The script remote_file_backup.sh also requires the following variables to be set:

o PORT: The ssh port on the backup-server
o USER: The user identity to use when connecting to the backup-server

e IP: IP-address to the backup-server

J.2.1 Archiving

The archiving script, backup_tar.sh, compresses a given directory tree into a gzip’d tarball.
This script should be invoked at the backup site. This is easily automated by adding the script
to an appropriate crontab at the backup site, and setting the script to remove old archives at
regular intervals.

The following variables need to be edited in the script:

154

APPENDIX J. BACKUP 155

o WORKDIR: Path to the parent folder of the directory to which the genomizer-server is
backed upEl

« READFOLDER: Name of the directory in “WORKDIR” to which the genomizer-server
is backed up.

o SAVEPATH: Path to the directory in which to store archives

e« DAYS: Specifies how many days old archives should be stored before the script deletes
them

J.3 Database backup

To backup the database a script called db_backup.sh is available. The following variables in
the script need to be edited:

« DBNAME: Name of the database

« DBPORT: Port of the databse

« DBUSER: Username for the database

« FILENAME: Name to give to the created backup file

o SAVEPATH: Path to the directory in which to store the backup file

The variable SAVEPATH should be the same as the variable READPATH in the file backup scripts.
Otherwise the database file will not be copied to the backup site.

To allow the script to access the database a file called .pgpass needs to be created in the home
directory of the user calling the script. This file must contain the following information:

localhost:PORT:DATABASE : USERNAME : PASSWORD

J.4 Crontab

Crontab is the suggested method for automating the invocation of the backup scripts. Adding
system-wide tasks to crontab is easily achieved using the following command:

crontab -e

This will open the crontab for the current user, where tasks may then be defined. Running
a background task such as a backup should preferably be in the root crontab (using sudo
crontab -e) or in the crontab of some other “non-user” user.

Make sure that the scripts added to crontab are kept in a secure location, and aren’t editable
by users without proper access rights. This is necessary to keep malicious users from adding

arbitrary code to the crontab schedule.

Here is a short example of how to add a scheduled script:
0 0 * * *x /path/to/script.sh

The above line tells Crontab to run the script at midnight every day. For more information on
crontab syntax and behavior, see the crontab manual.

IThat is, if the data is backed up to EXAMPLE/PATH/genomizer/data, then the “WORKDIR”
should be EXAMPLE/PATH/genomizer

155

APPENDIX J. BACKUP 156

J.5 Restoring

Restoring a backup is much like backing up in reverse. Simply invoke rsync from the backup
site, with the backup directory as source and the genomizer-server’s data directory as target.

To restore from an archive, extract the archive contents to a suitable location, and then invoke
rsync with that directory as source and the genomizer-server’s data directory as target.

Restoring the database is achieved by piping the database dump to the live database:
psql dbname < FILENAME.sql
Equivalently, one could log in to the database and call the dump as a normal sql script.

Note that in either case, this operation requires the user to have permission to open and
overwrite the database.

156

APPENDIX K. ACCEPTANCE TESTS 157

K Acceptance Tests

K.1 Introduction

This document contains acceptance tests for the genomizer system. It is based on the list of
“use cases” found on the genomizer-documentation wikil

The list is as followdl}

e Logging In

o Logging Out

o Upload Genome Release

e Delete Genome Release

o Add annotations

¢ Remove annotations

o Update/Alter Genome Release
o Create Experiment

¢ Add files to an experiment

e Search experiments

e Search with partial terms

o Processing single files

e Processing multiple files

e Download files

¢ File conversion: SGR to WIG, WIG to SGR etc

K.2 Tests

This section contains tests for each of the bullet points in the above section.

K.2.1 Logging In

Logging In is considered to be “working” if the following tests pass:

Table K.1: Logging In: Correct login.

Step Description

Precondition There is a running genomizer server available..

1 Start a genomizer client.

2 Attempt to log in using a valid username and a valid
password.

Postcondition The server and client are both still running. The user is
logged in.

Table K.2: Logging In: Bad username.

Step Description

Precondition There is a running genomizer server available..

1T’ve omitted a few duplicate items in this rendition of the list.

157

https://github.com/genomizer/genomizer-documentation/wiki/Use-cases

APPENDIX K. ACCEPTANCE TESTS 158

Step Description

1 Start a genomizer client.

2 Attempt to log in using an incorrect username.

Postcondition The server and client are both still running. The user is not
logged in. An error message is displayed, which
communicates that the log in failed. The message does not
communicate why it failed.

Table K.3: Logging In: Bad password.

Step Description

Precondition There is a running genomizer server available..

1 Start a genomizer client.

2 Attempt to log in using an incorrect password.

Postcondition The server and client are both still running. The user is
not logged in. An error message is displayed, which
communicates that the log in failed. The message does not
communicate why it failed.

Table K.4: Logging In: No username.

Step Description

Precondition There is a running genomizer server available..

1 Start a genomizer client.

2 Attempt to log in with no username.

Postcondition The server and client are both still running. The user is
not logged in. An error message is displayed, which
communicates that the log in failed. The message does not
communicate why it failed.

Table K.5: Logging In: No password.

Step Description

Precondition There is a running genomizer server available.

1 Start a genomizer client.

2 Attempt to log in with no password.

Postcondition The server and client are both still running. The user is
not logged in. An error message is displayed, which
communicates that the log in failed. The message does not
communicate why it failed.

Table K.6: Logging In: Garbage username.

Step Description

Precondition There is a running genomizer server available.

1 Start a genomizer client.

2 Attempt to log in with garbageﬂ input in the username

field.

