
Differential Expression Analysis using edgeR and DESeq2

Bernard Pereira & Oscar Rueda

November 26, 2015

Contents

1 Introduction 1
1.1 The Data . 1

2 edgeR Workflow 2
2.1 Reading in the Data . 2
2.2 Creating a DGEList object . 3
2.3 Filtering . 3
2.4 Normalisation . 3
2.5 Data Exploration . 4
2.6 Setting up the Model . 4
2.7 Estimating Dispersions . 4
2.8 Differential Expression . 4

3 DESeq2 Workflow 5
3.1 Creating a DESeqDataSet . 5
3.2 Filtering . 6
3.3 Normalisation . 6
3.4 Estimating Dispersions . 6
3.5 Differential Expression . 7

1 Introduction

In this tutorial, we will be using edgeR[2] and DESeq2 [3] to analyse some RNA-seq data taken from [1].

You can find out more about edgeR and DESeq2 from the:

• EdgeR paper [2]
• DESeq paper [3]
• Bioconductor website, which hosts vignettes for both packages

While you carry out the exercises, try to focus on what each function is doing in terms of the overall RNA-seq workflow,
and look for similarities and differences between the edgeR and DESeq2 implementations.

1.1 The Data

We will be using data downloaded from GEO (GSE29968)[1]. Here is the authors’ summary of the data from the GEO
website (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29968):

1

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29968

Differential Expression Analysis using edgeR and DESeq2 2

We performed the integrative transcriptome analysis of human esophageal squamous cell carcinoma (ESCC) using
Illumina high-throughput sequencing. A total of 187 million 38bp sequencing reads were generated containing 7
billion bases for three pairs of matched patient-derived ESCC clinical specimens and their adjacent non-tumorous
tissues. By investigating the digital gene expression profiling, we found 1425 genes significantly differentially expressed
and detected more than 9000 SNPs across all six samples. We also identified protein tyrosine kinase 6 (PTK6) as a
novel tumor suppressor gene, which is critical in ESCC development.

In this practical, we will use the counts generated with Rsubread to find genes that are differentially expressed between
the tumours and normal samples.

2 edgeR Workflow

The edgeR workflow consists of:

1. Data Input - edgeR requires a matrix of raw read counts. Note that, like many other Bioconductor packages,
edgeR uses a container object (DGEList) to store and process the data.

2. Filtering - Genes with low counts across all samples are unlikely to appear on the final list of differentially expressed
genes, but represent additional hypothesis tests that will need to be taken into account when performing multiple
testing corrections. Consequently, these genes can be removed before we carry out any further analyses.

3. Normalisation - We need to ensure that read counts across samples are actually comparable before carrying out
any differential expression analyses. The trimmed mean of M-values (TMM) method edgeR uses is based on the
assumption that most genes are not differentially expressed, and uses a correction factor based on the weighted
mean of the log ratios of test/reference (this should be close to 1).

4. Model specification -We need to construct our model based on the experimental setup we have. This will be
described using a design matrix, through which we can specify the parameters we wish to consider.

5. Variance estimation - edgeR fits the read counts to a negative binomial model, which can be thought of as being
an overdispersed Poisson distribution. The package uses an empirical Bayes method to estimate the dispersion
parameters for the genes.

6. Differential expression testing - Once the dispersion parameters have been estimated, we can proceed to test
for differential expression. When we use the generalised linear models (GLM) framework, we can use contrasts to
specify the questions of interest.

2.1 Reading in the Data

We first need to load the required library and data required for this practical. You may use the file you generated
previously, or the set of read counts in Day2/Counts.RData.

Note that the genes in this file are identified by their Entrez gene ids.

library(edgeR)

load("Day2/Counts.RData") #Load data

Counts <- tmp$counts

colnames(Counts) <- c("16N", "16T", "18N", "18T", "19N", "19T") #Rename the columns

#Explore the counts matrix

dim(Counts)

head(Counts)

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html

Differential Expression Analysis using edgeR and DESeq2 3

2.2 Creating a DGEList object

We will now create a DGEList object to hold our read counts. This object is a container for the counts themsleves, and
also for all the associated metadata - these include, for example, sample names, gene names and normalisation factors
once these are computed. The DGEList is an example of the custom task-specific structures that are frequently used in
Bioconductor to make analyses easier.

dgList <- DGEList(counts=Counts, genes=rownames(Counts))

dgList

dgList$samples

head(dgList$counts) #Many rows!

head(dgList$genes) #Likewise!

2.3 Filtering

There are approximately 26000 genes in this dataset. However, many of them will not be expressed, or will not be
represented by enough reads to contribute to the analysis. Removing these genes means that we have ultimately have
fewer tests to perform, thereby reducing the problems associated with multiple testing. The edgeR vignette states that
from a ”biological point of view, a gene must be expressed at some minimal level before it is likely to be translated into
a protein or to be biologically important”.

