plot()
, boxplot()
, hist()
etc to make simple plotscol
, pch
main
, xlab
, ylab
patients <- read.delim("patient-info.txt")
plot(patients$Height, patients$Weight, pch=16)
points()
can be used to set of points to an existing plotpoints()
to highlight observationsplot(patients$Height, patients$Weight, pch=16)
points(160,90, pch="X")
plot(patients$Height, patients$Weight, type="n")
==
comparison we saw yesterday
TRUE
or FALSE
valuemales <- patients$Sex == "Male"
males
[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
[15] FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
[29] TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[43] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[57] FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE
[71] FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
[85] FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
[99] FALSE FALSE
males
patients[males,]
patients$Age[males]
patients$Weight[males]
x
and y
limits of the original plot axes, otherwise they won’t be displayed
plot(patients$Height, patients$Weight, type="n")
points(patients$Height[males], patients$Weight[males],
pch=16, col="steelblue")
We can do the same for Females
females <- patients$Sex == "Female"
females
[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE
[15] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
[29] FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
[43] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[57] TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE
[71] TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
[85] TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
[99] TRUE TRUE
patients[females,]
ID <fctr> | Race <fctr> | Sex <fctr> | Smokes <fctr> | Height <dbl> | Weight <dbl> | State <fctr> | Pet <fctr> | ||
---|---|---|---|---|---|---|---|---|---|
5 | AC/AH/029 | White | Female | Non-Smoker | 164.47 | 71.78 | Iowa | NA | |
6 | AC/AH/033 | NA | Female | Smoker | 158.27 | 69.90 | Maryland | Dog | |
7 | AC/AH/037 | White | Female | Non-Smoker | 161.69 | 68.85 | Pennsylvania | None | |
8 | AC/AH/044 | White | Female | Non-Smoker | 165.84 | 70.44 | North Carolina | None | |
11 | AC/AH/049 | White | Female | Non-Smoker | 160.06 | 72.37 | California | Horse | |
12 | AC/AH/050 | White | Female | Non-Smoker | 166.48 | NA | Michigan | None | |
14 | AC/AH/053 | White | Female | Smoker | 164.70 | 75.69 | Virginia | Dog | |
15 | AC/AH/057 | White | Female | Smoker | 163.79 | 65.76 | Illinois | Cat | |
22 | AC/AH/100 | White | Female | Non-Smoker | 161.92 | 69.92 | Georgia | Dog | |
24 | AC/AH/112 | Black | Female | Non-Smoker | NA | 63.54 | California | NA |
x
and y
limits
plot(patients$Height, patients$Weight, type="n")
points(patients$Height[males], patients$Weight[males],
pch=16, col="steelblue")
points(patients$Height[females], patients$Weight[females],
pch=16, col="orangered1")
plot(patients$Height, patients$Weight, type="n")
points(patients$Height[males], patients$Weight[males],
pch=16, col="steelblue")
points(patients$Height[females], patients$Weight[females],
pch=17, col="orangered1",
xlab="Age of Patient",
ylab="Weight",
main="Relationship between Age and Weights")
## The arguments xlab, ylab, main in the points functions are not used
## Need to specify these labels when you create the plot initially
legend
functionplot(patients$Height, patients$Weight, type="n")
points(patients$Height[males], patients$Weight[males],
pch=16, col="steelblue")
points(patients$Height[females], patients$Weight[females],
pch=17, col="orangered1")
legend("topleft", legend=c("M","F"),
col=c("steelblue","orangered1"), pch=c(16,17))
labels
argument specifies the text we want to addplot(patients$Height, patients$Weight, pch=16)
text(patients$Height, patients$Weight, labels=patients$Race)
pos
or adj
to offset the positions of the labels
pos
can be 1, 2, 3, 4 for below, left, above, rightadj
is an adjustment in the range 0 to 1plot(patients$Height, patients$Weight, pch=16)
text(patients$Height, patients$Weight, labels=patients$Race,pos = 3)
plot(patients$Height, patients$Weight, pch=16)
text(patients$Height, patients$Weight, labels=patients$Race,adj =0.1)
grid()
is one easy way of doing this:plot(patients$Height, patients$Weight, pch=16)
grid(col="steelblue")
v =
for vertical linesh =
for horizontalplot(patients$Height, patients$Weight, pch=16)
abline(v=160, col="red")
abline(h=c(65,70,75), col="blue")
par
function can be used specify the appearance of a plotdev.off()
?par
and scroll to graphical parametersmfrow
:
par(mfrow=c(1,2))
par(mfrow=c(1,2))
plot(patients$Height, patients$Weight, pch=16)
boxplot(patients$Weight ~ patients$Sex)
mar
for setting the margins:
par(mar=c(...))
pdf()
function to export one or more plots to a pdf file:
dev.off()
to stop printing graphs to the pdf and ‘close’ the file
pdf("ExampleGraph.pdf")
boxplot(patients$Weight ~ patients$Sex)
dev.off()
null device
1
pdf()
before and dev.off()
afterwards
pdf("mygraph.pdf")
plot(patients$Height, patients$Weight, pch=16)
abline(v=40, col="red")
abline(h=c(65,70,75), col="blue")
boxplot(patients$Weight ~ patients$Sex)
x <- 1:10
y <- x^2 + 4*x
plot(x,y)
dev.off()
null device
1
dev.off()
multiple times until you see a message cannot shut down device (the null device)
?pdf
)pdf("ExampleGraph.pdf", width=10, height=5)
boxplot(patients$Weight ~ patients$Sex)
dev.off()
null device
1
?jpeg
png("ExampleGraph.png")
boxplot(patients$Weight ~ patients$Sex)
dev.off()
null device
1
weather <- read.csv("ozone.csv")
par
function, create a layout with three columnspdf
function to save to a file
dev.off()
to close the file### Your Answer Here ###
HINT: You can break down the problem into the following steps
### Your Answer Here ###
An alternative, and equally-valid, solution involves creating a vector of colours which will either be red
or orange
depending whether on the particular value of ozone is an outlier
rep
function to create a vector of the required length for the entire dataset
weather <- read.csv("ozone.csv")
mycol <-rep("orange",nrow(weather))
mypch <- rep(17, nrow(weather))
highO <- which(weather$Ozone > 100)
mycol[highO] <- "red"
mypch[highO] <- 18
plot
commandplot(weather$Temp,weather$Ozone,
col=mycol, pch=mypch,ylab="Ozone level",
xlab="Temperature")
abline(h=100,lty=2)
legend("topleft", legend = c("Ozone > 100","Normal Ozone"),col=c("red","orange"),pch=17)
We can choose not to show the x- and y-axis in the initial plot
plot(patients$Age, patients$Weight, pch=16,axes=FALSE)
They can be added afterwards with the axis
function - first argument is whether the axis appears on the bottom (1), left (2), top (3) or right (4) - can also define where the tick marks are located, and the labels to display - the box
function can be used to enclose the plot in a box
plot(patients$Age, patients$Weight, pch=16,axes=FALSE)
axis(1)
axis(4, at = c(65,75,85,95),labels = c("65kg","75kg","85kg","95kg"))
box()
N.B. The order in which the boxes are displayed on a boxplot isn’t something that can be controlled by graphical paramaters
Female
comes first alphabeticallyboxplot(patients$Weight~patients$Sex)
levels
are in the order you wantpatients$Sex <- factor(patients$Sex,levels = c("Male","Female"))
boxplot(patients$Weight~patients$Sex)
The R Graph Gallery has lots of examples (and code) showing what can be achieved with R graphics