

The Gulbenkian Training Programme in Bioinformatics **NDARC16** - NGS Data Analysis, RNAseq, ChIPseq

Analysis of RNA-seq data

30 March 2016

Slides by Bernard Pereira (CRUK-CI, U. Cambridge) et al

MM Lisboa Instituto de Medicina Molecular

Nuno Barbosa Morais

nmorais@medicina.ulisboa.pt

http://imm.medicina.ulisboa.pt/group/compbio/

The many faces of RNA-seq

http://www.illumina.com/techniques/sequencing/rna-sequencing.html

illumına						Mylllumi	na Quick Order	Contact Us Senglish
AREAS OF INTEREST ~	TECHNIQUES ~	SYSTEMS ~	PRODUCTS & SERVICES ~	INFORMATICS ~	SCIENTIFIC CONTENT ~	COMPANY ~	SUPPORT ~	Q SEARCH

Techniques / Sequencing / RNA Sequencing

Key RNA-Seq Methods

mRNA Sequencing

Accurately measure gene and transcript abundance and detect both known and novel features in the coding transcriptome.

Learn More

Targeted RNA Sequencing

Measure the expression of transcripts or pathways of interest. Perform differential expression analysis, measurement of allele-specific expression, and detection of gene fusions.

Learn More

Ribosome Profiling

Deeply sequence ribosome-protected mRNA fragments to gain a complete view of all the ribosomes active in a cell at a specific time point and predict protein abundance.

Total RNA Sequencing

Accurately measure gene and transcript abundance and detect both known and novel features in coding and multiple forms of noncoding RNA.

Learn More

Small RNA Sequencing

Isolate and sequence small RNA species, such as microRNA, to understand the role of noncoding RNA in gene silencing and posttranscriptional regulation of gene expression.

Learn More

Ultra-Low-Input and Single-Cell RNA-Seq

Use deep RNA-Seq to examine the signals and behavior of a cell in the context of its surrounding environment. This method is advantageous for biologists studying cell function in time-dependent processes such as differentiation, proliferation, and tumorigenesis.

Learn More

E Learn More

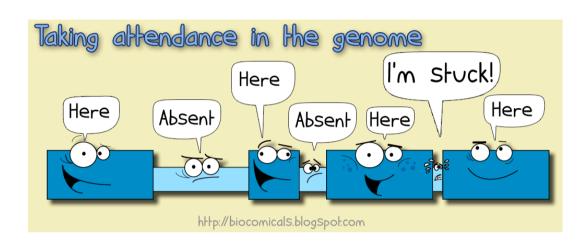
<u>Discovery</u>

- Find new transcripts
- Find transcript boundaries
- Find splice junctions
- Find gene fusions
- Find mutations (SNPs)
- Quantify allele specific expression

Comparison

Given samples from different experimental conditions, find effects of the treatment on

- Gene expression strengths
- Isoform abundance ratios, splice patterns, transcript boundaries, etc



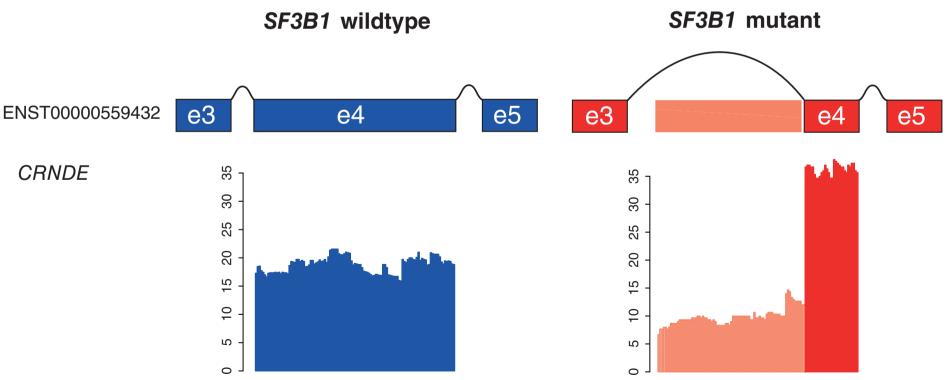
Journal of Pathology

J Pathol 2015; **235:** 571–580 Published online 22 December 2014 in Wiley Online Library (wileyonlinelibrary.com) D0I: 10.1002/path.4483

ORIGINAL PAPER

SF3B1 mutations constitute a novel therapeutic target in breast cancer

Sarah L Maguire,^{1,†} Andri Leonidou,^{1,2,†} Patty Wai,^{1,2,†} Caterina Marchiò,^{2,3} Charlotte KY Ng,^{3,4} Anna Sapino,² Anne-Vincent Salomon,^{5,6} Jorge S Reis-Filho,^{3,4} Britta Weigelt^{3,4} and Rachael C Natrajan^{1,2,*}



LETTERS

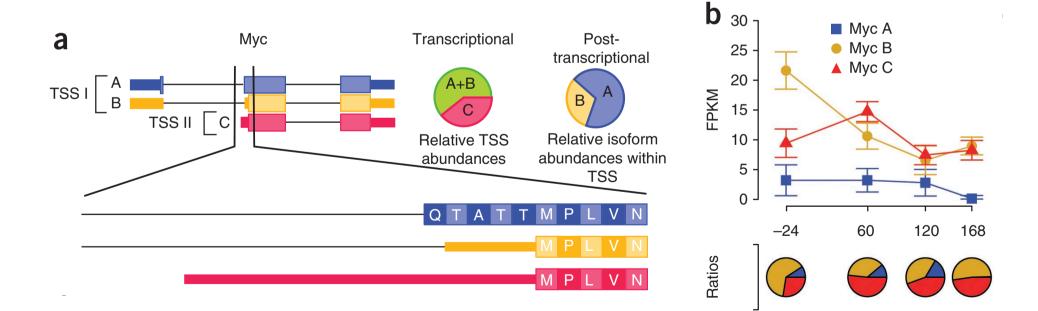
nature biotechnology

Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation

Cole Trapnell^{1–3}, Brian A Williams⁴, Geo Pertea², Ali Mortazavi⁴, Gordon Kwan⁴, Marijke J van Baren⁵, Steven L Salzberg^{1,2}, Barbara J Wold⁴ & Lior Pachter^{3,6,7}

NATURE BIOTECHNOLOGY VOLUME 28 NUMBER 5 MAY 2010

511



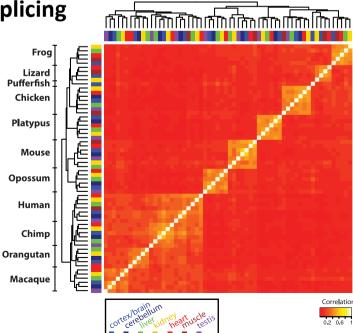
The Evolutionary Landscape of Alternative Splicing in Vertebrate Species

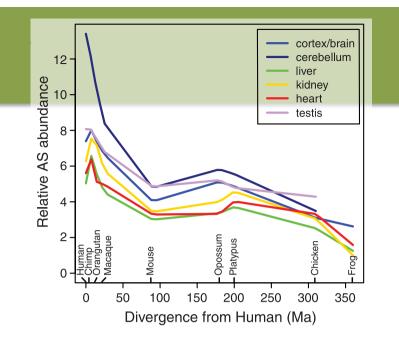
Nuno L. Barbosa-Morais,^{1,2} Manuel Irimia,¹* Qun Pan,¹* Hui Y. Xiong,³* Serge Gueroussov,^{1,4}* Leo J. Lee,³ Valentina Slobodeniuc,¹ Claudia Kutter,⁵ Stephen Watt,⁵ Recep Çolak,^{1,6} TaeHyung Kim,^{1,7} Christine M. Misquitta-Ali,¹ Michael D. Wilson,^{4,5,7} Philip M. Kim,^{1,4,6} Duncan T. Odom,^{5,8} Brendan J. Frey,^{1,3} Benjamin J. Blencowe^{1,4}†

