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SNV-calling tools




The SNV caller is not the only concern

We use CaVEMan here.

Caveat — full details of CaVEMan are not explicitly reported anywhere, and | am not going to
go through the code (now C, originally Java). So all a bit of a black box

Seems to have a sensible Bayesian model
Considers base quality, read position, lane, and read orientation
Can make use of copy number profiles

Associated filters

One could argue that any sensible caller would do the job. The secret is in the filtering.




Other tools

Several tools worth considering:
The detail of

MuTect2 — Combines a good quality caller with haplotype reassembly. Built in filters and the
ability to take in a panel of normal samples. Can also return indels.

VarScan2 (Koboldt 2012) — Uses a basic statistical test rather than a full Bayesian model,
but will probably be followed by filtering anyway. A portable java program.

Strelka (Saunders 2012) — A hierarchical model of allele frequencies. Also returns indels.

SMuFin (Moncunill 2014) — A reference free variant caller with high specificity.
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How well should we expect a tool to perform?

Precision/recall is a function of the biology, the a
sample/data quality, and the calling method 1.0 7
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A sample with relatively more of these recent Precision
events will have lower recall/precision

are more often missed

A sample with generally low power will have lower recall/precision
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What if you have multiple tumour samples

Exploring heterogeneity

Datasets that are more that Tumour-Normal are increasingly common. What can be done for
variant calling in them?

Theoretically, we can draw strength from related samples to improve our sensitivity.
Still require a filtering regime afterwards.

VarScan2 (Koboldt 2012) offers the ability to call over multiple samples, but doesn’t appear
to make the best use of structure in those calls

FreeBayes (Garrisson 2012) can be applied to this task, but the set-up is not optimized for
this scenario

Platypus (Rimmer 2014) can be applied to this task. Although it is primarily a germline
caller, it does a good job

multiSNV (Josephidou 2015) was designed specifically for the task. It works particularly
well in combination with Platypus




What if you have RNA-seq data?

Things get trickier.

We need to stop worrying about recall — there will be a lot missed, and splicing activity and
post-transcriptional modifications will introduce artefacts that require new filters.

Nevertheless, there are data to be interrogated...

Tophat (Kim et al. 2013) + Isaac (Raczy 2013) variant caller. Isaac not specifically
designed for RNA-seq.

MAP-RSeq (Kalari et al. 2014). Tophat + GATK-based approach. Large suite of tools — not
a nimble solution.

RNASEQR (Chen et al. 2011). A Bowtie-based approach that takes several passes at the
alignment to remove splice-site driven artefacts. Low precision?

SNPIR (Piskol et al. 2013). More expensive aligner to address the problems. Not really
designed for somatic variants. See also SNVQ.

GLMVC (Sheng et al. 2016). Specifically for somatic. Addresses cycle bias, but this could
be filtered later.



What if you have no matched normal

Obvious strategies:

Treat the sample as if it were a normal sample in which you were calling variants.
Cellularity allowing, it is probable that somatic events will look like germline
heterogeneous SNPs.

Use a relative’s, or ethnically-matched, normal sample and run as a T:N pair.
Either approach will lead to an excess of a couple of million calls, so filtering is required

dbSNP

Cellularity-driven distinctions in allele-fraction may help

These should reduce the numbers substantially, but there will still be an excess




What if you have cell-lines

Generally won’t have matched normal or cellularity
I Recently in this situation with OAC cell lines

I Clearly too many variants being called
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