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The many faces ot RNA-seqg

http://www.illumina.com/techniques/sequencing/rna-sequencing.html
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Techniques / Sequencing / RNA Sequencing

Key RNA-Seq Methods

mRNA Sequencing

Accurately measure gene and transcript abundance and detect both known and
novel features in the coding transcriptome.

Targeted RNA Sequencing

Measure the expression of transcripts or pathways of interest. Perform differential
expression analysis, measurement of allele-specific expression, and detection of
gene fusions.

Ribosome Profiling

Deeply sequence ribosome-protected mRNA fragments to gain a complete view of
all the ribosomes active in a cell at a specific time point and predict protein
abundance.

Total RNA Sequencing

Accurately measure gene and transcript abundance and detect both known and
novel features in coding and multiple forms of noncoding RNA.

Small RNA Sequencing

Isolate and sequence small RNA species, such as microRNA, to understand the role
of noncoding RNA in gene silencing and posttranscriptional regulation of gene
expression.

Ultra-Low-Input and Single-Cell RNA-Seq

Use deep RNA-Seq to examine the signals and behavior of a cell in the context of its
surrounding environment. This method is advantageous for biologists studying cell
function in time-dependent processes such as differentiation, proliferation, and
tumorigenesis.



Applications

Discovery

« Find new transcripts

« Find transcript boundaries

« Find splice junctions

« Find gene fusions
« Find mutations (SNPs)

http:/biocomicals.blogspok.com

* Quantify allele specific expression

Comparison

Given samples from different experimental conditions, find effects of the
treatment on

* Gene expression strengths

 Isoform abundance ratios, splice patterns, transcript boundaries, etc



Applications

Journal of Pathology

J Pathol 2015; 235: 571580 ORIGINAL PAPER
Published online 22 December 2014 in Wiley Online Library

(wileyonlinelibrary.com) DoI: 10.1002/path.4483
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Sarah L Maguire,'* Andri Leonidou,"** Patty Wai,'** Caterina Marchio,?* Charlotte KY Ng# Anna Sapino,?
Anne-Vincent Salomon*¢ Jorge S Reis-Filho,** Britta Weigelt** and Rachael C Natrajan'**

SF3B1 wildtype SF3B1 mutant

ENST00000559432 %! ed e5 e3 _ ed

CRNDE

15 20 25 30 35
15 20 25 30 35

10
10

5
5

0
0



Applications

o LETTERS
biotechnology
Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching
during cell differentiation

Cole Trapnell'-3, Brian A Williams*, Geo Pertea?, Ali Mortazavi*, Gordon Kwan*, Marijke ] van Baren®,
Steven L Salzbergh?, Barbara ] Wold* & Lior Pachter®%7
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Differential Expression

« Comparing feature abundance under different conditions

« Assumed linearity, reproducibility and sensitivity
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*  When feature=gene, well-established pre- and post-analysis strategies

exist (including those originally conceived for microarrays)



Better than microarrays?

m Microarray m RNA-seq
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Library Prep

mRNA-Seq A B
PolyA+ mRNA Extraction PolyA+ mRNA Extraction
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Library Prep i

[ Biological Technical ]




Library Prep iii

mRNA-Seq A B
PolyA+ mRNA Extraction PolyA+ mRNA Extraction
1 1




Library Prep
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Frequency

Convertto cDNA ——
by RT and
random priming

Ligate Adapters

redure

(a)

(C) RNA-Seq, other protocols

R

20 -10 1 10 20 30

Hansen, K.D. et al. (2010) Nuc. Acids Res.



Library Prep v

* Duplicates (optical & PCR)

Prog
/|

Cluster
(solid phase
clonal amplification)

* Sequence errors

Flow cell
[ Cycle 1:
K] Add sequencing reagents
= Sequence G . First base incorporated 6 ° | n d € | S
] by Remove unincorporated bases .
% Synthesis @ Detect signal with laser @
< a : Cycle 2-n: ® A

® Add sequencing reagents z
and repeat
5 5 - b .
| * Repetitive/problematic
sequence

16



Hot off the sequencer...

