
Further Analysis of RNA-seq data

Mark Dunning

Last modified: March 23, 2016

Contents

1 Clustering and PCA 1
1.1 Introduction to the DESeq2 Vignette . 1
1.2 Importing the pasilla dataset . 1
1.3 Quality assessment using heatmaps, clustering and PCA 2
1.4 PCA . 5
1.5 Re-visiting our ESCC dataset . 6

1.5.1 Pre-processing . 6
1.5.2 Sample Count Heatmap . 6
1.5.3 Sample Distances Heatmap . 6
1.5.4 PCA . 7
1.5.5 Heatmap of DE genes . 7
1.5.6 Heatmap of particular gene set . 8

2 GO analysis 9

1 Clustering and PCA

1.1 Introduction to the DESeq2 Vignette

The general application of clustering to RNA-seq data is outlined by Section 2.2 of the DESeq2 vignette.
We will follow this section of their vignette closely.

The DESeq2 vignette uses the pasilla dataset; a popular example dataset in Bioconductor concerning
the RNAi knock-out of the pasilla splicing factor in Drosophilla. Full details of the dataset can be
found in the vignette for the pasilla package. For convenience, the gene-level counts for these data are
available as the pasillaGenes object in the pasilla package.

The counts and experiment metadata can be accessed using the counts and pData functions respec-
tively.

1

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/data/experiment/html/pasilla.html

Further Analysis of RNA-seq data 2

1.2 Importing the pasilla dataset

Use Case: Load the pasilla Bioconductor package and save the counts and metadata as new R objects.

library("pasilla")

library("Biobase")

data("pasillaGenes")

countData <- counts(pasillaGenes)

head(countData)

pData(pasillaGenes)

colData <- pData(pasillaGenes)[,c("condition","type")]

A dataset ready for analysis with DESeq2 can be constructed using the DESeqDataSetFromMatrix

function in DESeq2. You need to specify the counts matrix and experiment metadata, along with an
experimental design. In this case, we want to test for treated versus untreated.

Use Case: Create a DESeq2 dataset for the pasilla dataset

library(DESeq2)

dds <- DESeqDataSetFromMatrix(countData = countData,

colData = colData,

design = ~ condition)

dds

In some of the analysis we are going to perform, it will be useful to supply extra annotation for the
features (genes). The DESeq2 package makes extensive use of the GenomicRanges infrastructure that
we introduced previously in the course. Specifically, we can add feature annotation to the mcols of the
dataset

Use Case: Add feature annotation to the dataset

featureData <- data.frame(gene=rownames(pasillaGenes))

mcols(dds) <- DataFrame(mcols(dds), featureData)

dds

Use Case: Calculate the scaling factors for the dataset

dds <- estimateSizeFactors(dds)

1.3 Quality assessment using heatmaps, clustering and PCA

Data quality assessment and quality control (i. e. the removal of insufficiently good data) are essential
steps of any data analysis. These steps should typically be performed very early in the analysis of a new
data set, preceding or in parallel to the differential expression testing. We define the term quality as
fitness for purpose. Our purpose is the detection of differentially expressed genes, and we are looking in
particular for samples whose experimental treatment suffered from an anormality that renders the data
points obtained from these particular samples detrimental to our purpose.

https://en.wikipedia.org/wiki/Quality_%28business%29

Further Analysis of RNA-seq data 3

To produce heatmaps, we will use the pheatmap (”pretty heatmap”) package. Similar steps can
be performed in the heatmap.plus package, the heatmap.2 function in gplots or the base heatmap

function.

Drawing a heatmap can be computationally-expensive. Also, they are more-easily interpretable when
the number of rows (genes) is low. Typically we filter our dataset to only include informative genes
that are expressed, or variable, in our dataset.

Use Case: Select the 20 most-highly expressed genes in the dataset

library("pheatmap")

N <- 20

select <- order(rowMeans(counts(dds,normalized=TRUE)),decreasing=TRUE)[1:N]

In order to test for differential expression, we operate on raw counts and use discrete distributions as
described in the previous practical. However for other downstream analyses – e.g. for visualization or
clustering – it might be useful to work with transformed versions of the count data.