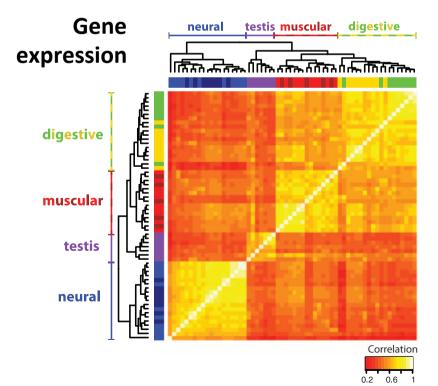
www.sciencemag.org SCIENCE VOL 338 21 DECEMBER 2012

1587

Alternative splicing



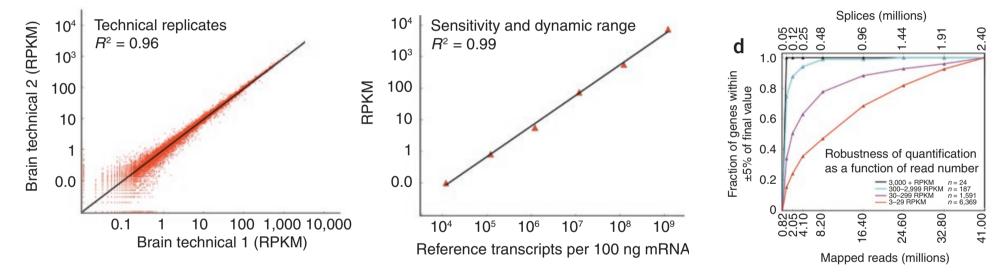




6

Differential Expression

- Comparing feature abundance under different conditions
- Assumed linearity, reproducibility and sensitivity

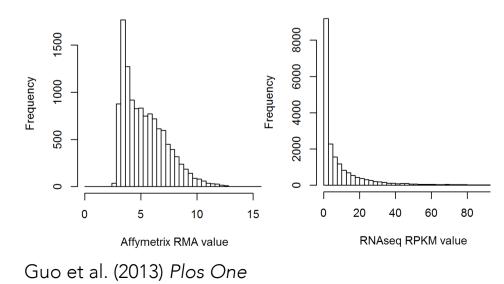


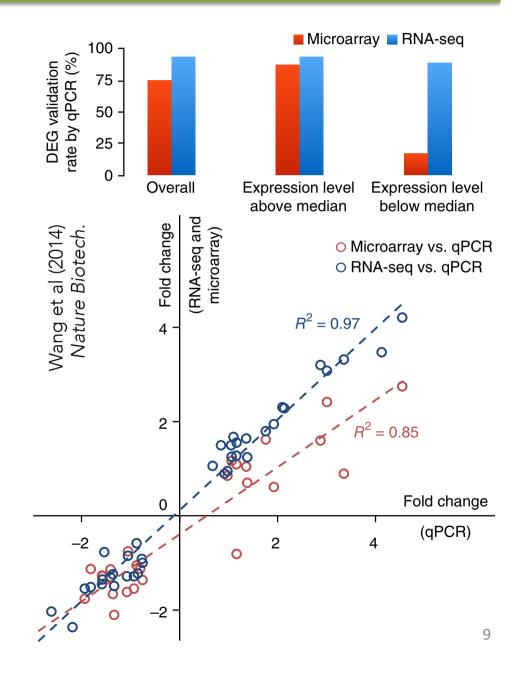
Mortazavi, A. et al (2008) Nature Methods

• When *feature=gene*, well-established pre- and post-analysis strategies exist (including those originally conceived for microarrays)

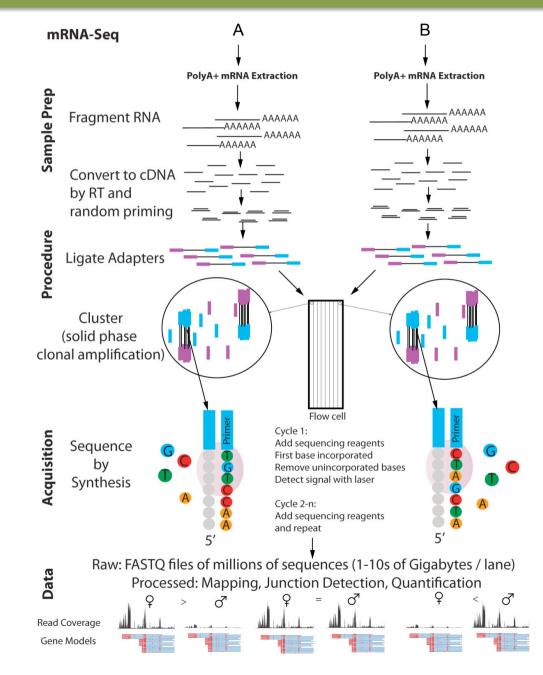
Better than microarrays?

- Better dynamic range
- Not biased by probe design (specificity)
- More sensitive, no saturation
- Better validation
- More expensive (prices dropping)



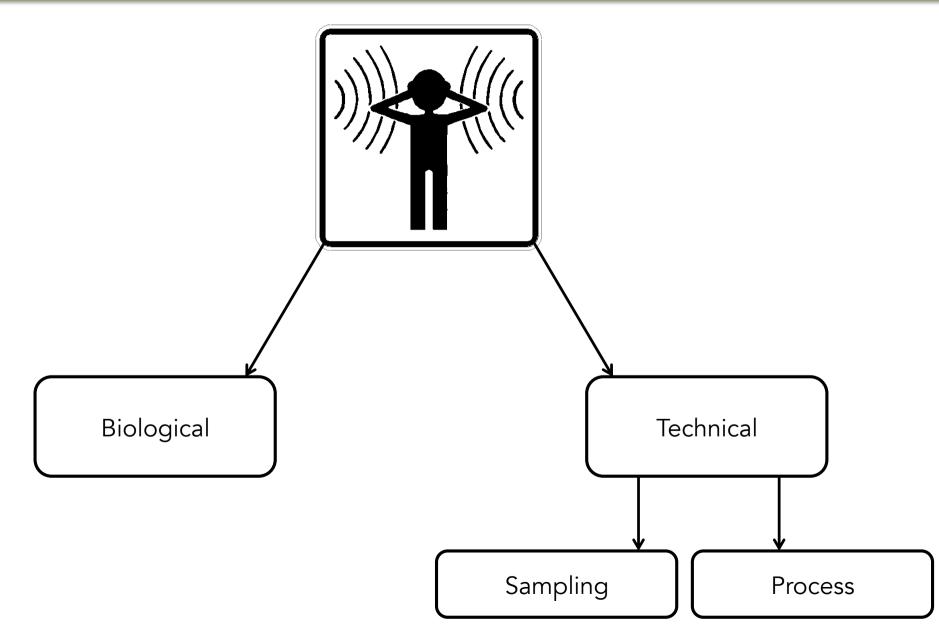


Library Prep i

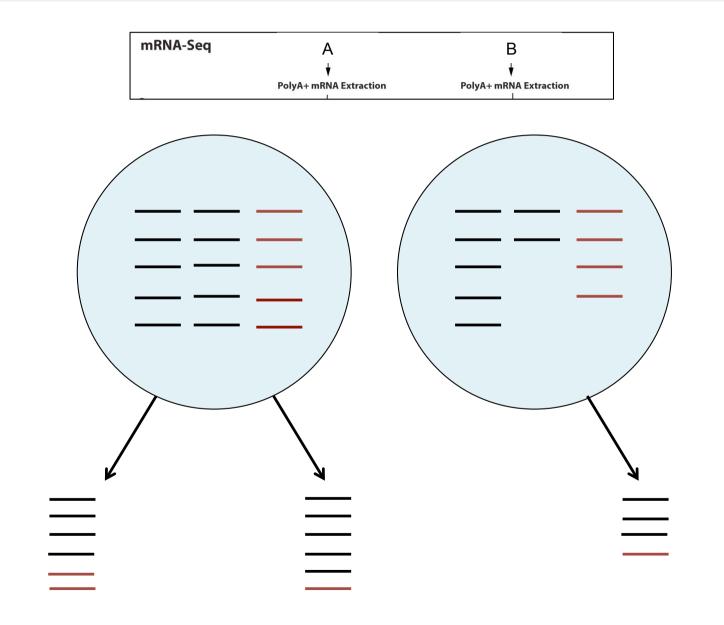


Malone, J.H. & Oliver, B.

