
POST

Example API documentation version 1

http://example.com/1

Welcome

Welcome to the Example Documentation. The Example API allows you to do stuff. See also example.com.

var raml2html = require('raml2html');

// Using the default templates:
// source can either be a filename, file contents (string) or parsed RAML object
raml2html.parse(source, onSuccess, onError);

// Using your own templates:
// - config should be an object with at least an `template` property
// - config can also include `helpers` and `partials`
// - the config object will be accessible from your handlebars templates
raml2html.parseWithConfig(source, config, onSuccess, onError);

Chapter two

More content here. Including bold text!

Small table:

A B C
1 2 3
Done

ACCOUNTS

This is the top level description for /account.

One
Two
Three

/account

POST /account

Creates a new account. Some bold text here. More text. Need to fill the line, so make it longer still. Hooray! Line two
Paragraph two

Request

Body
Type: application/json

Example:

{
 "email": "john@example.com",
 "password": "super_secret",
 "name": "John Doe"
}

Response

HTTP status code 200
Account was created and user is now logged in

GET

GET PUT DELETE

/account/find

/account/{id}

GET /account/find

find an account

Request

Query Parameters
name: required (string)
name on account

Example:

Naruto Uzumaki

gender: required (one of male, female)
number: (integer - default: 42)

GET /account/{id}

Request

URI Parameters
id: required (string - minLength: 1 - maxLength: 10)
account identifier

Headers
Authorization: (string)
Basic authentication header

Example:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

PUT /account/{id}

Update the account

Request

URI Parameters
id: required (string - minLength: 1 - maxLength: 10)
account identifier

Body
Type: application/x-www-form-urlencoded

Form Parameters
name: (string)
name on account

Example:

Naruto Uzumaki

gender: (one of male, female)

DELETE /account/{id}

POST

POST

/account/login

/account/forgot

Delete the account

Request

URI Parameters
id: required (string - minLength: 1 - maxLength: 10)
account identifier

POST /account/login

Login with email and password

Request

Body
Type: application/json

Example:

{
 "email": "john@example.com",
 "password": "super_secret"
}

Response

HTTP status code 200
Login was correct

Body
Type: text/xml

Example:

<test>This is a test</test>

HTTP status code 400
Login was incorrect, please try again

HTTP status code 401
Not authorized

Headers
WWW-Authenticate: (string)
user was not authorized

Example:

WWW-Authenticate: Basic realm="raml2html"

POST /account/forgot

Sends an email to the user with a link to set a new password

Response

GET DELETE

GET

GET POST

/account/session

Forecasts

The very top resource - displays OK

/forecasts/{geoposition}

Overview endpoint to assemble and access forecast data in various timely resolutions - THIS IS NOT DISPLAYED ANYWHERE WITH RAML2HTML
:/

/forecasts/test

No methods here, but it does have a description

/conversations

This is the top level description for /conversations.

/conversations

HTTP status code 200
Test

Body
Type: text/xml

Example:

<test>This is a test</test>

GET /account/session

Gets the sessions

DELETE /account/session

Deletes the session, logging out the user

GET /forecasts/{geoposition}

Provides an overview of the available data - display OK

Request

URI Parameters
geoposition: required (string)
A geoposition aquired by calling /geoposition/search - displays OK

GET PUT

GET POST

/conversations/{convId}

/conversations/{convId}/messages

GET /conversations

Get a list of conversation for the current user

POST /conversations

Create a new conversions. The currently logged in user doesn't need to be supplied in the members list, it's implied.

Request

Body
Type: application/json

Example:

{
 "content": "My message!",
 "members": [1, 2, 3]
}

Response

HTTP status code 200
A conversation with these members already existed, the message was added to that one

HTTP status code 201
The conversation was created and the message added to it

GET /conversations/{convId}

Get a single conversation including its messages

Request

URI Parameters
convId: required (string)

PUT /conversations/{convId}

Update a conversation (change members)

Request

URI Parameters
convId: required (string)

GET /conversations/{convId}/messages

PUT DELETE

GET POST

/conversations/{convId}/messages/{messageId}

/users

/users

Get the messages for the conversation

Request

URI Parameters
convId: required (string)

Headers
TESTING: (string)
does a trait render its headers?

Query Parameters
page_size: (number - default: 20)
The number of items per page

page: (number - default: 0)
The page to return

POST /conversations/{convId}/messages

Add a new message to a conversation

Request

URI Parameters
convId: required (string)

PUT /conversations/{convId}/messages/{messageId}

Update the message

Request

URI Parameters
convId: required (string)
messageId: required (string)

DELETE /conversations/{convId}/messages/{messageId}

Delete the message

Request

URI Parameters
convId: required (string)
messageId: required (string)

GET PUT DELETE/users/{userId}

GET /users

Get a list of all users

Request

Headers
TESTING: (string)
does a trait render its headers?

Query Parameters
page_size: (number - default: 20)
The number of items per page

page: (number - default: 0)
The page to return

from: (string - pattern: ^[a-zA-Z].+$)
Limit results to those created after from.

Example:

2014-12-31T00:00:00.000Z

POST /users

Creates a new user

Request

Body
Type: application/xml

Example:

<h1>Hello!</h1>

GET /users/{userId}

Get the details of a user including a list of groups he belongs to

Request

URI Parameters
userId: required (string)

PUT /users/{userId}

Update a user

Request

URI Parameters
userId: required (string)

GET POST

GET PUT DELETE

/groups

/groups

/groups/{groupId}

DELETE /users/{userId}

Deletes a user

Request

URI Parameters
userId: required (string)

GET /groups

Get a list of all the groups

POST /groups

Create a new group

Request

Body
Type: application/json

Example:

{
 "name": "Cool people",
 "members": [1, 2, 3]
}

GET /groups/{groupId}

Get the details of a group, including the member list

Request

URI Parameters
groupId: required (string)

PUT /groups/{groupId}

Update the group, optionally supplying the new list of members (overwrites current list)

Request

POST

DELETE

/groups/{groupId}/users

/groups/{groupId}/users/{userId}

URI Parameters
groupId: required (string)

Body
Type: application/json

Example:

{
 "name": "Cool people",
 "members": [1, 2, 3]
}

DELETE /groups/{groupId}

Removes the group

Request

URI Parameters
groupId: required (string)

POST /groups/{groupId}/users

Adds a user to a group

Request

URI Parameters
groupId: required (string)

Body
Type: application/json

Example:

{
 "user_id": 4,
}

DELETE /groups/{groupId}/users/{userId}

Removes a user from a group

Request

URI Parameters
groupId: required (string)
userId: required (string)