* Treatment

+ Biological replicate

* RNA extraction

+ Bar-code and pool

* Preparation for sequencing

» Sequence technical replicates

Balanced Blocked Design

A A A B B B

Lane 1 Lane2 Lane3 Lane4 Lane5 LaneB

* Treatment

+ Biological replicate

* RNA extraction and

preparation for
sequencing

» Sequence each
sample in a lane

Confounded Design

A A A B B B

oy

Lane1 Lane2 Lane3 Laned4 Lane5 Laneb

Auer and Doerg (2010) Genetics
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FASTQC

Quality scores across all bases {lllumina 1.5 encoding)
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* Quality-based trimming

* Adapter ‘contamination’

19



Analysis overview

Systems Biology i

Oshlack, A. et al (2010) %
Genome Biology 20




Sequence to sense

Haas, B.J. & Zody, M.C. (2010)

Nature Biotech. RNA-Seq reads
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De novo assembly

* e.g. Trinity

Haas, B.J.. et al (2013)
Nature Protocols

l Piece RNA-Seq reads into contigs (Inchworm)

N A

e e e
Th— -_——T

l Cluster contigs into components (Chrysalis)

Assign reads to
components (Chrysalis)

Split overlapping transcripts
based on coverage

and read pairings Enumerate transcript isoforms using reads (Butterfly)
.
[T

Incongruencies . . i
with reference genome Insights from de novo transcriptome-specific assembly

. Alternative - ) -
\ promoters ) . Alternative splicing
N i —h—

Aberration from
interchromosomal rearrangement

22



Reterence-based assembly

—— — ——
/ . \ /Transcriptome mapping \
Genome mapping * No repetitive reference
 Can identify novel features « Overcomes issues of complex
* Spice aware? structures
« Can be difficult to reconstruct « Novel features?
isoform and gene structures « How reliable is the
transcriptome?

N NS /

Trapnell & Salzberg (2009) Nature Biotech 23




A smart suit(e

Bowtie
Extremely fast, general purpose short read aligner

TopHat
Aligns RNA-Seq reads to the genome using Bowtie
Discovers splice sites

Cufflinks package

| Cufflinks
I Assembles transcripts

Cuffcompare
1 Compares transcript assemblies to annotation

Cuffmerge
1 Merges two or more transcript assemblies

The Tuxedo suite | Cufi
I
|

I
Finds differentially expressed genes and transcripts :
Detects differential splicing and promoter use 1

1
--------------------------- 24

Trapnell, C. et al (2012) Nature Protocols




Tophat/Bowtie

Trapnell, C. et al. (2010) Nature Biotech.

a Map paired cDNA
fragment sequences
to genome

Spliced fragment

alignments
=—am
=
[

Assembly Abundance estimation

b Mutually d
incompatible o i -
fragments =5 -—

— ! Fragment

Transcript coverage length
y and compatibility distribution
Overlap graph L—T—J
c \ e o
Maximum likelihood
abundances
Log-likelihood |.> @
= % A
Minimum path cover v N
* 1 ==
Transcripts
I ——— . s
==
[
— Transcripts
and their
abundances
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Tophat/Bowtie

(1) Transcriptome alignment (optional)
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(2) Genome alignment @

Multi-exon spanning reads

Reads spanning a single exon are mapped
are unmapped

e - 4999
- -
e — ¥ -~

- -
Y -
--------

Kim, D. et al (2013) Genome Biology

el

Read are aligned against transcriptome.

Transcriptome index

A 4

Reads are aligned against genome.