2Very long random unicode string for instance.

158

APPENDIX K. ACCEPTANCE TESTS 159

Step Description

Postcondition The server and client are both still running. The user is
not logged in. An error message is displayed, which
communicates that the log in failed. The message does not
communicate why it failed.

Table K.7: Logging In: Garbage password.

Step Des cription

Precondition There is a running genomizer server available.

1 Start a genomizer client.

2 Attempt to log in with garbage input in the password field.

Postcondition The server and client are both still running. The user is
not logged in. An error message is displayed, which
communicates that the log in failed. The message does not
communicate why it failed.

Table K.8: Logging In: Bad address.

Step Description

Precondition None.

1 Start a genomizer client.

2 Attempt to log in on a server that does not exist.

Postcondition The client is still running. The user is not logged in. An

error message is displayed, which communicates that the
log in failed.

159

APPENDIX K. ACCEPTANCE TESTS 160

K.2.2 Logging Out

Logging Out is considered to be “working” if the following tests pass:

Table K.9: Logging Out: Standard behaviour.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on a suitable genomizer client connected to the
server.

1 Attempt to log out.

Postcondition The server and client are both still running. The user is no
longer logged in.

Table K.10: Logging Out: Logging in after logging out.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on a suitable genomizer client connected to the
server.

1 Log out.

2 Attempt to log in again with the same credentials.

Postcondition The server and client are both still running. The user is

logged in.

160

APPENDIX K. ACCEPTANCE TESTS 161

K.2.3 Upload Genome Release

Upload Genome Release is considered to be “working” if the following tests pass:

Table K.11: Upload Genome Release: Add genome release with 1

file.

Step

Description

Precondition

OOt W

Postcondition

There is a running genomizer server available. A user is
logged in on a suitable genomizer client connected to the
server and has permission to add genome releases. An
experiment with processable files exists.

Open the administration tab.

Open the “genome release” view.

Press the “Select files to upload” button.

Select a valid file and upload it.

Select a valid species and enter a new name for the release.
Press “Upload”.

Ensure that the file upload completes successfully (or
appears to, in the user interface).

The server and client are both still running. The user is
still logged in. The new genome release is visible in the list
of genome releases, and can be selected in the processing
view.

Table K.12: Upload Genome Release: Add genome release with

multiple files.

Step

Description

Precondition

N O U W N

Postcondition

There is a running genomizer server available. A user is
logged in on a suitable genomizer client connected to the
server and has permission to add genome releases. An
experiment with processable files exists.

Open the administration tab.

Open the “genome release” view.

Press the “Select files to upload” button.

Select several valid files and upload them.

Select a valid species and enter a new name for the release.
Press “Upload”.

Ensure that the file upload completes successfully (or
appears to, in the user interface).

The server and client are both still running. The user is
still logged in. The new genome release is visible in the list
of genome releases, and can be selected in the processing
view.

Table K.13: Upload Genome Release: Add a genome release with
a name already in use.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on a suitable genomizer client connected to the
server and has permission to add genome releases. A
previously added genome release exists on the server.

1 Open the administration tab.

161

APPENDIX K. ACCEPTANCE TESTS 162

Step Description

2 Open the “genome release” view.

3 Press the “Select files to upload” button.

4 Select several valid files and upload them.

5 Select a valid species, but enter the name of an already
existing genome release for the new one.

6 Press “Upload”.

Postcondition The server and client are both still running. The user is

still logged in. An error message is displayed explaining
that a genome release with the chosen name already exists.

Table K.14: Upload Genome Release: Add a genome release with-
out a species.

Step Description

Precondition There is a running genomizer server available. A user is

logged in on a suitable genomizer client connected to the

server and has permission to add genome releases.

Open the administration tab.

Open the “genome release” view.

Press the “Select files to upload” button

Select several valid files and upload them.

Enter a valid name, but do not select a species for the

release.

6 Press “Upload”.

Postcondition The server and client are both still running. The user is
still logged in. An error message is displayed explaining
that the genome release needs to be associated with a
species.

TUR W N~

162

APPENDIX K. ACCEPTANCE TESTS 163

K.2.4 Delete Genome Release

Delete Genome Release is considered to be “working” if the following tests pass:

Table K.15: Delete

Release: Delete an unused genome release.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on a suitable genomizer client connected to the
server and has permission to delete genome releases. A
genome release which is not referenced by any experiment
exists on the server.

1 Open the administration tab.

2 Open the “genome release” view.

3 Press the delete button connected to the genome release
mentioned above.

4 Confirm the deletion.

Postcondition The server and client are both still running. The user is

still logged in. The chosen genome release is no longer
visible in the list, and cannot be selected in the processing
view.

Table K.16: Delete
still in use.

Release: Delete a genome release which is

Step Description

Precondition There is a running genomizer server available. A user is
logged in on a suitable genomizer client connected to the
server and has permission to delete genome releases. A
genome release which is referenced by at least one
experiment exists on the server.

1 Open the administration tab.

2 Open the “genome release” view.

3 Press the delete button connected to the genome release
mentioned above.

4 Confirm the deletion.

Postcondition The server and client are both still running. The user is

still logged in. An error message is displayed explaining
that the genome release cannot be deleted.

163

APPENDIX K. ACCEPTANCE TESTS 164

K.2.5 Add Annotation

Add Annotation is considerd to be “working” if the folowing works test pass:

Table K.17: Add Annotation: Add forced dropdown annotation.

Step Description

Precondition There is a genomizer server running. A user is logged in

with an appropriate client and has permission to add

annotations.

Open the administration tab.

Open the “annotation” view.