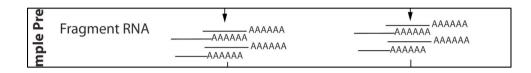
Library Prep ii

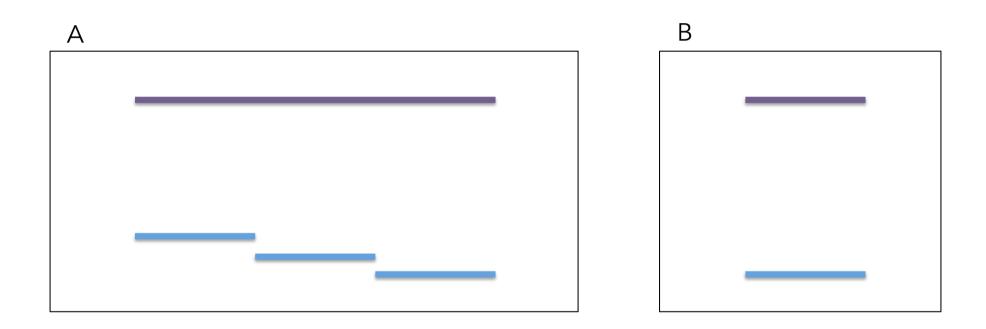


Library Prep iii

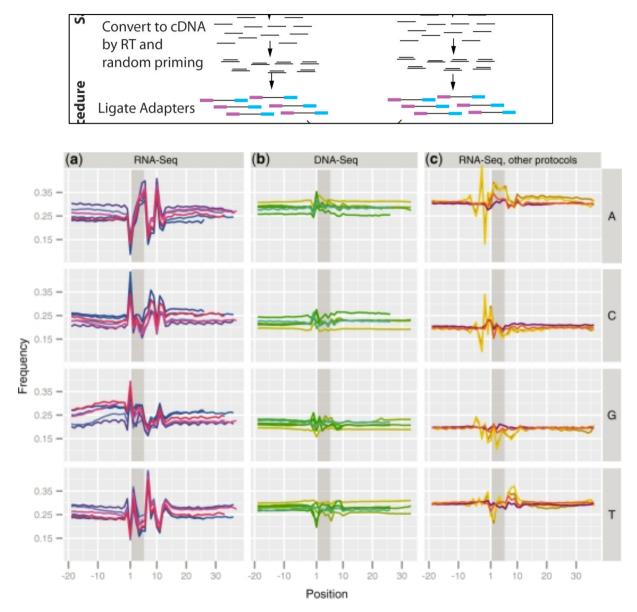


Library Prep iii



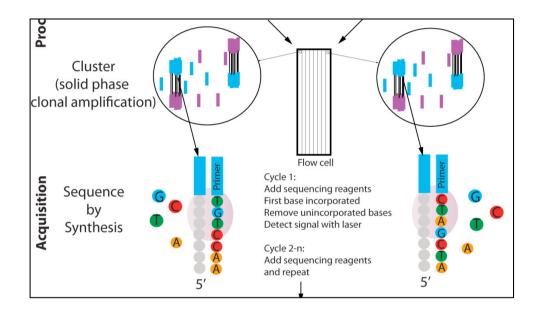


Library Prep iv



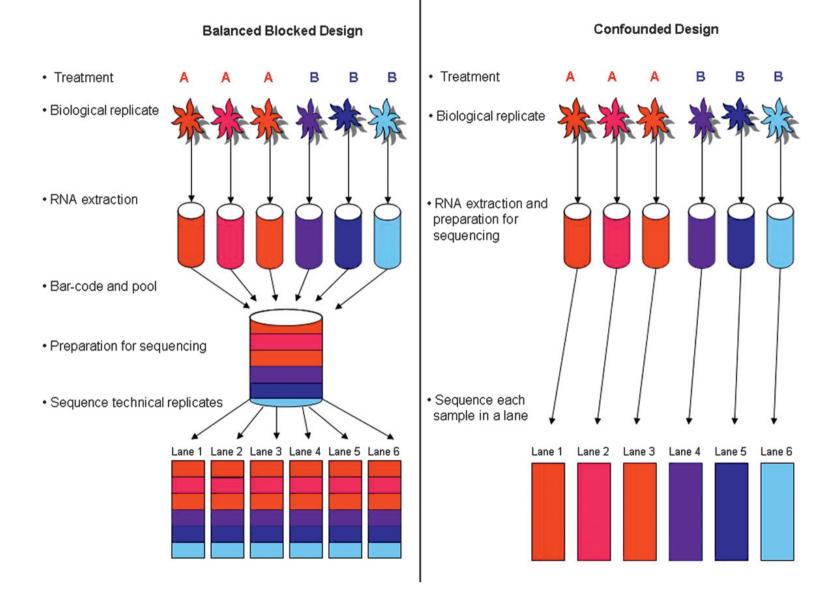
Hansen, K.D. et al. (2010) Nuc. Acids Res.

Library Prep v

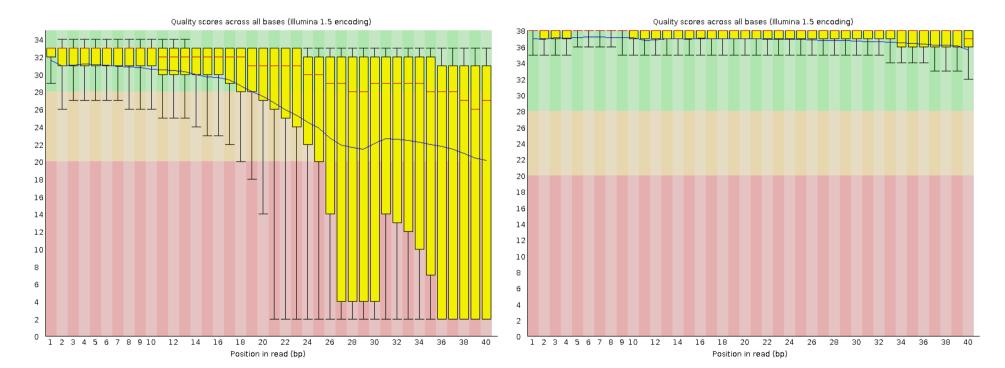


- Duplicates (optical & PCR)
- Sequence errors
- Indels
- Repetitive/problematic sequence

Hot off the sequencer...