Genome index
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Tophat/Bowtie

(3) Spliced alignment

Reads are split
into segments

(3-1) Segmentalignment to genome

(3-2) Identification of splice sites
(including indels and fusion break points)

(3-3) Segments aligned to junction
flanking sequences

(3-4) Segmentalignments stitched
togetherto form whole read alignments

(3-5) Re-alignment of reads minimally
overlapping introns

Kim, D. et al (2013) Genome Biology

. g

| | ¢ Unmapped segment

-
#
o
o
-
“

b

I

Reads are split into smaller segments
which are then aligned to the genome.

Genome index

Segmentmappings are used to find potential splice sites
usually when the distance between the mapped positions
of the left and the right segments are longer than the
length of the middle part of aread.

\
v

Sequences flanking a splice site are concatenated
and segments are aligned to them.

l J Junction flanking index
y!

Mapped segments against either genome or flanking
sequences are gathered to produce whole read alignments.

J

h

Genome mapped reads with alignments extendinga few
basesinto introns are re-aligned to exonsinstead.

27



Cufflinks

b Assembly d Abundance estimation
Mutually
incompatible g el
fragments SE =
S Fragment
Transcript coverage length
and compatibility distribution

L_T =

e ettt i
Maximum likelihood
abundances
Log-likelihood |.> @
A
=\
Minimum path cover Y2

* T

Transcripts

13

Transcripts
and their
abundances

Trapnell, C. et al. (2010)
Nature Biotech.
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How do we look?
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Duplicates & RNA-seqg

Intrinsically lower Highly expressed
complexity genes

Variant calling vs

Platform/pipeline DE analysis

Single-end vs
paired-end

Platform/pipeline

30



Counting

Genome-based features

« Exon or gene boundaries?
s |soform structures

e Gene multireads

-

Oshlack, A. et al. (2010) Genome Biology

Transcript-based features

* Transcript assembly
* Novel structures

e |soform multireads

-

/

31



Counting (e.g. Htseq)
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Mortazavi, A. et al (2008) Nature Methods

Counting (e.g. ERANGE

a Map unique reads (75%

)
Map reads to expanded genome n
(genome + splices + spikes) sEn = - . .
Map reads to known gene models S S
Allocate unique, unambiguous reads
to calculate preliminary RPKM Disambiguate unique reads (0.4%)

- - -

- = W

- - - -
Allocate ambiguous unique reads
to gene models based on RPKM A =

- o= = W

- e o W L

Aggregate reads outside known exons (4%)

Aggregate other reads
into candidate exons - e = ——
l LN N — — LERE RN ]
Consolidate with neighboring gene = - W e Emw
model if within radius & —— EEEES

v

Calculate the expanded exonic read
density (RPKM) for each gene

«:is <«

P

<

Allocate multireads (21%)

Calculate probability of multireads ;
coming from particular

locus based on gene RPKM

v

Calculate final RPKM for each gene

12

10

Log, (liver expanded RPKM)

C

Y —_
(o] (o] o N

Log, (liver final RPKM)
N

RPKM without multireads
R?=0.62

2 4 6 8 10 12
Log, (liver Affymetrix intensity)
RPKM with multireads .
R? =0.69

2 4 68 8 10

Log, (liver Affymetrix intensity)

12
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Counting & normalisation

* An estimate for the relative counts for each gene is obtained

« Assumed that this estimate is representative of the original population

- N O B

Library size Gene Properties
« Sequencing depth varies « GC content, length,
between samples sequence

N / - /
4 O

Library composition

« Highly expressed genes
overrepresented at cost of

\ lowly expressed genes J

34



Normalisation i

Total Count

* Normalise each sample by total number of reads sequenced

« Can also use another statistic similar to total count (median, upper quartile)

(a) = . (c)

<
=}

Density

5
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| I} |1
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)
1
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O —
logo(Kidney1/Nk1) — loga(Kidney2/Nk»)

(b) - _

o
g o | L
8 °° =

— . ® Housekeeping genes
o | S @ Unique to a sample
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Robinson, M.D. & Oshlack, A. (2010) Genome Biology 35