Press “Add/Create new”.

Fill out the annotation name field.

Fill out the Value field.

Press the plus sign if you want to add more values and fill

out the new field.

7 Mark the forced annotation option.

8 Press create annotation.

Postcondition The server is still running, the user is still logged in and a
new forced Dropdown annotation has been created and is
available in the list of annotations.

S UL WN -

Table K.18: Add Annotation: Add non-forced dropdown annota-
tion.

Step Description

Precondition There is a genomizer server running. A user is logged in

with an appropriate client and has permission to add

annotations.

Open the administration tab.

Open the “annotation” view.

Press “Add/Create new”.

Fill out the annotation name field.

Fill out the Value field.

Press the plus sign if you want to add more values and fill

out the new field.

7 Press create annotation.

Postcondition The server is still running, the user is still logged in and a
new non-forced Dropdown annotation has been created and
is available in the list of annotations.

DT W N~

Table K.19: Add Annotation: Add forced freetext annotation.

Step Description

Precondition There is a genomizer server running. A user is logged in
with an appropriate client and has permission to add
annotations.

Open the administration tab.

Open the “annotation” view.

Press “Add/Create new”.

Change tab to Free Text.

Fill out the field annotation namee

Mark the forced annotation option

Press create annotation

OOtk W

164

APPENDIX K. ACCEPTANCE TESTS 165

Step

Description

Postcondition

The server is still running, the user is still logged in and a
new forced freetext annotation is created and is in the
annotation list.

Table K.20: Add Annotation: Add non-forced freetext annotation.

Step

Description

Precondition

S UL WN

Postcondition

There is a genomizer server running. A user is logged in
with an appropriate client and has permission to add
annotations.

Open the administration tab.

Open the “annotation” view.

Press add.

Change tab to Free text.

Fill out the field annotation name

Press create annotation

The server is still running, the user is still logged in and a
new forced freetext annotation is created and is available in
the list of annotations.

Table K.21: Add Annotation: Add dropdown annotation with

default values.

Step

Description

Precondition

TUR W N~

Postcondition

There is a genomizer server running. A user is logged in
with an appropriate client and has permission to add
annotations.

Open the administration tab.

Open the “annotation” view.

Press add.

Fill out the field annotation name.

Press create annotation.

The server is still running, the user is still logged in and a
new Dropdown annotation with the values Yes, No and
Unknown is created.

Table K.22: Add Annotation: Add dropdown annotation with
freetext as only value.

Step

Description

Precondition

S U W N

Postcondition

There is a genomizer server running. A user is logged in
with an appropriate client and has permission to add
annotations.

Open the administration tab.

Open the “annotation” view.

Press “Add/Create new”.

Fill out the field annotation name.

Mark freetext in the Value field.

Press create annotation

The server is still running, the user is still logged in and a
new freetext annotation is created and is available in the
list of annotations.

165

APPENDIX K. ACCEPTANCE TESTS 166

Table K.23: Add Annotation: Add dropdown annotation with
garbage values.

Step Description

Precondition There is a genomizer server running. A user is logged in
with an appropriate client and has permission to add
annotations.

1 Open the administration tab.

2 Open the “annotation” view.

3 Press “Add/Create new”.

4 Fill out the field annotation name or value with invalid
character

5 Press create annotation

Postcondition The server is still running, the user is still logged in and a

error message should be shown and the annotation should
not have been created.

Table K.24: Add Annotation: Add freetext annotation with
garbage values.

Step Description

Precondition There is a genomizer server running. A user is logged in

with an appropriate client and has permission to add

annotations.

Open the administration tab.

Open the “annotation” view.

Press “Add/Create new”.

Fill out the field annotation name with invalid Charactersﬁ

Press create annotation.

Postcondition The server is still running, the user is still logged in and a
error message should be shown and the annotation should
not have been created.

TU W N~

3What counts as invalid here? - NG
4What counts as invalid here? -NG

166

APPENDIX K. ACCEPTANCE TESTS 167

K.2.6 Delete annotation

Delete annotation is considered to be working if the following tests pass:

Table K.25: Delete annotation: Delete unused annotation.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on a suitable genomizer client connected to the
server and has permission to remove annotations. An
unused annotation exists on the system.

1 Open the administration tab.

2 Enter the “annotation” view.

3 Press the edit button associated with the chosen
annotation.

4 Press the delete button.

Postcondition The server is still running and the user is still logged in.
The chosen annotation is no longer visible in the list in the
annotation view.

Table K.26: Delete annotation: Delete an annotation in use.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on a suitable genomizer client connected to the
server and has permission to remove annotations. An
annotation, which is referenced in at least one experiment
exists on the system.

1 Open the administration tab.

2 Enter the “annotation” view.

3 Press the edit button associated with the chosen
annotation.

4 Press the delete button.

Postcondition The server is still running and the user is still logged in.
An error message is displayed explaining that the
annotation cannot be removed while it is still in use.

Table K.27: Delete annotation: Delete a “hardcoded” annota-
tion.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on a suitable genomizer client connected to the
server and has permission to remove annotations.

1 Open the administration tab.

2 Enter the “annotation” view.

3 Press the edit button associated with the one of the
“hardcoded” annotationﬂ

4 Attempt to press the delete button.

Postcondition The server is still running and the user is still logged in.

One of the following is true: An error message is displayed
explaining that the annotation cannot be removed OR. the
button is disabled, preventing its use.

5Currently these are: “Species” and “Sex”.