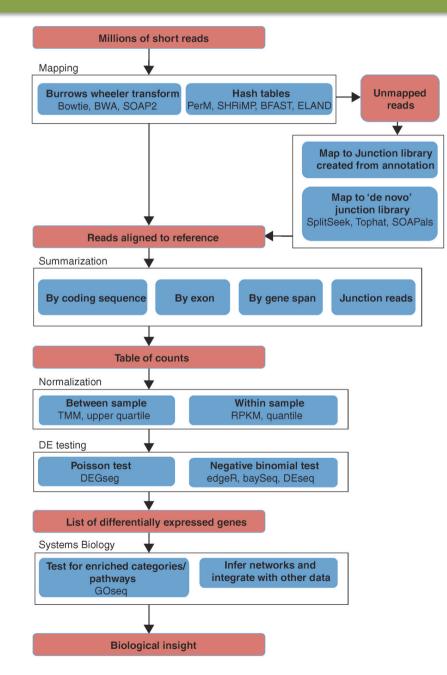
Auer and Doerg (2010) Genetics



Trimming

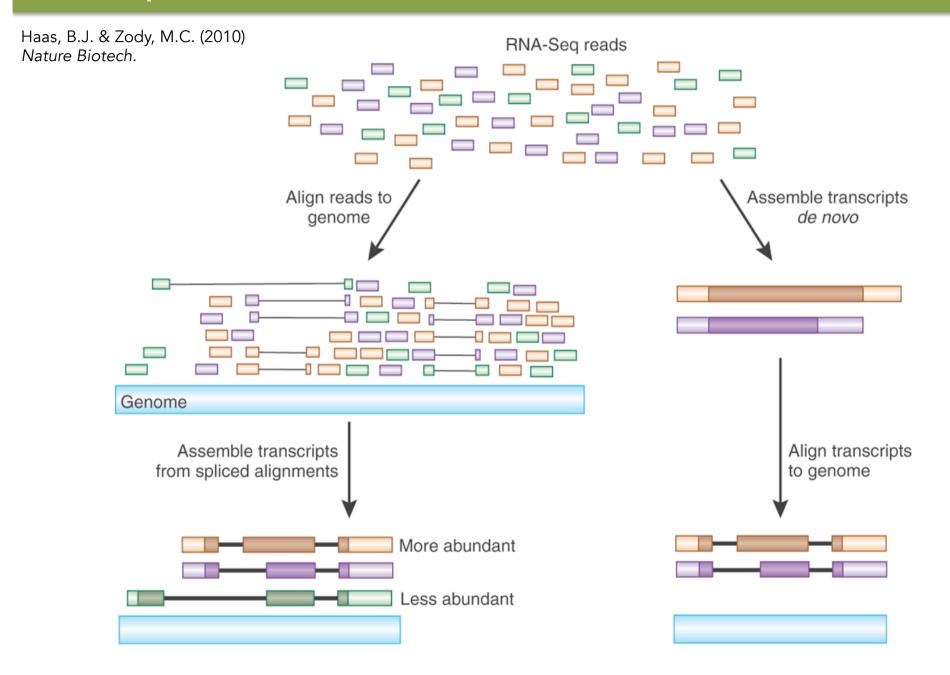
- Quality-based trimming
- Adapter 'contamination'

Analysis overview



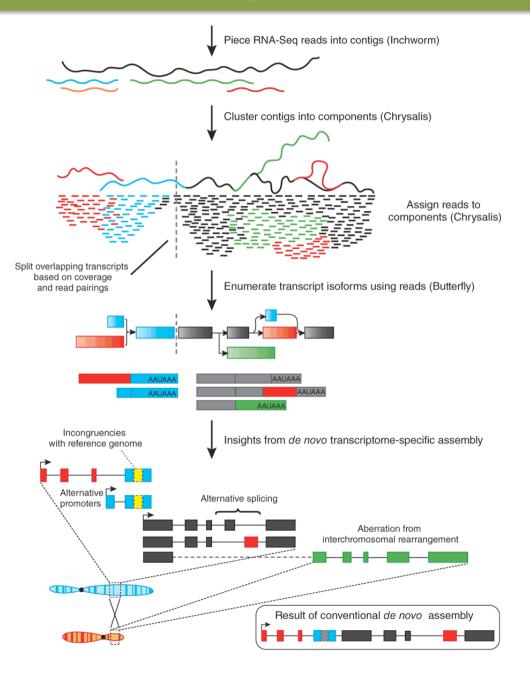
Oshlack, A. et al (2010) Genome Biology

Sequence to sense



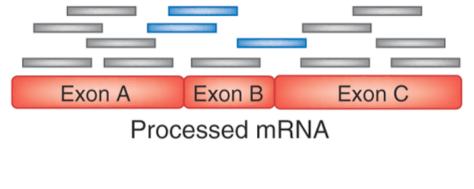
De novo assembly

• e.g. Trinity



Haas, B.J.. et al (2013) Nature Protocols

Reference-based assembly



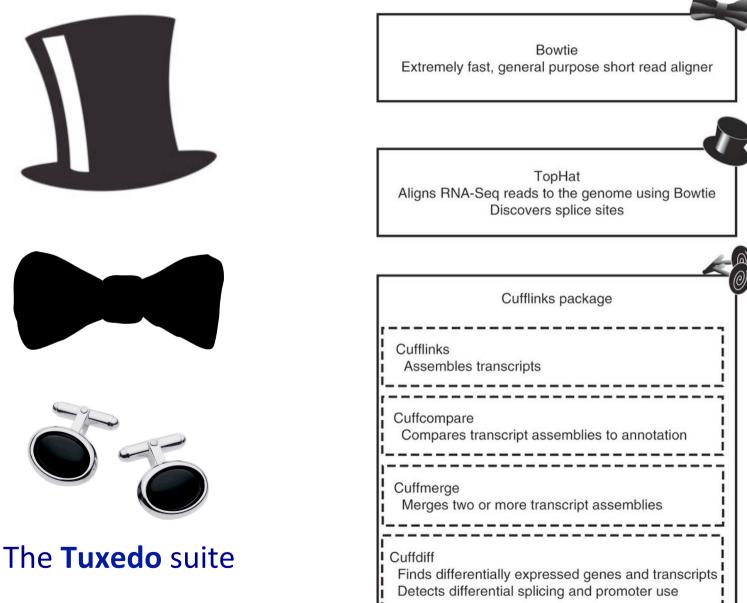
Genome mapping

- Can identify novel features
- Spice aware?
- Can be difficult to reconstruct isoform and gene structures

Transcriptome mapping

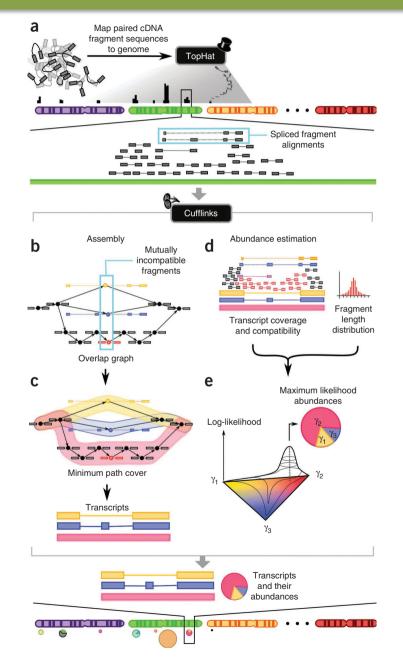
- No repetitive reference
- Overcomes issues of complex structures
- Novel features?
- How reliable is the transcriptome?

A smart suit(e)



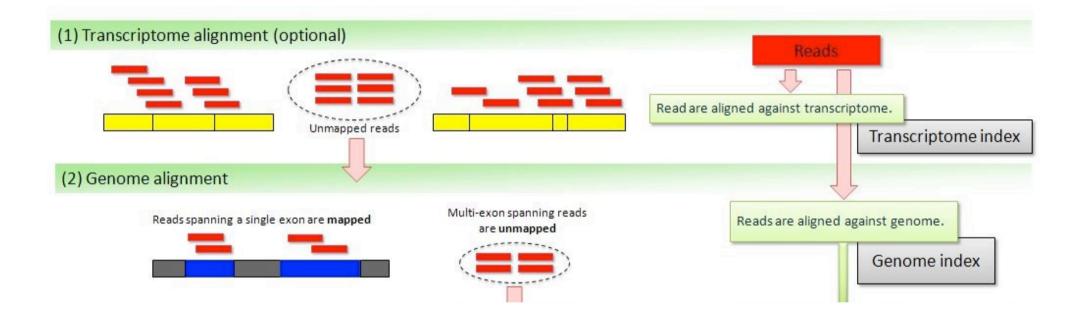
Trapnell, C. et al (2012) Nature Protocols