Maybe the most obvious choice of transformation is the logarithm. Since count values for a gene can
be zero in some conditions (and non-zero in others), some advocate the use of pseudocounts, i. e.
transformations of the form

y = log2(n+ 1) or more generally, y = log2(n+ n0), (1)

where n represents the count values and n0 is a positive constant. The normTransform function
implements this transformation.

Use Case: Transform the data onto a scale suitable for visualisation (e.g. log2). Extract the trans-
formed values for the 20 most highly expressed genes

nt <- normTransform(dds) # defaults to log2(x+1)

log2.norm.counts <- assay(nt)[select,]

We are now ready to produce the heatmap. The function we are going to use is pheatmap. As usual,
we can find out more about this function by typing ?pheatmap. It is useful to annotate the columns
(samples) in the heatmap using particular levels from the experiment metadata. pheatmap is able to
add this information provided we supply it with a data frame with the same number of rows as the
number of columns in our matrix. We can have as many columns of meta data as we like.

Use Case: Create a data frame that has the condition and read-type (single or paired-end) for each
sample. Produce a heatmap of the normalized counts of your selected genes that incorporates the
metadata for each sample.

df <- as.data.frame(colData(dds)[,c("condition","type")])

pheatmap(log2.norm.counts, cluster_rows=FALSE, show_rownames=FALSE,

cluster_cols=FALSE, annotation_col=df)

comment: We have chosen not to cluster the rows or columns, so the columns in the plot appear in
the same order as the original matrix. Sometimes we might want to decide this order by clustering, as

http://cran.fhcrc.org/web/packages/pheatmap/index.html
http://cran.fhcrc.org/web/packages/heatmap.plus/index.html
http://cran.fhcrc.org/web/packages/gplots/index.html

Further Analysis of RNA-seq data 4

we will do in subsequent examples.

Another use of the transformed data is sample clustering. This is done in an un-supervised manner to
see if the clustering can uncover the known sample groups in our data.

We will switch our analysis to the regularized log transformed data, which can be computed using
the rlog function. This transformation is described in detail in Section 2.1.3 of the DESeq2 vignette
and is more similar to the transformations that take place as part of the DESeq2 analysis workflow
for Differential expression analysis. The dist function can then be use to calculate pairwise distances
between all samples. We have to remember to transpose the transformed matrix using the t function.

Use Case: Compute the regularized log intensities and use these to calculate a distance matrix. What
metric is being used to calculate the distances?

rld <- rlog(dds)

rlog.intensities <- assay(rld)

head(rlog.intensities)

sampleDists <- dist(t(rlog.intensities))

sampleDists

If we wanted, we could use the standard hierachical clustering function in R, hclust, to cluster the
samples.

Use Case: Produce a dendrogram to visualise the clustering of the samples. Does it confirm the known
sample groups?

hc <- hclust(sampleDists)

plot(hc)

comment: If you have time, you can experiment with different distance metrics and clustering algorithms

A more-appealing visualisation can be produced by pheatmap. In the previous example, we told
pheatmap to retain the original column and row orders. Another way of using pheatmap is to supply
a pre-computed distance matrix.

Use Case: Produce a heatmap to visualise the sample relationships from the distance matrix that you
just computed.

sampleDistMatrix <- as.matrix(sampleDists)

rownames(sampleDistMatrix) <- paste(rld$condition, rld$type, sep="-")

colnames(sampleDistMatrix) <- NULL

pheatmap(sampleDistMatrix,

clustering_distance_rows=sampleDists,

clustering_distance_cols=sampleDists)

Another way of customising the heatmap is to specify the colour palette used to colour each cell in the
matrix. Many visually-appealing palettes are provided in the RColorBrewer package.

http://cran.fhcrc.org/web/packages/RColorBrewer/index.html

Further Analysis of RNA-seq data 5

Use Case: Load the RColorBrewer package and see what palettes are available

library("RColorBrewer")

display.brewer.all()

The colorRampPalette function can be used to interpolate a set of given colours

Use Case: Create a palette that ranges from dark-blue (low) to white (high) and use this palette in
the heatmap

colors <- colorRampPalette(rev(brewer.pal(9, "Blues")))(255)

pheatmap(sampleDistMatrix,

clustering_distance_rows=sampleDists,

clustering_distance_cols=sampleDists,

col=colors)

comment: You should make sure that the colour palette you choose are suitable for those with colour-
blindness