167

APPENDIX K. ACCEPTANCE TESTS

168

K.2.7 Update Annotation

Update Annotation is considered to be working if the following tests pass:

Table K.28: Update annotation: Update value in a forced drop-

down.
Step Description
Precondition There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu and is of the type “forced dropdown”.
1 Edit one of the annotation values.
2 Click the update button to save annotation changes.
Postcondition The server and client are both still running, and the user is
still logged in. The updated annotation is visible in the list
of annotations, and contains the updated value.
Table K.29: Update annotation: Update value in a non-forced
dropdown.
Step Description
Precondition There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu and is of the type non-forced dropdown.
1 Edit one of the annotation values.
2 Click the update button to save annotation changes.
Postcondition The server and client are both still running, and the user is

still logged in. The updated annotation is visible in the list
of annotations, and contains the updated value.

Table K.30: Update annotation: Update value in a freetext anno-

tation.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu and is of the type freetext.

1 Try updating the annotation value.

Postcondition The server and client are both still running, and the user is

still logged in. The annotation value should not be able to
be updated.

168

APPENDIX K. ACCEPTANCE TESTS 169

Table K.31: Update annotation: Update value to a value which

already exists.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu, is of the type dropdown, and has at
least two annotation values.

1 Edit one of the annotation values to be identical to one of
the other annotation values.

2 Click the update button to save annotation changes.

Postcondition The server and client are both still running, and the user is

still logged in. The new annotation value should not be
updated, and the system should tell the user that duplicate
annotation values are not allowed.

Table K.32: Update annotation: Update value to contain a special

character.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu, and is of the type dropdown.

1 Edit an annotation value to contain a special character.

2 Click the update button to save annotation changes.

Postcondition The server and client are both still running, and the user is
still logged in. The new annotation value should not be
updated, and the system should tell the user that special
characters values are not allowed.

Table K.33: Update annotation: Update value to be empty.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu, and is of the type dropdown.

1 Edit an annotation value to be empty.

2 Click the update button to save annotation changes.

Postcondition The server and client are both still running, and the user is
still logged in. The new annotation value should not be
updated, and the system should tell the user that empty
annotation values are not allowed.

Table K.34: Update annotation: Add an annotation value.
Step Description
Precondition There is a running genomizer server available. A user is

logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu, and is of the type dropdown.

169

APPENDIX K. ACCEPTANCE TESTS 170

Step Description

1 Add an annotation value.

2 Click the update button to save annotation changes.
Postcondition The server and client are both still running, and the user is

still logged in. The updated annotation is visible in the list
of annotations, and contains the added value.

Table K.35: Update annotation: Add value identical to an already

existing value.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu, and is of the type dropdown.

1 Add an annotation value that is identical to an already
existing annotation value.

2 Click the update button to save annotation changes.

Postcondition The server and client are both still running, and the user is
still logged in. The new annotation value should not be
added, and the system should tell the user that duplicate
annotation values are not allowed.

Table K.36: Update annotation: Add value "freetext".

Step Description

Precondition There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu, and is of the type dropdown.

1 Add the string "freetext" as an annotation value.

2 Click the update button to save annotation changes.

Postcondition The server and client are both still running, and the user is
still logged in. The new annotation value should not be
added, and the system should tell the user that their
annotation value is invalid.

Table K.37: Update annotation: Add empty value.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu, and is of the type dropdown.

1 Add an empty string to annotation values.

2 Click the update button to save annotation changes.

Postcondition The server and client are both still running, and the user is

still logged in. The new annotation value should not be
added, and the system should tell the user that empty
annotation values are not allowed.

170

APPENDIX K. ACCEPTANCE TESTS 171

Table K.38: Update annotation: Remove value from dropdown.

Step

Description

Precondition

1
2
Postcondition

There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu, is of the type dropdown, and contains
at least one annotation value.

Remove a value from annotation values.

Click the update button to save annotation changes.

The server and client are both still running, and the user is
still logged in. The updated annotation is visible in the list
of annotations, and does not contain the removed value.

Table K.39: Update

annotation: Remove value currently in use.

Step

Description

Precondition

1
2
Postcondition

There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu, is of the type dropdown, and contains
an annotation value that is currently in use by some
experiment.

Remove an annotation value that is currently in use.
Click the update button to save annotation changes.

The server and client are both still running, and the user is
still logged in. The remove annotation value should still
exist, and the system should tell the user that annotation
values which are currently in use cannot be removed.

Table K.40: Update annotation: Update name.

Step

Description

Precondition

1
2
Postcondition

There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu.

Edit the annotation name.

Click the update button to save annotation changes.

The server and client are both still running, and the user is
still logged in. The updated annotation is visible in the list
of annotations, and contains the updated name.

Table K.41: Update annotation: Update name to a name which

already exists.

Step

Description

Precondition

There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu.

Edit the annotation name to a name that an already
existing annotation already has.

Click the update button to save annotation changes.

171

APPENDIX K. ACCEPTANCE TESTS 172

Step Description

Postcondition The server and client are both still running, and the user is
still logged in. The new annotation name should not be
updated, and the system should tell the user that duplicate
annotation names are not allowed.

Table K.42: Update annotation: Update name to be empty.

Step Description

Precondition There is a running genomizer server available. A user is
logged in on an appropriate client and has permission to
edit annotations. The annotation to be updated is visible
in a relevant menu.

1 Edit the annotation name to be empty.

2 Click the update button to save annotation changes.

Postcondition The server and client are both still running, and the user is

still logged in. The new annotation name should not be
updated, and the system should tell the user that empty
annotation names are not allowed.

172

APPENDIX K. ACCEPTANCE TESTS 173

K.2.8 Create experiment

Create experiment is considered to be working if the following tests pass:

Table K.43: Create experiment: Create experiment without typ-
ing an experiment name. pass:

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client.