Tophat/Bowtie

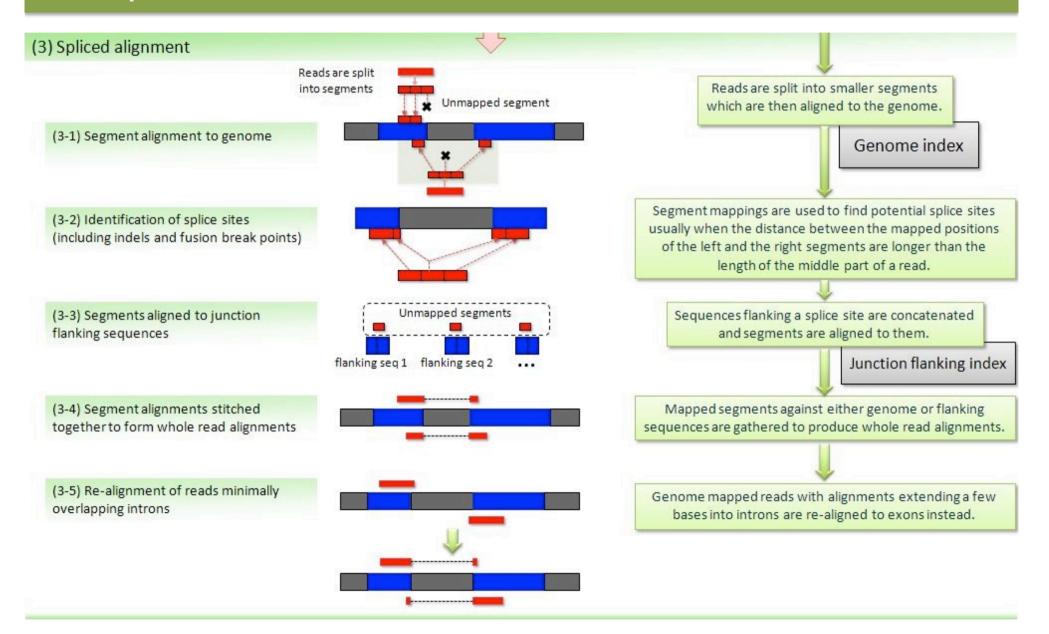


Trapnell, C. et al. (2010) Nature Biotech.

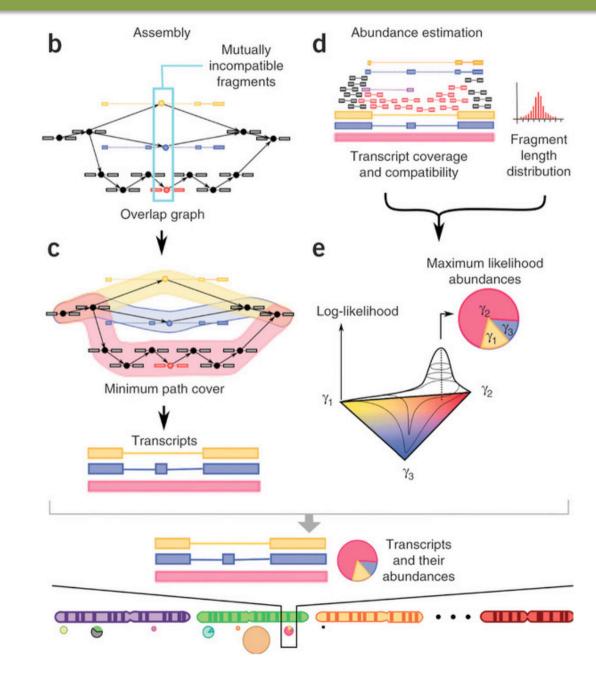
Tophat/Bowtie



Tophat/Bowtie

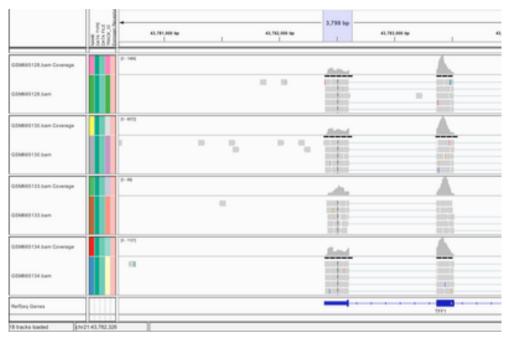


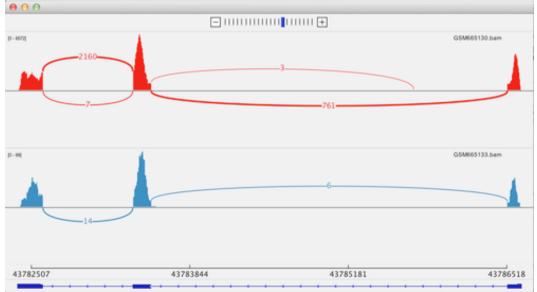
Cufflinks



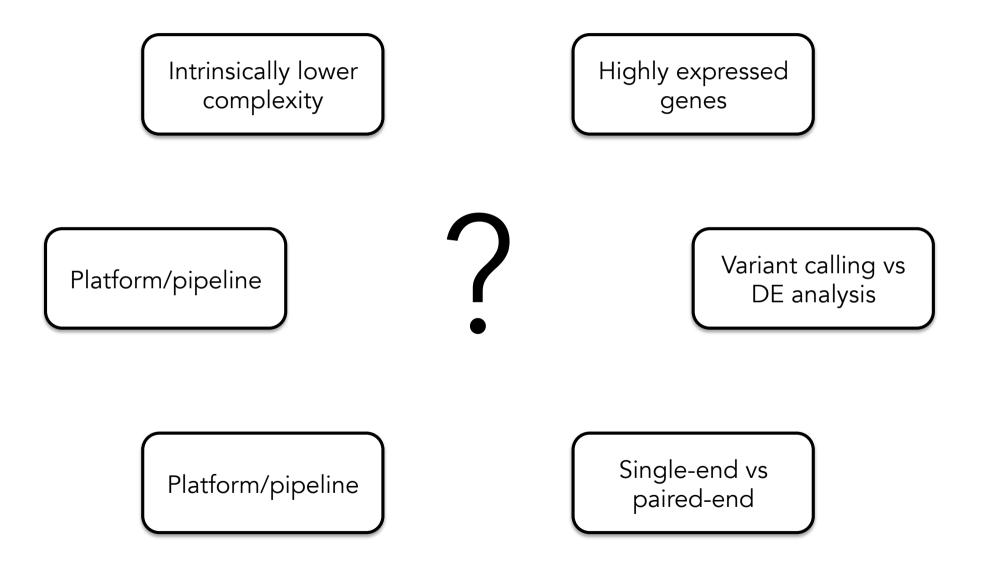
Trapnell, C. et al. (2010) Nature Biotech.

How do we look?