1.4 PCA

Principal Components Analysis (PCA) is a useful dimension-reduction technique that can highlight rela-
tionships between samples in our dataset. As it can be computationally-expensive, it is best performed
on a filtered version of the data. Typically, we pick the ”most-variable” genes. The rowVars function in
genefilter is useful for this task. DESeq2 actually provides a function that automates the steps required
to do a PCA analysis of a DESeqDataSet object and produce an informative plot. However, we will go
through the steps manually to illustrate the method.

Use Case: Create a vector of indices for the 500 most variable genes according to the rld data

library(genefilter)

rv <- rowVars(assay(rld))

select <- order(rv, decreasing=TRUE)[1:500]

PCA can be performed using the prcomp function. As when computing a distance matrix, we need to
remember to transpose our matrix of intensities if we want to do PCA on the samples.

Use Case: Perform PCA on the filtered data. How much variance is explained by the first two principal
components?

pca <- prcomp(t(assay(rld)[select,]))

summary(pca)

plot(pca)

Use Case: Produce a plot of the first two principal components and colour each point according to
whether the particular sample is ”treated” or ”untreated. Does the plot show clear separation of sample
groups?

http://cran.fhcrc.org/web/packages/RColorBrewer/index.html
http://bioconductor.org/packages/release/bioc/html/genefilter.html

Further Analysis of RNA-seq data 6

pca$x

sampcols <- c(rep("blue",3),rep("red",4))

plot(pca$x[,1], pca$x[,2],pch=16,col=sampcols)

Remember that the actual values of the Principal components cannot be readily interpreted. We can
however plot them in relation to know sample grouping and metadata to ease their interpretation. A
boxplot is useful for this task.

Use Case: Use a boxplot to visualise the values of the first two principal components in relation to
the sample condition and type variables

colData(dds)

boxplot(pca$x[,1] ~ colData(dds)[,"condition"])

boxplot(pca$x[,2] ~ colData(dds)[,"type"])

At this point, we introduce the plotPCA function which automates the steps we have just performed
and produces and attractive plot. The plot is produced by the popular ggplot2 , and later-on we will
see how to customise this plot

Use Case: Use the in-built plotPCA function to produce the PCA plot

plotPCA(rld, intgroup=c("condition", "type"))

1.5 Re-visiting our ESCC dataset

1.5.1 Pre-processing

In the previous DE practical, we have already gone through the processing of this dataset. We can
repeat the steps now, if you have closed your RStudio session since the DE practical.

library(DESeq2)

load("Day2/Counts.RData")

#Load data

Counts <- tmp$counts

colnames(Counts) <- c("16N", "16T", "18N", "18T", "19N", "19T") #Rename the columns

Coldata <- data.frame(sampleReplicate=c("16", "16", "18", "18", "19", "19"),

sampleType=c("N", "T", "N", "T", "N", "T"))

rownames(Coldata) <- c("16N", "16T", "18N", "18T", "19N", "19T")

deSeqData <- DESeqDataSetFromMatrix(countData=Counts, colData=Coldata,

design= ~sampleReplicate + sampleType)

deSeqData <- deSeqData[rowSums(counts(deSeqData))>1,]

deSeqData <- estimateSizeFactors(deSeqData)

http://cran.fhcrc.org/web/packages/ggplot2/index.html

Further Analysis of RNA-seq data 7

1.5.2 Sample Count Heatmap

Use Case: Produce a heatmap of the normalized counts of the most expressed genes in the ESCC
dataset

nt <- normTransform(deSeqData) # defaults to log2(x+1)

select <- order(rowMeans(counts(deSeqData,normalized=TRUE)),decreasing=TRUE)[1:20]

log2.norm.counts <- assay(nt)[select,]

df <- as.data.frame(colData(deSeqData)[,c("sampleReplicate","sampleType")])

pheatmap(log2.norm.counts, cluster_rows=FALSE, show_rownames=FALSE,

cluster_cols=FALSE, annotation_col=df)

pheatmap(log2.norm.counts, cluster_rows=FALSE, show_rownames=FALSE,

cluster_cols=TRUE, annotation_col=df)