1 Click the “Upload” tab.

2 Leaving the “Experiment name” field blank, click “Upload
experiment”.

Postcondition The server is still running, and the user is still logged in

and in the upload menu. The system should tell the user
an experiment name is needed.

Table K.44: Create experiment: Create experiment without filling
in forced annotations. pass:

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client. A forced annotation exists.

1 Click the “Upload” tab.

2 Fill in a valid experiment name.

3 Leaving a forced annotation blank, click “Upload
experiment”.

Postcondition The server is still running, and the user is still logged in

and in the upload menu. The system should tell the user
that forced annotations cannot be blank.

Table K.45: Create experiment: Create experiment without files.

pass:

Step

Description

Precondition

1
2
3
Postcondition

There is a genomizer server running. A user is logged in on
a client.

Click the “Upload” tab.

Fill in a valid experiment name and annotation values.
Click “Upload experiment”.

The server is still running, and the user is still logged in.
The new experiment should be visible when being searched,
and should contain no files.

Table K.46: Create experiment: Create experiment with one file.

pass:
Step Description
Precondition There is a genomizer server running. A user is logged in on
a client.
1 Click the “Upload” tab.
2 Fill in a valid experiment name and annotation values.

173

APPENDIX K. ACCEPTANCE TESTS 174

Step Description

3 Select one file to be uploaded.

4 Click “Upload experiment”.

Postcondition The server is still running, and the user is still logged in.

The new experiment should be visible when being searched,
and should contain one file.

Table K.47: Create experiment: Create experiment with multiple

files.
Step Description
Precondition There is a genomizer server running. A user is logged in on
a client.
1 Click the “Upload” tab.
2 Fill in a valid experiment name and annotation values.
3 Select multiple files to be uploaded.
4 Click “Upload experiment”.
Postcondition The server is still running, and the user is still logged in.

The new experiment should be visible when being searched,
and should contain all selected files.

174

APPENDIX K. ACCEPTANCE TESTS 175

K.2.9 Add files to an Experiment

Add files to an Experiment is considered to be working if the following tests pass:

Table K.48: Add files to an Experiment: Add one file to an

Experiment.

Step

Description

Precondition

W N =

Postcondition

There is a genomizer server running. A user is logged in on
a client. A suitable experiment is available in the system.
Mark the experiment in the client.

Click “Upload to experiment”.

Select the file that will be uploaded.

Add the necessary attributes and press “Upload
experiment”.

The server is still running, the user is still logged in and
the uploaded file should be in the experiment view.

Table K.49: Add files to an Experiment: Add multiple files to

an Experiment.

Step

Description

Precondition

=W N =

Postcondition

There is a genomizer server running. A user is logged in on
a client. A suitable experiment is available in the system.
Mark the experiment in the client.

Click “Upload to experiment”.

Select the files that will be uploaded.

Add the necessary annotations and press “Upload
experiment”.

The server is still running, the user is still logged in and
the uploaded files should be in the experiment view.

Table K.50: Add files to an Experiment: Add files without fill-
ing in forced annotations.

Step

Description

Precondition

B W N -

Postcondition

There is a genomizer server running. A user is logged in on
a client. A suitable experiment and a forced annotation is
available in the system.

Mark the experiment in the client.

Click “Upload to experiment”.

Select the files that will be uploaded.

Just press “Upload experiment” without filling in the
forced annotation.

The server is still running, the user is still logged in and a
warning message should be telling the user that forced
annotations must be filled in.

175

APPENDIX K. ACCEPTANCE TESTS 176

K.2.10 Delete Experiment

Table K.51: Delete Experiment: Delete empty experiment.

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client and has permission to delete experiments. A
“deletable” experiment with no files exists on the system.

1 Open the Search tab.

2 Search for the aforementioned experiment.

3 Mark the experiment in the client.

4 Press remove, and confirm this.

5 Search for the experiment again.

Postcondition The server is still running, the user is still logged in. The
experiment is not visible in the search results.

Table K.52: Delete Experiment: Delete non-empty experiment.

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client and has permission to delete experiments. A
“non-deletable” experiment with at least one file exists on
the system.

1 Open the Search tab.

2 Search for the aforementioned experiment.

3 Mark the experiment in the client.

4 Press remove, and confirm this.

Postcondition The server is still running, the user is still logged in. An

error message is displayed explaining why the experiment
cannot be deleted.

K.2.11 Searching

Searching is considered to be “working” if the following tests pass:

Table K.53: Search: Single term.

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client. At least one experiment with correct annotations
and files exists on the system.

1 Open the search tab.

2 Enter a valiﬂ search term associated with the
aforementioned experimen

3 Press the “search” button or equivalently the Enter key.

Postcondition The server is still running, the user is still logged in. The

aforementioned experiment is visible in the search results.

6That is, PubMed syntax: [expId].
"You may want to repeat this test with several different kinds of terms; expId, annotations

176

APPENDIX K. ACCEPTANCE TESTS 177

Table K.54: Search: Multiple terms.

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client. At least one experiment with correct annotations
and files exists on the system.

1 Open the search tab.

2 Enter a valid search string containing multiple terms
associated with the aforementioned experiment. Include
multiple operators if possible.

3 Press the “search” button or equivalently the Enter key.

Postcondition The server is still running, the user is still logged in. The
aforementioned experiment is visible in the search results.

Table K.55: Search: Multiple terms using constructor.

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client. At least one experiment with correct annotations
and files exists on the system.