Here, we retain only those genes that are represented at least 1cpm reads in at least two samples (cpm=counts per
million).

countsPerMillion <- cpm(dgList)

summary(countsPerMillion)

#'summary' is a useful function for exploring numeric data; eg. summary(1:100)

countCheck <- countsPerMillion > 1

head(countCheck)

keep <- which(rowSums(countCheck) >= 2)

dgList <- dgList[keep,] #How many genes do we have left?

summary(cpm(dgList)) #Compare this to the original summary

2.4 Normalisation

As we have discussed, it is important to normalise RNA-seq data. edgeR implements the TMM method. As the vignette
describes, edgeR is mostly interested in correcting for sample-specific effects (most importantly, for library size and library
composition). There is less attention paid to factors such as gene length and GC content, as one can assume these have
the same effects across all samples.

Note that edgeR does not actually transform the read counts themselves. The normalisation factors are used as correction
factors that edgeR uses when building the statistical model.

dgList$samples #Look at the 'norm.factors' column

head(dgList$counts)

?calcNormFactors #How does the function work?

dgList <- calcNormFactors(dgList, method="TMM")

dgList$samples #Look at the 'norm.factors' column

head(dgList$counts) #Counts have not changed

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html

Differential Expression Analysis using edgeR and DESeq2 4

2.5 Data Exploration

We can examine inter-sample relationships by producing a plot based on mutlidimensional scaling.

plotMDS(dgList)

2.6 Setting up the Model

We are now ready to set up the model! We first need to specify our design matrix, which describes the setup of the
experiment.

sampleType<- rep("N", ncol(dgList)) #N=normal; T=tumour

sampleType[grep("T", colnames(dgList))] <- "T"

#'grep' is a string matching function.

sampleReplicate <- paste("S", rep(1:3, each=2), sep="")

designMat <- model.matrix(~sampleReplicate + sampleType)

designMat #What is used as the intercept? What parameters are we interested in?

2.7 Estimating Dispersions

As disucssed, we need to estimate the dispersion parameter for our negative binomial model. Some strategies include:

• Using a common estimate across all genes
• Fitting an estimate based on the mean-variance trend across the dataset, such that genes similar abundances have

similar variance estimates (trended dispersion).
• Computing a genewise dispersion (tagwise dispersion)

It is somewhat naive to assume that genes share a common dispersion parameter, or that they share the same mean-
variance relationships. However, as there are only a few replicates, it is difficult to estimate the dispersion accurately for
each gene. edgeR, we use an empirical Bayes method to ’shrink’ the genewise dispersion estimates towards the common
dispersion (tagwise dispersion) as a method to ’share’ information between genes.

Note that either the common or trended dispersion needs to be estimated before we can estimate the tagwise dispersion.

dgList <- estimateGLMCommonDisp(dgList, design=designMat)

dgList <- estimateGLMTrendedDisp(dgList, design=designMat)

dgList <- estimateGLMTagwiseDisp(dgList, design=designMat)

We can plot the estimates and see how they differ. The biological coefficient of variation (BCV) is the square root of
the dispersion parameter in the negative binomial model.

plotBCV(dgList)

2.8 Differential Expression

We can now find our differentially expressed genes. After fitting the model, we can use the topTags() function to explore
the results, and set theresholds to identify subsets of differentially expressed genes.

fit <- glmFit(dgList, designMat)

lrt <- glmLRT(fit, coef=4)

#The glmLRT function also (see ?glmLRT - especially the description for 'coef' and 'contrast')

#accepts a contrasts vector. Can you work out and use the contrast to use

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html

Differential Expression Analysis using edgeR and DESeq2 5

#to obtain the same result

#(ie. differentially expressed genes between tumour and normal samples)?

?glmLRT

edgeR_result <- topTags(lrt)

?topTags

resultToSave <- topTags(lrt,n=15000)$table

save(resultToSave, file='Day2/edgeR_Result.RData') #We will need this later

Finally, we can plot the log-fold changes of all the genes, and the highlight those that are differentially expressed.

?decideTests

deGenes <- decideTestsDGE(lrt, p=0.001) #Can play around with these options

deGenes <- rownames(lrt)[as.logical(deGenes)]

plotSmear(lrt, de.tags=deGenes)

abline(h=c(-1, 1), col=2)

3 DESeq2 Workflow

We will now perform the same analysis using DESeq2 . This will hopefully both reinforce the fundamental principles of
differential expression analysis that most packages follow, and also provide an idea of the different approaches used to
implement these. The workflow is as follows:

1. Data Input - DESeq2 also has its own structures for storing and processing data.
2. Filtering - Like edgeR, DESeq2 also filters genes that are unlikely to be significantly differentially expressed.

However, DESeq2 attempts to remove these genes using thresholds derived from the data itself
3. Normalisation - DESeq2 also performs normalisation under the assumption that most genes are not differentially

expressed, and that the median ratio of the read counts in a sample to the read counts in a reference should be
around 1.