1.5.3 Sample Distances Heatmap

Use Case: Perform the rlog transformation and make a heatmap of the pairwise sample distances.

rld <- rlog(deSeqData)

sampleDists <- dist(t(assay(rld)))

sampleDists

sampleDistMatrix <- as.matrix(sampleDists)

rownames(sampleDistMatrix) <- paste(rld$sampleReplicate, rld$sampleType, sep="-")

colnames(sampleDistMatrix) <- NULL

colors <- colorRampPalette(rev(brewer.pal(9, "Blues")))(255)

pheatmap(sampleDistMatrix,

clustering_distance_rows=sampleDists,

clustering_distance_cols=sampleDists,

col=colors)

1.5.4 PCA

Use Case: Perform a PCA analysis and visualise the results

plotPCA(rld, intgroup=c("sampleType","sampleReplicate"))

The PCA plot is configurable provided we know a tiny bit about ggplot2 . The DESeq2 authors recognise
that some might want more control over the PCA plots, so provide a way of accessing the data that
would be displayed on the plot with the returnData=TRUE argument.

Use Case: Re-do the PCA analysis, but this time save the PCA results as an object

http://cran.fhcrc.org/web/packages/ggplot2/index.html

Further Analysis of RNA-seq data 8

pcData <- plotPCA(rld, intgroup=c("sampleType","sampleReplicate"),returnData=TRUE)

pcData

Use Case: Visualise the PCA result, but colour each point according to sample group and plot a
different shape for each patient in the study

library(ggplot2)

percentVar <- round(100*attr(pcData, "percentVar"))

ggplot(pcData, aes(x=PC1,y=PC2,color=sampleType,shape=sampleReplicate))+

geom_point(size=5)+

xlab(paste0("PC1: ", percentVar[1], "% variance")) +

ylab(paste0("PC2: ", percentVar[2], "% variance"))

1.5.5 Heatmap of DE genes

Sometimes we might want to take the list of top genes from a DE analysis and use this to produce a
heatmap.

Use Case: Re-do the DE analysis using the workflow introduced in the DE analysis practical

deSeqData <- estimateDispersions(deSeqData)

mcols(deSeqData)

deSeqData <- nbinomWaldTest(deSeqData)

res <- results(deSeqData)

Use Case: Select a subset of the DE results with a p-value less than 0.05.

res.sig <- res[which(res$padj < 0.05),]

N <- 100

res.sig.ord <- res.sig[order(res.sig$padj,decreasing = FALSE),]

topNGenes <- rownames(res.sig.ord)[1:N]

Use Case: Make a heatmap of your top 100 genes. Can you see any distinct clusters of genes in the
heatmap?

pheatmap(assay(rld)[match(topNGenes, rownames(assay(nt))),],annotation_col=df)

If we identify genes with distinct expression patterns, a natural question would be to ask what genes
belong in each cluster. We could export the plot as a pdf and try and read the gene names from the
row labels. We can also answer this by recalling that the pheatmap (unless specified otherwise) is infact
using the built-in clustering options in R to cluster the rows. There exist a number of ways that we can
”cut” such a dendrogram in R.

Use Case: Produce a dendrogram to show the clustering of the top DE genes.

geneDists <- dist(assay(rld)[match(topNGenes, rownames(assay(nt))),])

geneDistMatrix <- as.matrix(geneDists)

Further Analysis of RNA-seq data 9

hc <- hclust(geneDists)

plot(hc)

The rect.hclust and cutree functions can be used to split the dendrogram at different heights and
number of groups.

Use Case: Use rect.hclust and cutree to see what genes belong to the same cluster. Choose an
appropriate value for k; the number of clusters

rect.hclust(hc,k=3)

sort(cutree(hc,k=3))

1.5.6 Heatmap of particular gene set

Let’s say we are interested in genes belonging to a particular GO term; GO:0030216 (keratinocyte
differentiation). We can use the organism-level packages that we just learnt about to retrieve the IDs
of genes that belong to this GO term.