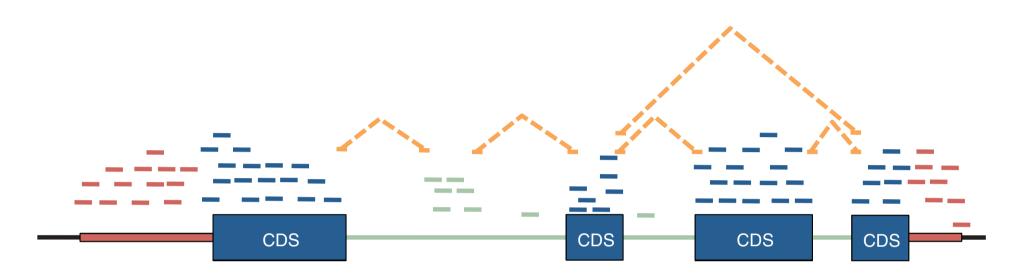




Duplicates & RNA-seq



Counting



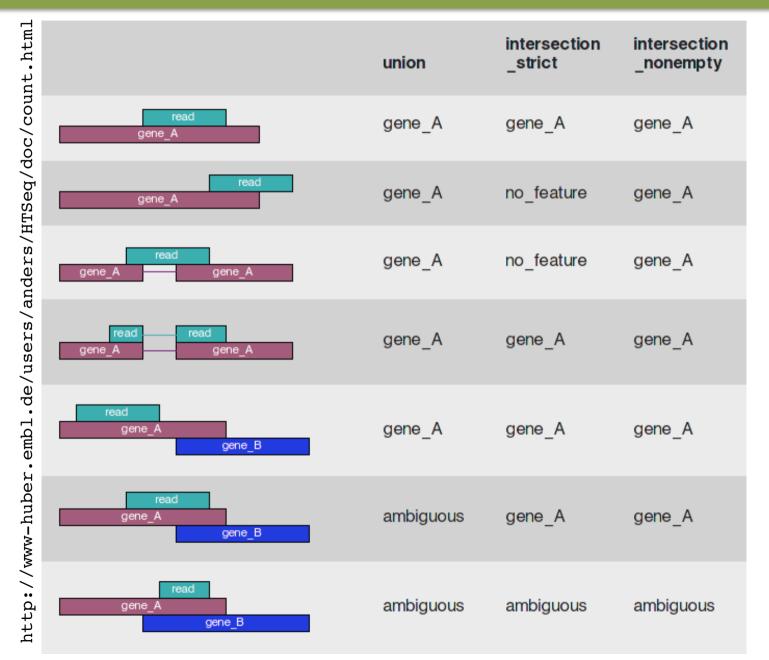
Genome-based features

- Exon or gene boundaries?
- Isoform structures
- Gene multireads

Transcript-based features

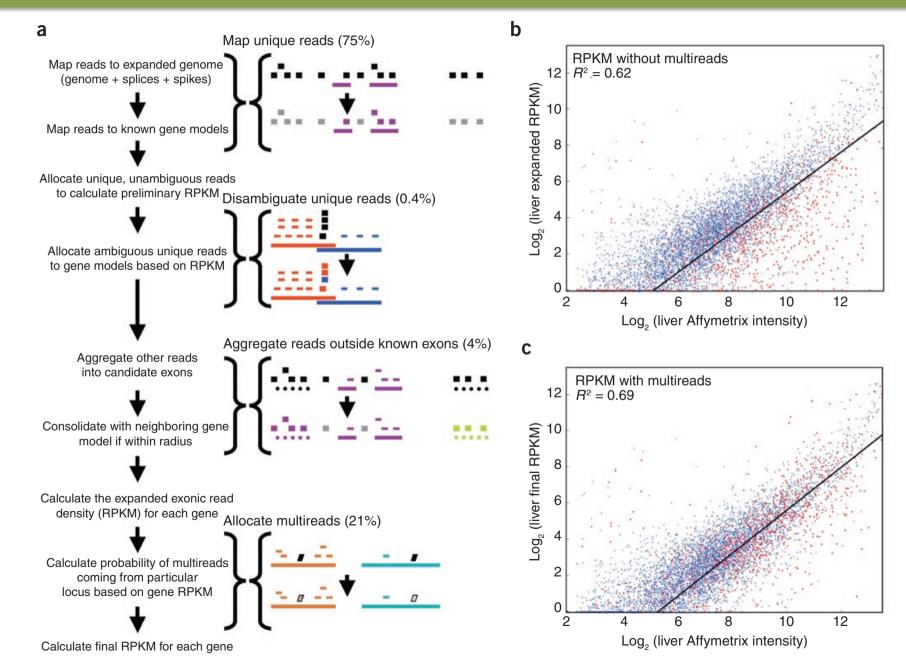
- Transcript assembly
- Novel structures
- Isoform multireads

Counting (e.g. Htseq)



32

Counting (e.g. ERANGE)



Counting & normalisation

- An estimate for the *relative* counts for each gene is obtained
- Assumed that this estimate is representative of the original population

<u>Library size</u>

• Sequencing depth varies between samples

Gene Properties

• GC content, length,

sequence

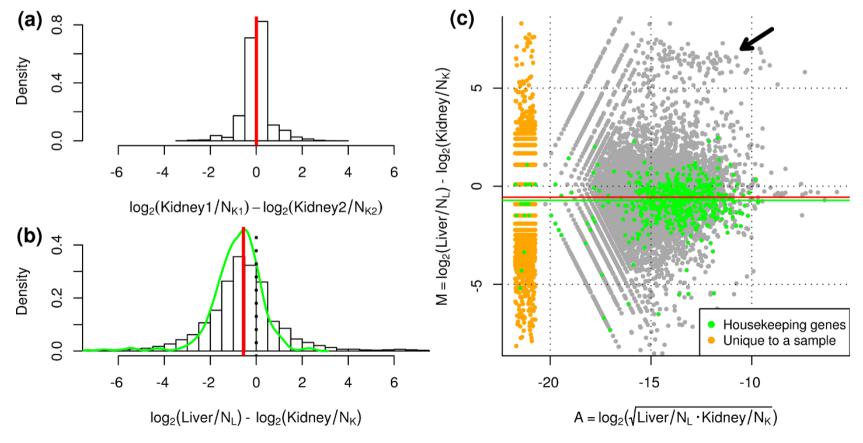
Library composition

 Highly expressed genes overrepresented at cost of lowly expressed genes

Normalisation i

Total Count

- Normalise each sample by total number of reads sequenced
- Can also use another statistic similar to total count (median, upper quartile)



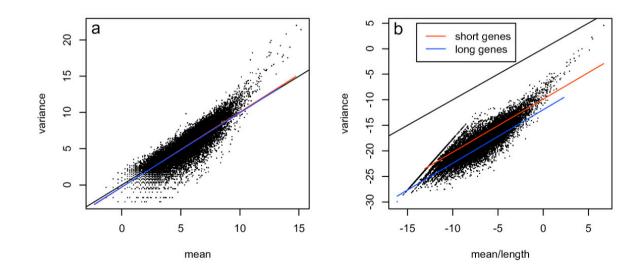
Robinson, M.D. & Oshlack, A. (2010) Genome Biology

Normalisation ii

<u>RPKM</u>

<u>R</u>eads <u>per k</u>ilobase per <u>m</u>illion =

reads for gene A length of gene A (kb) X Total number of reads (M)



Oshlack, A. & Wakefield, M.J. (2009) Biology Direct

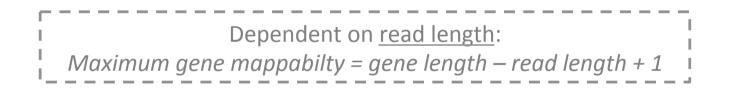
Normalisation ii

cRPKM

<u>Corrected reads per kilobase per million =</u>

reads for gene A

uniquely mappable positions in gene A (k) X Total # of mapped reads (M)

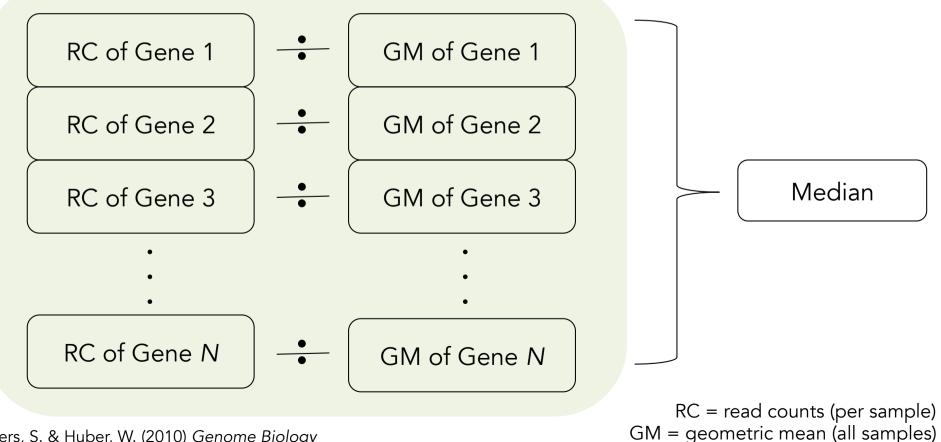


Normalisation iii

<u>Geometric scaling factor</u>

estimateSizeFactors() sizeFactors()

- Implemented in DESeq
- Assumes that most genes are not differentially expressed