1 Open the search tab.

2 Open the query constructor.

4 Build a search string containing multiple terms associated
with the aforementioned experiment. Include multiple
operators if possible.

3 Press the “search” button or equivalently the Enter key.

Postcondition The server is still running, the user is still logged in. No
results are displayed. An error message is displayed
explaining why the search failed.

Table K.56: Search: Incorrect syntax.

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client.

1 Open the search tab.

2 Enter an invalid search term, such as “asdasd”.

3 Press the “search” button or equivalently the Enter key.

Postcondition The server is still running, the user is still logged in. An
error message is displayed, explaining that the query failed
to bad syntax.

Table K.57: Search: Empty string.

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client.

1 Open the search tab.

2 “Enter” the empty string as the search term.

3 Press the “search” button or equivalently the Enter key.

81f necessary, the number of operators/terms can be “artificially” increased by adding a

meaningless OR or AND NOT term.

177

APPENDIX K. ACCEPTANCE TESTS 178

Step Description

Postcondition The server is still running, the user is still logged in. All
experiments (visible to the user in question) are visible in
the search results.

Table K.58: Search: Garbage input.

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client.

1 Open the search tab.

2 Enter garbage into the search field.

3 Press the “search” button or equivalently the Enter key.

Postcondition The server is still running, the user is still logged in. No
results are displayed. An error message is displayed
explaining why the search failed.

Table K.59: Search: Search after add.

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client and has permission to add experiments.

1 Open the search tab.

2 Search for an expId that does not exist.

3 Ensure that there are no search results.

4 Open the upload tab, and add a new experiment with the
chosen expId.

5 Return to the search tab and search again.

Postcondition The server is still running, the user is still logged in. The
new experiment is visible in the search results.

Table K.60: Search: Search after add.

Step Description

Precondition There is a genomizer server running. A user is logged in on
a client and has permission to delete experiments. A
“deleteable” experiment exists on the system.

1 Open the search tab.

2 Search for the expId of the aforementioned experiment.

3 Ensure that the experiment is visible in the search results.

4 Mark the experiment and press the “Remove” button.

5 Confirm the deletion, and search for the expId again.

Postcondition The server is still running, the user is still logged in. The

experiment is no longer visible the search results.

178

APPENDIX K. ACCEPTANCE TESTS 179

K.3 Not yet specified

The following has not yet been dealt with:

e Processing
« File conversion
o User addition/deletion/updates

179

APPENDIX L. API TESTER 180

L API tester

The genomizer-server-tester is a separate program from the rest of the server system that uses
parts from the desktop clients code. The purpose of the program is to in sequence execute all
possible commands that the server should be able to handle.

The program was given a repository under the main genomsizer repository. The repository is
named genomizer-server-tester.

L.1 User guide

The repository contains the a build script that creates a jar of the program with the help of
Ant as follows:

ant jar
The program then is ran with the help of one argument which is the address of the server.
java -jar genomizer-server-tester.jar <address>

The address supplied has to be https:// followed by a /api to redirect the program right.

The program then runs a mulitple of pre-defined tests and prints the result on standard output.

Example 9

——————————————— USER

TEST: POST ADMIN USER STATUS: SUCCESS
TEST: DELETE ADMIN USER STATUS: FAILED

Total tests run: 113
Successfull tests: 109
Failed tests: 4

Failed:
DELETE ADMIN USER

L.2 Program structure

The program uses the desktop style for upload, requests and connection so the tests ran will
give some feedback to desktop code as well.

The tests is built with the help of two classes SuperTestClass and TestCollection. TestCollection
contains a list of SuperTestClass and has an execute where it runs tests.

The SuperTestClass insures that for each tests constructed the test promises to have at least
three things, some have a forth.

180

APPENDIX L. API TESTER 181

1. The test has a identifier string.

2. The test has a expected result.

3. The test has a execute method.

4. Some test has a expected result string to match the result received from the server.
Example

First each test has to have a collection.

public class CollectionExample extends TestCollection {
private String testName;

public CollectionExample () {
super ()
this.testName = "test";

super.commandList.add(new exampleTest("IDENT", true));

}

@Override

public boolean execute() {

System.out.println("------------ TEST COLLECTION ----------- ")
boolean bigResult = true;

for (SuperTestCommand stc: super.commandList) {
stc.execute();

runTests++;
boolean succeeded = stc.finalResult == stc.expectedResult;
if (succeeded){
succeededTests++;
} else {
failedTests++;
nameOfFailedTests.add(stc.ident);
bigResult = false;
}
Debug.log(stc.toString(), succeeded);
try {
Thread.sleep(delay);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
return bigResult;
}
}

Then construct a test.

public class ExampleTest extends SuperTestCommand {

public ExampleTest(String ident, boolean expectedResult) {
super (ident, expectedResult);

181

APPENDIX L. API TESTER 182

}

@0verride

public void execute() {

try {

CommandTester.conn.sendRequest (new SearchRequest(""),
CommandTester.token, Constants.JSON);

if (CommandTester.conn.getResponseCode() == 200){
super.finalResult = true;
}
} catch (RequestException e) {
if (super.expectedResult) ErrorLogger.log(e);
}

And finally add the test to the CommandTester. java.

CollectionExample ex = new CollectionExample();
ex.execute();

182

APPENDIX M. KNOWN PROBLEMS 183

M Known problems

M.1 Web application

M.1.1 Error handling when uploading experiments

If there is an error when adding files to an experiment the experiment collapses so the user
won’t get a chance to correct their mistake

Start uploads of files when all files have been added without errors.

M.1.2 Old authorization token causes page redirect

If the authorization token expires the user will be sent to the login screen and any input
entered will disappear.