4. Model specification -In DESeq2 , the model is specified when the data object is constructed.
5. Variance estimation - DESeq2 follows a similar procedure to edgeR, even if the precise details differ. After

estimating a per-gene and trended dispersion, the package uses an empirical Bayes method to shrink the per-gene
estimates towards the trended estimate.

6. Differential expression testing - Differential expression testing is performed with a Wald test. We can switch off
independent filtering at this stage.

3.1 Creating a DESeqDataSet

The data object used by DESeq2 comprises the counts themselves, sample metadata, and a design formula. Like the
design matrix specification in edgeR, the design formula essentially defines the experimental setup. In DESeq2 , we specify
the design at the beginning, although this can be changed later.

library(DESeq2)

load("Day2/Counts.RData") #Load data

Counts <- tmp$counts

colnames(Counts) <- c("16N", "16T", "18N", "18T", "19N", "19T") #Rename the columns

Coldata <- data.frame(sampleReplicate=c("16", "16", "18", "18", "19", "19"),

sampleType=c("N", "T", "N", "T", "N", "T"))

rownames(Coldata) <- c("16N", "16T", "18N", "18T", "19N", "19T")

deSeqData <- DESeqDataSetFromMatrix(countData=Counts, colData=Coldata,

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html

Differential Expression Analysis using edgeR and DESeq2 6

design= ~sampleReplicate + sampleType)

deSeqData

3.2 Filtering

DESeq2 distinguishes between two types of filtering: pre-filtering is used to remove genes with ’no or nearly no reads’,
and is performed to save memory and speed up computations, whereas independent filtering is used to reduce the number
of hypothesis tests, and is applied by default (although it can be switched off).

nrow(counts(deSeqData))

summary(rowSums(counts(deSeqData)))

deSeqData <- deSeqData[rowSums(counts(deSeqData))>1,]

nrow(counts(deSeqData))

summary(rowSums(counts(deSeqData)))

DESeq2 uses the mean of the normalised counts to perform independent filtering (genes with mean normalised counts
below a specific threshold are removed), and attempts to calculate an optimal threshold based on the numbers of adjusted
p-values that fall above the significance threshold.

3.3 Normalisation

As we discussed, DESeq2 calculates scaling factors for each sample by taking the median ratio of the read counts for
each gene in a sample to the geometric mean of each gene across all other samples. Note that, as in edgeR the raw read
counts are not directly transformed, although we can see how they change.

deSeqData <- estimateSizeFactors(deSeqData)

colData(deSeqData)

head(counts(deSeqData))

head(counts(deSeqData, normalized=T))

3.4 Estimating Dispersions

The process by which DESeq2 obtains dispersion estimates is similar to that used by edgeR, in that both packages
uses an empirical Bayes method to shrink per-gene dispersion estimates towards a trended estimate. The exact details,
however, differ between the two packages.

Estimation of the dispersion parameter in DESeq2 comprises three steps:

1. Estimate a dispersion value for each gene.
2. Fits a curve through the estimates (obtaining a curve of the mean-variance relationship.
3. Shrink the per-gene estimates to the trended estimates using an empirical Bayes method.

To understand this procedure better, we can visualise the results of these three steps using the function plotDispEsts.
The per-gene estimates circled in blue are considered to be dispersion outliers.

deSeqData <- estimateDispersions(deSeqData)

mcols(deSeqData)

plotDispEsts(deSeqData)

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html

Differential Expression Analysis using edgeR and DESeq2 7

3.5 Differential Expression

Finally, we can perform differential expression tests using our model specification and dispersion estimates.

deSeqData <- nbinomWaldTest(deSeqData)

res <- results(deSeqData)

#Lots of options for reporting results eg. significance threshold,

#multiple testing correction method etc

res #What comparison is being made?

summary(res)

#As in edgeR, we can also use contrasts to specify our tests of interest.

#Can you work out the contrast vector that gives the same result?

?results

?resultsNames

plotMA(res, main="MA Plot")

References

[1] Ma, S. et al. (2012) Identification of PTK6, via RNA Sequencing Analysis, as a Suppressor of Esophageal Squamous
Cell Carcinoma, Gastroenterology, 143 (3) 675-686.

[2] Robinson, MD.et al. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expres-
sion data, Bioinformatics, 26 (1) 139-140.

[3] Love, MI.et al. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome
Biology, 15(12) 550.

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html

	1 Introduction
	1.1 The Data

	2 edgeR Workflow
	2.1 Reading in the Data
	2.2 Creating a DGEList object
	2.3 Filtering
	2.4 Normalisation
	2.5 Data Exploration
	2.6 Setting up the Model
	2.7 Estimating Dispersions
	2.8 Differential Expression

	3 DESeq2 Workflow
	3.1 Creating a DESeqDataSet
	3.2 Filtering
	3.3 Normalisation
	3.4 Estimating Dispersions
	3.5 Differential Expression

