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Analysis of Copy Number

Alterations with sequencing data
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Overview

Introduction.
Methods for summarisation and normalisation.
Methods for CN based on read depth.

Methods for CN based on read depth and minor
allele frequency.



Introduction




Copy number alterations

* We have 23 pairs of chromosomes: two copies in each
loci.

* Failures in the replication machinery™ can produce
mutations. One type of mutation is copy number
alterations (gains or losses in DNA).

* Gains in copy humber of oncogenes can lead to
tumorigenesis.

* Losses in copy humber can lead to the inactivation of a
tumor suppressor gene.

Other external agents can also produce mutations, like exposure to radiation, certain chemicals
or viruses...
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CNAs are very common in cancer
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Recurrent copy number alterations

Ciriello et al (2015). Nature Genetics
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CNAs are important for treatment

Overall survival by trastuzumab treatment group.
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CNVs and CNAs

* Copy Number Alterations is a generic name for Copy
Number Variations and Copy Number Aberrations.

« Copy Number Variations (CNVs): Germline
alterations, individual and not disease related.

« Copy Number Aberrations (CNAs): Somatic
alterations, disease related.

We need the pair to distinguish germline from somatic!!!




Copy number alterations
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Data obtained from sequencing reads
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Features of the data

* Underlying discrete number (0, I, 2,...) but the
measure is continuous

* Spatial correlation: neighbors share the same copy
number. This correlation is stronger the closer two
regions are

* Some regions may present specific effects due to GC
content, target enrichment, etc that may correlate across
different samples.




Different approaches to sequencing

* Whole genome sequencing: reads from the
complete DNA sequencing of the sample. WGS with low

coverage is sometimes called “shallow sequencing”

 Exome sequencing: reads from the protein-coding
genes in the genome

 Target sequencing: reads from a subset of genes in
the genome.




Methods for
summarisation and

normalisation




Basic premise

* Single nucleotide depths can be very noisy

* We can reduce that noise taking bins of a given length across
the genome and adding the total read depth

* The length of the bins can depend on the sequencing method
used (for example, the baits in exome/target), our coverage
depth, or the resolution needed in copy number estimation.




Filtering genomic regions

e Uncharacterized bases
* Repetitive regions

« Unmappable regions




Wave effect

I5

Mark A. van de Wiel et al. Bioinformatics

2009;25:1099-1104




GC content normalisation

 Different proportions of GC in each region can produce a
bias in the read depth (wave artifact)

* We can fit a loess model and remove the effect.
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Centering

Common practices:

* Median centering around zero

* Data is transformed to log2 ratios to reflect comparison
against a diploid reference

* The assumption in some normalisation methods that the

proportion of altered probes is the same for each sample
is NOT true.




Target normalisation

* In exome/target sequencing different targets can have
non-uniform read-depth

* We expect that these enrichment effects are correlated
across samples, therefore we can estimate these effects

* A background normalisation can help mitigate these
effects




Background normalisation

* We need a sample or a set of samples that represent the
expected profile of a diploid genome

* It can be a matched normal sample from the same tissue

or from blood in the case of a tumour sample, or a pool
of normal samples

* We compute the ratios between the sample and the
control (or sometimes the log2 ratios).




Methods for copy
number analysis based
on read depth




Two steps:

1. Segmentation
2. Calling




Copy Number
Segmentation




Segmentation methods

Split each chromosome in regions that share the same
copy number.

From ratios or log, ratios to segmented means: y, = m,

* Smoothing methods:

— Use different techniques to identify breakpoints in the data
(usually testing their significance).

e Hidden Markov Model-based methods:

— Estimate the (unknown) copy number of contiguous segments
under a probabilistic model (HMM)
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Algorithms for segmentation

* Circular Binary Segmentation (CBS)
— Olshen et al., 2004.
— It can be used with array and sequencing data

— Finds change points using a t-test under a permutation
model.

— Bioconductor package DNAcopy.




Hidden Markov Models (HMMs)
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Copy Number Calling




Calling of gains and losses
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Assign a copy number state to each segmented mean.




Threshold-based methods

* First method applied in aCGH analysis.
* Individual thresholds based on the variability of each sample:

tim zy+k,o, = GAIN
t/m <y-k,0, = LOSS

* Several alternatives on k, mean, sd. . .




Plateau plots

Olshen and Venkatraman, 2005 (DNAcopy R package).

*  Plot segmented means m, ordered.
. Find abrupt changes.
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CGHCall

van de Wiel et al., 2007 (CGHCall Bioconductor package).
*  The segmented means come from a mixture of six normal populations.
. Dependency of nearby clones comes from the segmentation method.

The model is fitted by EM algorithm.

. Classification reduced to 3 or 4 states.




Methods specific for
sequencing data




QDNAseq

Scheinin | et al., 2014 (QDNAseq Bioconductor package).
. Divides genome into bins of equal size.
. Normalisation based on blacklisted regions, GC content,....

Segmentation with DNAcopy.

Optional calling with CGHcall.




CopywriteR

Kuilman et al., 2016 (CopywriteR Bioconductor package).

Appropriate for exome/targeted sequencing: it uses the off-target

reads
. Peak calling, removal of reads in peaks
. Divides genome into bins of equal size.

. Normalisation based on blacklisted regions, GC content,....

*  Segmentation with DNAcopy.




Methods for copy
number analysis based
on read depth and
variant allele frequency




Variant allele frequency

* We can gain information about the copy number of sample if
we incorporate the variant (minor) allele frequency of a list

of SNPs:

A: common allele (reference)
B: minor allele (alternate)

AA: sample is (reference) homozygous for that SNP

AB: sample is heterozygous for that SNP
BB: sample is (alternate) homozygous for that SNP
vaf = #$reads (B)/(d#reads (A) + H#reads (B))

* Now we have two sets of data (similar to SNP arrays):

— Ratios
— vafs
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VAF patterns are related to copy number

| band:
—  Background noise (0 copies).
2 bands:
—  {A,B}, {AA,BB}, or {AAA,BBB},... Copy numbers (0, i).
3 bands:
— {AAAB,BB} or {AAAA,AABB,BBBB},... Copy numbers (i, i)
e 4 bands:

— {AAA, ABB, AAB, BBB} or {AAAA, ABBB, AAAB, BBBB} or {AAAAA,
ABBBB, AAAAB, BBBBB},... Copy numbers (i, j)/ i <]




VAF patterns help with copy number calling
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Realistic scenarios

 Aneuploidy
— The baseline of a sample is not 2 copies.

 Normal contamination

— Only a given percentage of the cells in our sample are tumor cells:
CN=pCN;+2(1-p)

* Intra-tumoral heterogeneity

— Alterations are shared by different proportions of tumor cells.

CNg = pr CNg + 2 (1-pR)




VAF Plots help detecting contamination

(0,1) and (0, 2). No contamination (0,1) and (0, 2). 40% of normal cells
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(1,2) and (0, 3). No contamination (1,2) with 40% of normal cells and (0, 3) with 70% of normal cells




00 05 10

-0.5

-1.0

The combination of log-ratios and VAF Plots help
detecting aneuploidy
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Methods:

ASCAT
Van Loo et al, 2010.
Models aneuploidy and normal contamination.
Segmentation step and find the absolute copy
numbers closest to the set of estimated

parameters.
R script...