Show login modal without redirecting to root url and save erroneous ajax request and resend
it when the login has been completed.

M.1.3 Code duplication in SearchResults and Experiments

The collections SearchResults and Experiments represents the same models. But are different
collections as they have different URL. It might be better to have the both use the same
collection.

Merge SearchResults and Experiments one collection.

M.1.4 No warning when closing tab during upload.

If a upload is in progress, there is no warning when closing the tab and the upload is canceled
directly.

There are some code for this in view/Upload.js, but it’s currently broken.

M.1.5 Uploading genome release - does not update list automati-
cally

After adding a genome release the list does not update automatically.

Build functionality to render when upload is done.

M.1.6 The annotation list can’t be sorted

The annotation list should be re-ordered by clicking on table headers.

Rebuild list to match design of GenomeReleaseView. We had some problems as we are using a
separate list for the search-bar.

183

APPENDIX M. KNOWN PROBLEMS 184

M.1.7 No warning when closing tab during uploading genome re-
leases

If an upload is in progress, there is no warning when closing the tab and the upload is cancelled
directly.

M.1.8 The page have to be refreshed after adding a new annotation

If the page is not refreshed, the annotation will not be visible in any view, which is a problem
especially when the annotation is forced.

M.1.9 Closing raw processing status window does not stop update
JSON messages to be sent

Having the processing status window open is correctly causing JSON objects reporting the
processing status to be sent continuously, but closing the window does not stop the objects
from being sent.

M.1.10 Pressing ”select all” in the convert view allows reconversion

Files are not supposed to be converted several times, but when ”select all” is pressed, the GUI
allows for files that has already been converted to be marked again.

Change the behaviour of the ”select all” button.

M.1.11 Pressing ”upload experiment” when editing an experiment
causes the "update annotations” button to stop working

Should be clickable at all times during editing of an already existing experiment, perhaps the
”upload experiment” button should only be clickable when new files are added.

M.1.12 File selection in process view should be improved

A file that results from one processing step should turn up in the selection menu of the
subsequent processing steps. Now, mainly simple text fields are used.

M.2 Android application

M.2.1 Processing

The Android in it’s current state is limited to just convert/process from raw to profile. The
layout for the other processes is the same so implementation of step,ratio and smoothing is
not as big of a task. More list has to be created and matching JSON package has to be made.

184

APPENDIX M. KNOWN PROBLEMS 185

M.2.2 Convert between file formats

This function is not yet implemented.

M.2.3 Security

SSL is not safe in it’s current state, right now the application trusts all host. That should be
change to trust just the hosts that the application needs.

M.3 ¢0S application

M.3.1 Processing

The iOS application is in it current state limited to only convert from raw to profile and to
make step size processing, ratio processing and smoothing.

M.3.2 Advanced Search

The application doesn’t save the advanced search query if edited which can cause confusion for
the end-user. It doesn’t either update the search constructor if a advanced search query is
added.

M.4 Desktop

M.4.1 Desktop

Some of these following issues are better documented via GIT issues.

M.4.1.1 Cosmetic Issues

Some cosmetic and usability issues of the GUI is described below.

M.4.1.1.1 Component size and resize

The components making up the GUI will in several places not have well adapted sizes, making
them more difficult to use than is neccessary. Several will also not resize correctly together
with the main window, due to bad layout managers used.

M.4.1.1.2 Repainting status and selectors not direct

When for example hovering over selector arrows, or doing something that updates the status
panel, the GUI element in question might not automatically update its visible part, due to not
calling repaint at the correct time.

185

APPENDIX M. KNOWN PROBLEMS 186

M.4.1.1.3 Flickering tab panes

Some GUI elements seem to flicker on mouseover, or update at incorrect times. This might
lead to minor inconvenience or irritation for the user.

M.4.1.1.4 Feedback limited

The feedback on some operations is rather limited, and the only way to make sure whether
some things worked is to reload the data from the search panel and check.

M.4.1.2 Event Dispatch and Threads

Some more serious threading issues are described in the following sections.

M.4.1.2.1 Threading solutions

The threading solutions are at several places very messy and not very well understood. It
might not be thread-safe, and at some, rare, times give the user issues. A complete overhaul
and restructuring might be neccessary.

M.4.1.2.2 The event dispatch

The swing event dispatch thread should be used for all GUI related operations. It is not
correctly used so at all places. This leads to rare issues with certain panels not loading
as expected. Until the threading is restructured, the workaround is to simply reload the
application.

M.4.1.3 Transfer Handling

The communication and transfer of data to the server has some known issues, described below.

M.4.1.3.1 Empty files

Empty files might not be up/down-loaded correctly, or these processes not started at all.

M.4.1.3.2 Feedback

The feedback for when uploading a large file might not be appropriate, or come at the expected
time. The same might hold for the download. Generally, the feedback for file transfers could
be improved. The system status could also be updated better.

M.4.1.3.3 Limitations and restrictions

Some restrictions of what names and values are allowed exist, and controlled by the server.
These include dissallowing certain file-names, and extensions.

186

APPENDIX M. KNOWN PROBLEMS 187

M.5 Server

M.5.1 Business logic

M.5.2 HTTP Headers

There is an issue that causes the response from the server to have multiple HT'TP headers.
This only happens when upload/download requests are sent.

M.5.3 Processing

A PutProcessingCommands can hold a list of processes to run. It is currently impossible to
cancel a single process from this list. The entire list must instead be cancelled.

M.5.4 Apiary

The apiary site does not match the API to 100%. Some items need further explanation and
some inconsistensies exist.

