criterion performance measurements

overview

want to understand this report?

Right-assoc/Free

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 4.496309671764716e-6 4.507848454887979e-6 4.532996548202542e-6
Standard deviation 2.6759443526443448e-8 5.337630939081432e-8 1.0038574670532733e-7

Outlying measurements have slight (8.399691638860637e-2%) effect on estimated standard deviation.

Right-assoc/Free/lazy

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 4.4828828275670695e-6 4.489391899068001e-6 4.5019045096494305e-6
Standard deviation 1.7853120124437838e-8 2.8832230927589546e-8 5.2372744137404136e-8

Outlying measurements have no (5.5246913580247635e-3%) effect on estimated standard deviation.

Right-assoc/Chruch

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 8.024927614937138e-6 8.646621273868009e-6 9.740545664222338e-6
Standard deviation 1.6230587205941088e-6 2.5034314028830486e-6 3.3442610076778144e-6

Outlying measurements have severe (0.9868558213949039%) effect on estimated standard deviation.

Right-assoc/Codensity

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 7.88665651016658e-6 8.552365035027449e-6 9.535830133156762e-6
Standard deviation 2.02996938880265e-6 2.6167378092226254e-6 3.0449616592244426e-6

Outlying measurements have severe (0.9871252634181289%) effect on estimated standard deviation.

Right-assoc/NoRemorse

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 8.726906684022631e-6 9.370788315510773e-6 1.0396227801151339e-5
Standard deviation 1.7118527545468777e-6 2.6511749472714766e-6 3.5465157306229867e-6

Outlying measurements have severe (0.9806777385057214%) effect on estimated standard deviation.

Right-assoc/Freer

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.347096688145364e-6 3.354442456053234e-6 3.3642445640258957e-6
Standard deviation 2.18945710459088e-8 2.8440163423315714e-8 3.8092752138884746e-8

Outlying measurements have no (5.347439010289873e-3%) effect on estimated standard deviation.

Right-assoc/MTL

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 4.674918005964803e-8 4.680548243816792e-8 4.689783307630922e-8
Standard deviation 1.6342461876864283e-10 2.464523602690172e-10 3.901526202788249e-10

Outlying measurements have no (3.6363152005965548e-3%) effect on estimated standard deviation.

Left-assoc/Free

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 5.984055044472469e-5 5.99611989733279e-5 6.012953562669336e-5
Standard deviation 3.72085977809039e-7 4.771339552874426e-7 7.054233996212338e-7

Outlying measurements have no (7.812015624031212e-3%) effect on estimated standard deviation.

Left-assoc/Free/lazy

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 6.304665307112526e-5 6.447256632868442e-5 6.758368158728052e-5
Standard deviation 3.2609786597301568e-6 6.6016800276629984e-6 1.185743620557848e-5

Outlying measurements have severe (0.8328991544321732%) effect on estimated standard deviation.

Left-assoc/Chruch

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.0307126731360323e-5 1.1208259574436796e-5 1.2326305312962383e-5
Standard deviation 3.0077456441055128e-6 3.7615267561962194e-6 4.305065419998736e-6

Outlying measurements have severe (0.9869794740645862%) effect on estimated standard deviation.

Left-assoc/Codensity

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 8.229454464063152e-6 8.313597730640533e-6 8.45052390857398e-6
Standard deviation 2.727872345330792e-7 3.5656568522970373e-7 5.689081113607044e-7

Outlying measurements have severe (0.5324566892509678%) effect on estimated standard deviation.

Left-assoc/NoRemorse

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.4811040419301926e-5 1.5274647439591986e-5 1.6518303909670677e-5
Standard deviation 1.129448486058532e-6 2.2582392129478466e-6 4.426225113789385e-6

Outlying measurements have severe (0.9314477568505284%) effect on estimated standard deviation.

Left-assoc/Freer

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.980512338910006e-5 1.9861163771887065e-5 1.995436280240223e-5
Standard deviation 1.4961764459586009e-7 2.421762812219432e-7 3.587245186836761e-7

Outlying measurements have slight (7.55161103701509e-2%) effect on estimated standard deviation.

Left-assoc/MTL

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.4647576147537096e-7 1.495587764691872e-7 1.5482174355112384e-7
Standard deviation 7.706863224499795e-9 1.3465261036996903e-8 1.974145879670133e-8

Outlying measurements have severe (0.885865149567117%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.