Use Case: Obtain the Entrez IDs for the GO term of interest

library(org.Hs.eg.db)

keytypes(org.Hs.eg.db)

columns(org.Hs.eg.db)

genes.of.interest <- select(org.Hs.eg.db,keys="GO:0030216",

keytype="GO",columns="ENTREZID")

genes.of.interest

genes.of.interest <- genes.of.interest[,4]

We might not have all the genes representing in our dataset, particularly if we have done some filtering.
So we probably want to remove any IDs that cannot be matched to our dataset. Also we want to
remove any duplicated IDs.

Use Case: Make a heatmap from your selected genes

selRows <- unique(na.omit(match(genes.of.interest,rownames(assay(nt)))))

pheatmap(assay(rld)[selRows,],annotation_col=df)

2 GO analysis

(based on the goseq vignette)

http://bioconductor.org/packages/release/bioc/html/goseq.html

Further Analysis of RNA-seq data 10

There are plenty of software packages in Bioconductor and online tools that deal with gene ontology
testing. For this practical, we will use the goseq package which has been specifically-developed for the
gene onotology analysis of RNA-seq data. An attractive feature of this package is that it accounts for
biases in gene length. The methods are equally applicable to other category based testing, such as
KEGG pathways.

The input to the package is quite simple. We need to supply a named vector which contains two pieces
of information.

• Measured genes - all genes for which RNA-seq data was gathered for your experiment. Each
element of your vector should be named by a unique gene identifier

• Differentially expressed genes - each element of your vector should be either a 1 or a 0, where 1
indicates that the gene is differentially expressed and 0 that it is not

Provided that a supported genone and naming scheme is being used (we will see how to obtain details
on these shortly), goseq should be able to proceed with the analysis.

Use Case: Load the object that contains the DE results for all genes.

load("Day3/edgeRAnalysis_ALLGENES.RData")

head(y)

The next step is to determine which genes are DE. We don’t have to be too strict in our selection and
can use a typical cut-off of 0.05.

Use Case: Create a vector to signify whether each gene in the analysis was DE or not.

genes <- as.integer(y$FDR < 0.05)

names(genes) <- rownames(y)

goseq is happy to take care of the mapping between gene names and GO categories for us. However,
in order to do this, we need to use one of the genomes and identifier schemes that it knows about.
The supportedGenomes and supportedGeneIDs functions are provided for this purpose. The result
of each these functions is a table describing the various options that are available. The first columns are
pre-defined names that goseq can recognise. The other columns should give you enough information
to guide your choice.

Use Case: Check the names of the genomes that are supported by goseq. Make a note of the IDs
that you should use.

library(goseq)

head(supportedGenomes())[,1:4]

head(supportedGeneIDs(),n=12)[,1:4]

comment: For our example dataset, the genome version was hg19 and each gene was represented by
it’s Entrez ID; so we would want to specify hg19 and knownGene.

“To begin the analysis, goseq first needs to quantify the length bias present in the dataset under
consideration. This is done by calculating a Probability Weighting Function or PWF which can be
thought of as a function which gives the probability that a gene will be differentially expressed (DE),

http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/goseq.html

Further Analysis of RNA-seq data 11

based on its length alone. The PWF is calculated by fitting a monotonic spline to the binary data
series of differential expression (1=DE, 0=Not DE) as a function of gene length. The PWF is used to
weight the chance of selecting each gene when forming a null distribution for GO category membership.
The fact that the PWF is calculated directly from the dataset under consideration makes this approach
robust, only correcting for the length bias present in the data. For example, if goseq is run on a
microarray dataset, for which no length bias exists, the calculated PWF will be nearly flat and all genes
will be weighted equally, resulting in no length bias correction. In order to account for the length bias
inherent to RNA-seq data when performing a GO analysis (or other category based tests), one cannot
simply use the hypergeometric distribution as the null distribution for category membership, which is
appropriate for data without DE length bias, such as microarray data. GO analysis of RNA-seq data
requires the use of random sampling in order to generate a suitable null distribution for GO category
membership and calculate each categories significance for over representation amongst DE genes.

However, this random sampling is computationally expensive. In most cases, the Wallenius distribution
can be used to approximate the true null distribution, without any significant loss in accuracy. The
goseq package implements this approximation as its default option. The option to generate the null
distribution using random sampling is also included as an option, but users should be aware that the
default number of samples generated will not be enough to accurately call enrichment when there are
a large number of go terms. Having established a null distribution, each GO category is then tested for
over and under representation amongst the set of differentially expressed genes and the null is used to
calculate a p-value for under and over representation.”