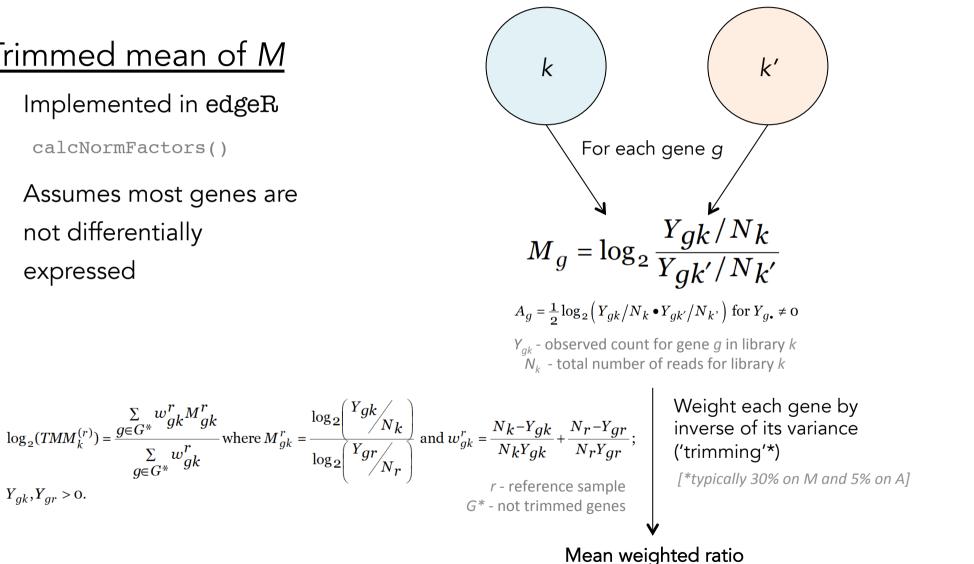


Anders, S. & Huber, W. (2010) Genome Biology

Normalisation iv

Trimmed mean of M

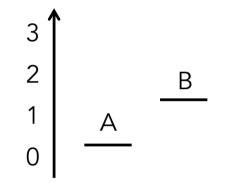
- Implemented in edgeR calcNormFactors()
- Assumes most genes are ٠ not differentially expressed



 $Y_{ak}, Y_{ar} > 0.$

Differential expression

• Simple

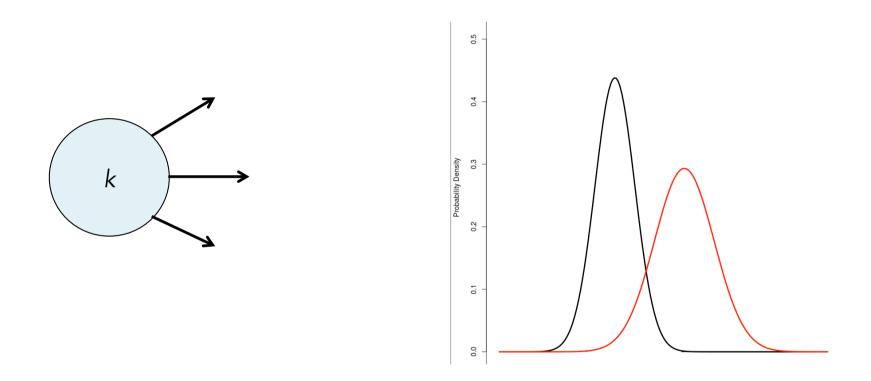


All we need

- Know what the data look like
- Some measure of difference

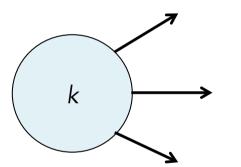
Modelling – old trends

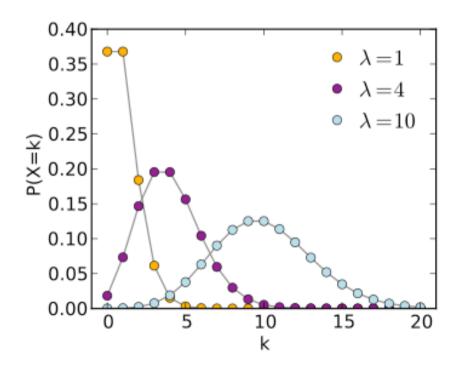
• Technical replicates introduce some variance



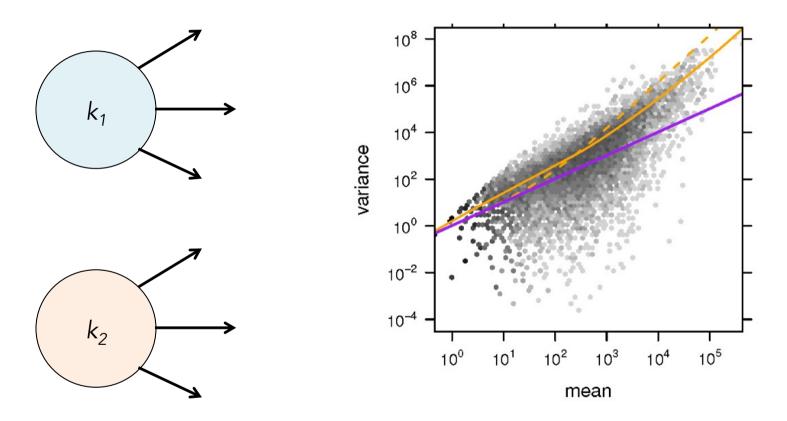
- What the data looks like: normal distribution
- Some measure of difference: **t-test**

- Use the Poisson distribution for count data from technical replicates
- Just one parameter required the mean



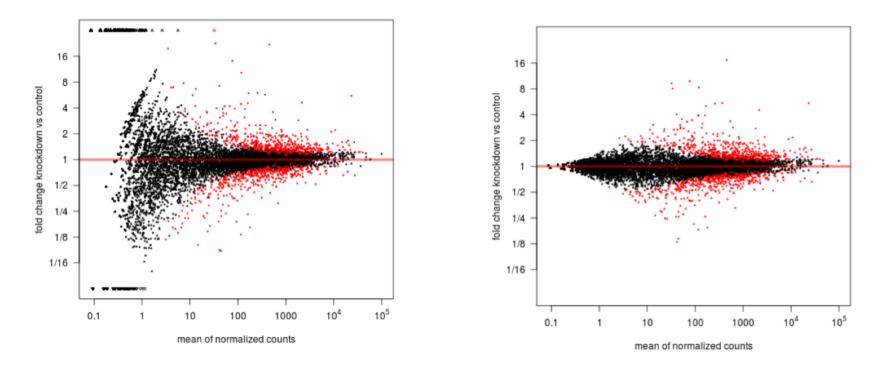


• Biology is never that simple...



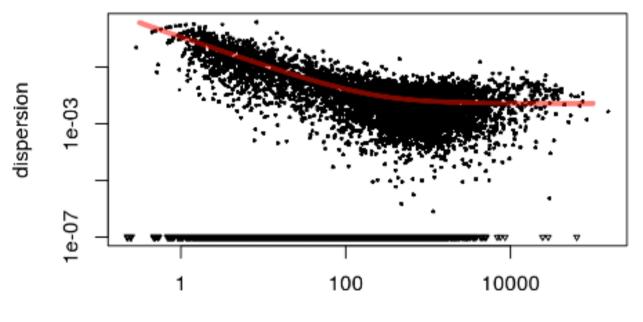
• The negative binomial distribution represents an *overdispersed* Poisson distribution, and has parameters for both the mean and the overdispersion.