Normalisation

RPKM

* Reads per kilobase per million =

reads for gene A

length of gene A (kb) X Total number of reads (M)

n -
- . e ) b —— short genes
s o —— long genes
lll) o=
@ o O _|
o o -
c (=} !
8 8
& B 2.
> > 1
o
& 1
Te]
& -
o
&
T T T T T
15 -10 -5 0 5
mean mean/length

Oshlack, A. & Wakefield, M.J. (2009) Biology Direct 36



Normalisation

cRPKM

« Corrected reads per kilobase per million =

reads for gene A

# uniquely mappable positions in gene A (k) X Total # of mapped reads (M)

Dependent on read length:
Maximum gene mappabilty = gene length — read length + 1

Labbé, R.M. et al (2012) Stem Cells 37



Normalisation

estimateSizeFactors()

Geometric scaling factor sizeFactors ()

* Implemented in DESeq

» Assumes that most genes are not differentially expressed

~ D ~ D —
RC of Gene 1 : GM of Gene 1
Ny J N J
4 ) 4 N
RC of Gene 2 . GM of Gene 2
Ny J N J
4 ) 4 N
RC of Gene 3 . GM of Gene 3 — [ Median J
\_ J \_ J

[ RC of Gene N } . [GMofGeneNJ )

RC = read counts (per sample)
Anders, S. & Huber, W. (2010) Genome Biology GM = geometric mean (all Samp|eS)



Normalisation

Trimmed mean of M

* Implemented in edgeR

calcNormFactors ()

« Assumes most genes are
not differentially

expressed

y w', MT
| oy geGr 9k gk
0g,(TMM}’) =
2z wrk
geG* g

ng’Ygr > 0.

Robinson, M.D. & Oshlack, A. (2010) Genome Biology

For each gene g

Ygk /N
M_ =1lo g
g g2 ng//Nk/

Ag :élog2(ng/Nk. gk,/Nk,) for Yg, £0

Y, - observed count for gene g in library k
N, -total number of reads for library k

Yg Weight each gene by

log . . .
2( inverse of its variance

ro_
where M g = [Y
logo

NiYgk  NpYgr ' (‘trimming’*)

[*typically 30% on M and 5% on A]

g

} and wg =

,
r - reference sample

G* - not trimmed genes

v
Mean weighted ratio

39



Differential expression

Simple

OO -~ N W
o

All we need

Know what the data look like

Some measure of difference

40



Modelling — old trends

Technical replicates introduce some variance

0.5

Probability Density
0.3 04

0.2

0.1

0.0

What the data looks like: normal distribution

Some measure of difference: t-test

41



Modelling — in fashion

* Use the Poisson distribution for count data from technical replicates

« Just one parameter required — the mean

0.40 Ll T T 1] T
0.35}
0.30
< 0.25
2 0.20
a
0.15
0.10f
0.05
0.00

42



Modelling — in fashion

« Biology is never that simple...

variance

10—2_ bl I A B

* The negative binomial distribution represents an overdispersed Poisson

distribution, and has parameters for both the mean and the overdispersion.

Anders, S. & Huber, W. (2010) Genome Biology 43



Modelling — in tashion

 Estimating the dispersion parameter can be difficult with a small

number of samples

« edgeR: models the variance as the sum of technical and biological

variance

« ‘Share’ information from all genes to obtain global estimate - shrinkage

12

14 -

fold change knockdown vs control
!

14 - tadt .

fold change knockdown vs control

18 .

116 - 116 -

I 1 1 1 | I |
0.1 1 10 100 1000 104 10°

1 ] 1 1 1 1 1
0.1 1 10 100 1000 10* 10°

mean of normalized counts .
mean of normalized counts

Simon Anders 44



Modelling — in tashion

DESeq uses a similar formulation of the variance term

2 __
Oy = Hyj TS v,pu)
—

shot noise raw variance

dispersion
1e-03

1e-07

1 100 10000

mean of normalized counts
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Liu et al. (2014) Bioinformatics

On replicates...