Use Case: Fit the PWF function to your dataset. Make sure you choose the correct names for the
organism and gene identifier.

pwf <- nullp(genes ,"hg19","knownGene")

head(pwf)

nullp plots the resulting fit, allowing verification of the goodness of fit before continuing the analysis.
Further plotting of the pwf can be performed using the plotPWF function.

The output of nullp contains all the data used to create the PWF, as well as the PWF itself. It is
a data frame with 3 columns, named DEgenes, bias.data and pwf with the rownames set to the
gene names. Each row corresponds to a gene with the DEgenes column specifying if the gene is DE (1
for DE, 0 for not DE), the bias.data column giving the numeric value of the DE bias being accounted
for (usually the gene length or number of counts) and the pwf column giving the genes value on the
probability weighting function.

We will use the default method, to calculate the over and under expressed GO categories among DE
genes. Again, we allow goseq to fetch data automatically, except this time the data being fetched is
the relationship between Entrez gene IDs and GO categories.

Use Case: Perform under- and over-representation analysis. How many GO categories and over-
represented with a p-value of less than 0.05?

go <- goseq(pwf, "hg19","knownGene")

head(go)

sum(go$over_represented_pvalue< 0.05)

Further Analysis of RNA-seq data 12

By default, goseq tests all three major Gene Ontology branches; Cellular Components, Biological Pro-
cesses and Molecular Functions. However, it is possible to limit testing to any combination of the major
branches by using the test.cats argument to the goseq function. This is done by specifying a vector
consisting of some combination of the strings GO:CC, GO:BP and GO:MF.

Use Case: Restrict your analysis to just Molecular Functions

go.mf <- goseq(pwf, "hg19","knownGene",test.cats=c("GO:MF"))

head(go.mf)

dim(go.mf)

sum(go.mf$over_represented_pvalue< 0.05)

Having performed the GO analysis, you may now wish to interpret the results. If you wish to identify
categories significantly enriched/unenriched below some p-value cutoff, it is necessary to first apply
some kind of multiple hypothesis testing correction. For example, GO categories over enriched using a
.05 FDR cutoff [Benjamini and Hochberg, 1995] can be obtained by running the p.adjust function on
the un-adjusted p-values in the table

Use Case: Adjust the p-values in the table for multiple-testing. How many categories with p-value <
0.05 do you find now?

go$over_represented_pvalue_adjusted <- p.adjust(go$over_represented_pvalue,

method="BH")

sum(go$over_represented_pvalue_adjusted < 0.05)

go.enriched <- go[go$over_represented_pvalue_adjusted < 0.05,]

The GO identifiers are probably not very useful to you. We can obtain extra information about each
GO term using one of the handy pre-built database packages that Bioconductor provides; GO.db.

Use Case: Load the GO.db package. What mappings are possible with this package?

library(GO.db)

columns(GO.db)

keytypes(GO.db)

Use Case: Create a data frame with the definition and term for each GO ID in your table of results

go.anno <- select(GO.db,keys=go.enriched$category, keytype="GOID",

columns = c("TERM","DEFINITION"))

Finally, we can merge this data with our existing table and export

go.final <- data.frame(go.enriched,go.anno)

write.csv(go.final ,file="goseq-analysis.csv",row.names = FALSE)

http://bioconductor.org/packages/release/data/annotation/html/GO.db.html
http://bioconductor.org/packages/release/data/annotation/html/GO.db.html

	1 Clustering and PCA
	1.1 Introduction to the DESeq2 Vignette
	1.2 Importing the pasilla dataset
	1.3 Quality assessment using heatmaps, clustering and PCA
	1.4 PCA
	1.5 Re-visiting our ESCC dataset
	1.5.1 Pre-processing
	1.5.2 Sample Count Heatmap
	1.5.3 Sample Distances Heatmap
	1.5.4 PCA
	1.5.5 Heatmap of DE genes
	1.5.6 Heatmap of particular gene set

	2 GO analysis