- Estimating the dispersion parameter can be difficult with a small number of samples
- edgeR: models the variance as the sum of technical and biological variance
- 'Share' information from all genes to obtain global estimate *shrinkage*



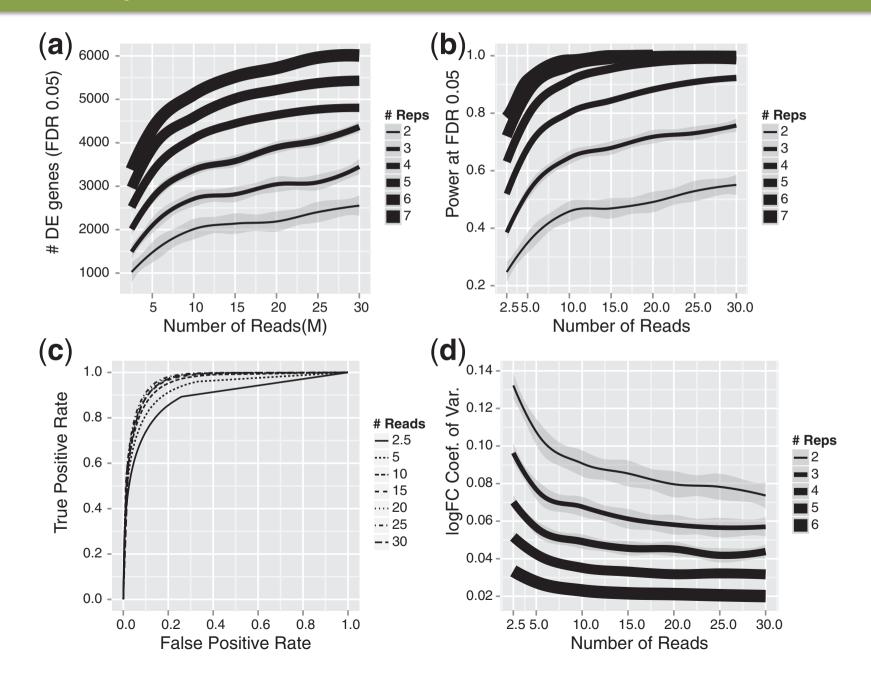
• DESeq uses a similar formulation of the variance term

$$\sigma_{ij}^2 = \underbrace{\mu_{ij}}_{\text{shot noise}} + \underbrace{s_j^2 v_{i,\rho(j)}}_{\text{raw variance}}$$



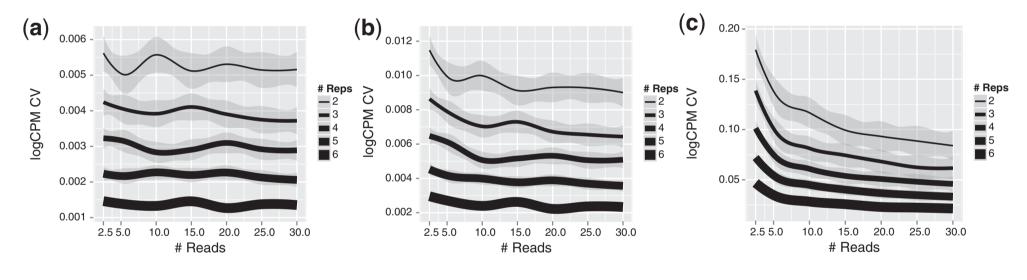
mean of normalized counts

On replicates...



Liu et al. (2014) Bioinformatics

On replicates...

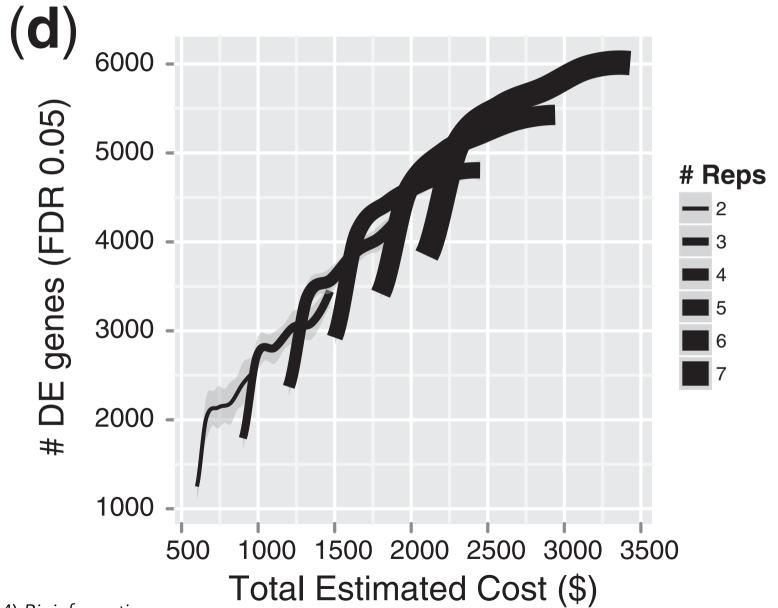


High expression

Medium expression

Low expression

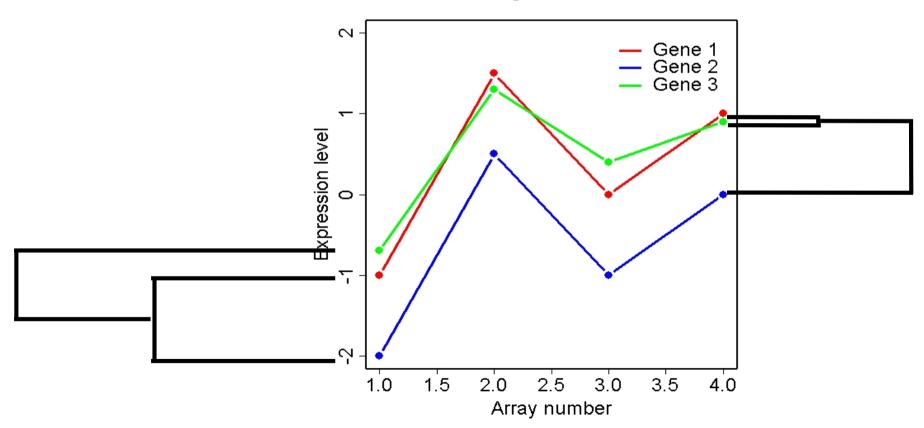
On replicates...



Liu et al. (2014) Bioinformatics

What next?

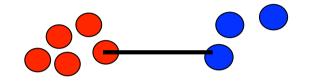
• Hierarchical clustering = define metric & look for similarities



Choosing a distance metric

What next?

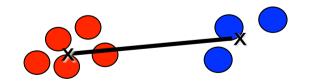
• Merging clusters according to a metric



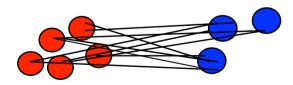
<u>Single</u> (min. of pairwise distances)



<u>Complete</u> (max. of pairwise distances)

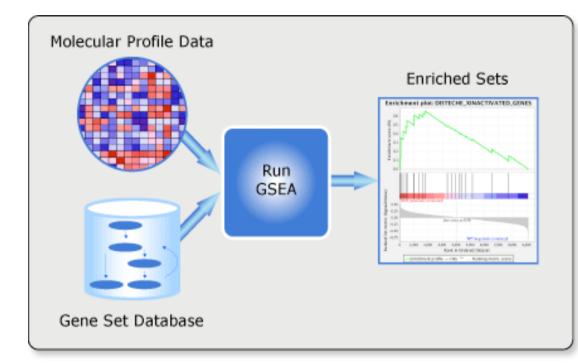


Distance between centroids



<u>Average linkage</u> (mean of all pairwise distances)

What next?



- H (hallmark gene sets, 50 gene sets)
- C1 (positional gene sets, 326 gene sets)
- by chromosome: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y
- C2 (curated gene sets, 4725 gene sets)
 - CGP (chemical and genetic perturbations, 3395 gene sets)
- CP (Canonical pathways, 1330 gene sets)
- CP:BIOCARTA (BioCarta gene sets, 217 gene sets)
- CP:KEGG (KEGG gene sets, 186 gene sets) 12
- CP:REACTOME (Reactome gene sets, 674 gene sets) 2
- C3 (motif gene sets, 836 gene sets)
 - MIR (microRNA targets, 221 gene sets) 2
 - TFT (transcription factor targets, 615 gene sets) 12
- C4 (computational gene sets, 858 gene sets)
 - CGN (cancer gene neighborhoods, 427 gene sets)
 - CM (cancer modules, 431 gene sets) 2
- C5 (GO gene sets, 1454 gene sets)
 - BP (GO biological process, 825 gene sets) 2
 - CC (GO cellular component, 233 gene sets) 2
 - MF (GO molecular function, 396 gene sets) 2
- C6 (oncogenic signatures, 189 gene sets)
- C7 (immunologic signatures, 1910 gene sets) 2