# DE genes (FDR 0.05)

e

True Positive Rate

0.0 -

0.0

10 15 20 25
Number of Reads(M)

] ] ]
02 04 06 08
False Positive Rate

1.0

# Reps
—2
== 3
w4
w5
W6
Bm7

# Reads
—25
. 5
---10
--15
.20
-.25
--30

Power at FDR 0.05

1
25

5.0

—_2
- 3
m 4
m5
W6
|

10.0 15.0 20.0 25.0 30.0

Number of Reads

10.0 15.0 20.0
Number of Reads

25.0 30.0

# Reps

# Reps
—2
= 3
m 4
m5
W6
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On replicates...

(a) 0.006 -
0.005 -
5
.004 -
< 000
o
O
D  0.003-
o
0.002 -
0.001 -

# Reps
-2
W -3
m4
w N
Ho6
L .
e
| | | | | | |
2550 10.0 15.0 20.0 25.0 30.0

# Reads

High expression

Liu et al. (2014) Bioinformatics

(b) 0.012 -

0.010 -

logCPM CV

0.004 -

0.002 -

0.008 -

0.006 -

~
“
e

1 | 1 1 | | |
2550 100 150 200 250 30.0
# Reads

Medium expression

O

logCPM CV

l

0.20 -

0.15-

0.10-

0.05-

# Reps
—2
= 3
m 4
|5
W6

1 | | |
2550 100 150 200 250 30.0
# Reads

Low expression
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On replicates...

(d) 6000 -

5000 -
4000 -
3000 -

2000 -

# DE genes (FDR 0.05)

1000 y!
500

Liu et al. (2014) Bioinformatics

1000 1500 2000 2500 3000 3500
Total Estimated Cost ($)
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What next?

 Hierarchical clustering = define metric & look for similarities

Choosing a distance metric

Hxpression level
0
|

— Gene 1
— Gene 2
— Gene 3

&

*®

®

* /
&

/.

*

*

10 15 20 25 30 35 4.0
Array number
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What next?

Merging clusters according to a metric

o® o®
oo ® ®
Single
(min. of pairwise distances)

Lo

Distance between centroids

0@ o9
es® ©
Complete
(max. of pairwise distances)

=

Average linkage
(mean of all pairwise distances)

50



What next?

> E (hallmark gene sets, 50 gene sets)

* €1 (positional gene sets, 326 gene sets)
MO'eCU|a|' Pl'Oﬂle Data * by chromosome: 1234567891011 1213141516171819202122XY

- * €2 (curated gene sets, 4725 gene sets
Enriched Sets \ 2 d :
* CGP (chemical and genetic perturbations, 3395 gene sets)

Fark hwenl phet SOTICH OMA TIVATIO GINTS
~ o * CP (Canonical pathways, 1330 gene sets)

ful N \

ol . * CP:BIOCARTA (BioCarta gene sets, 217 gene sets)

© > * CP:KEGG (KEGG gene sets, 186 gene sets)

[RYTeY

-I . * CP:REACTOME (Reactome gene sets, 674 gene sets)

L T —— * €3 (motif gene sets, 836 gene sets)

* MIR (microRNA targets, 221 gene sets)

JExxSe

* TFT (transcription factor targets, 615 gene sets)
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| * C4 (computational gene sets, 858 gene sets)

* CGN (cancer gene neighborhoods, 427 gene sets)

* €M (cancer modules, 431 gene sets)

Gene Set Database * €5 (GO gene sets, 1454 gene sets)

y * BP (GO biological process, 825 gene sets)

* €C (GO cellular compeonent, 233 gene sets)
* MF (GO molecular function, 396 gene sets)

* €6 (oncogenic signatures, 189 gene sets)

* €7 (immunologic signatures, 1910 gene sets)
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