M.5.5 Upload and download

The two scripts used for file transferring in the Genomizer system have some limitations. These
will be presented below. Please note that both the scripts reads the settings.cfg file to get
information to be able to access the database. Make sure to put a copy of the settings.cfg file
into the /var/www/.

M.5.5.1 Upload script

When a user tries to upload a file and the upload is interrupted the file entry will remain in the
database but the file will not exist in the file system. The file will have the status 'In Progress’
but will never be uploaded if the user do not try to upload the file again. Furthermore the
script will not return good error messages to the user if a file transfer is interrupted.

M.5.5.2 Download script

If a file download is interrupted the user will not receive a error message from the script
containing and explaining the reason for the interrupt.

M.5.6 Process limitations

¢ Ratio calculation has a limitation that it requires processing to be run on two files and
that one of these files needs to be explicitly named in the input.

e One known problem with the smoothing subprogram, is that if a chromosome is smaller
than the windowsize, the program will then smooth that chromosome together with the
following chromosome. In practice this problem should never occur on a regular file
when doing smoothing once.

However, if stepping is done on a file with a step size of, for example 10 000, and we want
to smooth the new file again with a window size of 100, then the shortest chromosome

187

APPENDIX M. KNOWN PROBLEMS 188

in the original file must be atleast 1 000 000 rows. From what we have seen of the
melanogaster data the shortest chromosome there is roughly 200 000 rows.

Therefore a user should be cautious when smoothing the second time on file that has
been stepped with a large step size.

188

	Preface
	Introduction
	Target group and needs
	Target group
	Client needs
	Upload & Download
	Database
	Processing
	Format Conversion

	Service description
	Usage
	User Input
	Desktop
	Web
	Mobile application
	Server
	Data storage
	Processing
	Profile data conversion

	I Development
	Architectual design
	System overview
	Genomizer clients
	Genomizer server

	Interaction design
	General view
	Desktop client
	Windows/OS X/Linux application

	Web application
	Layout and Structure
	Colors
	Icons
	Batching
	Processing
	System administration

	Android
	Login view
	Search view
	Search result view
	Experiment view
	Search settings view
	Process view
	Active processes view

	iOS
	Tab bar
	Login Screen
	Search View
	Search Result View

	System design
	Desktop application
	View
	Model
	Requests
	Response
	Controller
	Utilites
	System Administration
	Flow of the system

	Web application
	How the web application works
	System overview
	Log in
	Search
	Upload
	Process
	Convert
	System administration - Web

	Android application
	System overview
	Package overview

	iOS application
	Overall system design

	Server
	Communication
	Data Conversion
	File-transfer
	Data Storage
	Database Design
	The Data Storage Subsystem
	Interaction

	Implementation
	Desktop application
	Testing

	Web application
	Frameworks
	Technologies used
	Testing frameworks
	Web app tests

	Android application
	Environment
	Emulation
	Android Support Library
	Technologies
	Testing

	iOS application
	Testing

	Server
	Communication
	Conversion
	Data Storage

	Limitations

	Bibliography
	Nomenclature
	User manual
	Desktop application
	Login and startup
	Search
	Upload
	Process
	Workspace
	Administration
	Convert
	Settings

	Web application
	Using the interface
	Setting up the application

	Android application
	Setting up the server URL
	Logging in
	Navigation
	Search and process
	Active processes

	iOS application
	How to run the app in Xcode
	How to login
	How to logout
	How to search for experiments
	How to use advanced search
	How to process files
	How to set which annotation to be visible on Search Results
	How to change the order which search results appear in
	How to view process status on the server

	Deployment and maintenance
	Configure server
	A brief introduction to vagrant
	Basic usage
	Modifying the configuration
	Entering the vagrant virtual machine

	Systems overview of production
	Using the toolchain
	Configured environments
	The important scripts
	Creating a new environment
	Modifying an existing environment
	Rebuilding an environment
	Deleting an environment
	Configuring the host system

	Administer the database
	Set up postgresql account
	Upload SQL Script to server
	Create the Genomizer Tables

	Install the server
	Set up processing

	User Stories
	Implemented user stories
	Product backlog

	Android application: UML-diagrams
	iOS application: UML-diagrams
	Desktop application: UML-diagrams
	Data Storage: UML-diagrams
	Server: Communication UML
	Overview
	Request
	Command

	Server API
	Backup
	Introduction
	File backup
	Archiving

	Database backup
	Crontab
	Restoring

	Acceptance Tests
	Introduction
	Tests
	Logging In
	Logging Out
	Upload Genome Release
	Delete Genome Release
	Add Annotation
	Delete annotation
	Update Annotation
	Create experiment
	Add files to an Experiment
	Delete Experiment
	Searching

	Not yet specified

	API tester
	User guide
	Program structure

	Known problems
	Web application
	Error handling when uploading experiments
	Old authorization token causes page redirect
	Code duplication in SearchResults and Experiments
	No warning when closing tab during upload.
	Uploading genome release - does not update list automatically
	The annotation list can't be sorted
	No warning when closing tab during uploading genome releases
	The page have to be refreshed after adding a new annotation
	Closing raw processing status window does not stop update JSON messages to be sent
	Pressing ''select all'' in the convert view allows reconversion
	Pressing ''upload experiment'' when editing an experiment causes the ''update annotations'' button to stop working
	File selection in process view should be improved

	Android application
	Processing
	Convert between file formats
	Security

	iOS application
	Processing
	Advanced Search

	Desktop
	Desktop

	Server
	Business logic
	HTTP Headers
	Processing
	Apiary
	Upload and download
	Process limitations

