Normal approximation for Bioassay model.
ggplot2, grid, and gridExtra are used for plotting, tidyr for manipulating data frames
library(ggplot2)
library(gridExtra)
library(tidyr)
library(MASS)
Bioassay data, (BDA3 page 86)
df1 <- data.frame(
x = c(-0.86, -0.30, -0.05, 0.73),
n = c(5, 5, 5, 5),
y = c(0, 1, 3, 5)
)
Grid sampling for Bioassay model.
Compute the posterior density in a grid
- usually should be computed in logarithms!
- with alternative prior, check that range and spacing of A and B are sensible
A = seq(-1.5, 7, length.out = 100)
B = seq(-5, 35, length.out = 100)
cA <- rep(A, each = length(B))
cB <- rep(B, length(A))
logl <- function(df, a, b)
df['y']*(a + b*df['x']) - df['n']*log1p(exp(a + b*df['x']))
p <- apply(df1, 1, logl, cA, cB) %>% rowSums() %>% exp()
Sample from the grid (with replacement)
nsamp <- 1000
samp_indices <- sample(length(p), size = nsamp,
replace = T, prob = p/sum(p))
samp_A <- cA[samp_indices[1:nsamp]]
samp_B <- cB[samp_indices[1:nsamp]]
samp_A <- samp_A + runif(nsamp, A[1] - A[2], A[2] - A[1])
samp_B <- samp_B + runif(nsamp, B[1] - B[2], B[2] - B[1])
Compute LD50 conditional beta > 0
bpi <- samp_B > 0
samp_ld50 <- -samp_A[bpi]/samp_B[bpi]
Create a plot of the posterior density
xl <- c(-1.5, 7)
yl <- c(-5, 35)
pos <- ggplot(data = data.frame(cA ,cB, p), aes(x = cA, y = cB)) +
geom_raster(aes(fill = p, alpha = p), interpolate = T) +
geom_contour(aes(z = p), colour = 'black', size = 0.2) +
coord_cartesian(xlim = xl, ylim = yl) +
labs(x = 'alpha', y = 'beta') +
scale_fill_gradient(low = 'yellow', high = 'red', guide = F) +
scale_alpha(range = c(0, 1), guide = F)
Plot of the samples
sam <- ggplot(data = data.frame(samp_A, samp_B)) +
geom_point(aes(samp_A, samp_B), color = 'blue', size = 0.3) +
coord_cartesian(xlim = xl, ylim = yl) +
labs(x = 'alpha', y = 'beta')
Plot of the histogram of LD50
his <- ggplot() +
geom_histogram(aes(samp_ld50), binwidth = 0.04,
fill = 'steelblue', color = 'black') +
coord_cartesian(xlim = c(-0.8, 0.8)) +
labs(x = 'LD50 = -alpha/beta')
Normal approximation for Bioassay model.
Define the function to be optimized
bioassayfun <- function(w, df) {
z <- w[1] + w[2]*df$x
-sum(df$y*(z) - df$n*log1p(exp(z)))
}
Optimize
w0 <- c(0,0)
optim_res <- optim(w0, bioassayfun, gr = NULL, df1, hessian = T)
w <- optim_res$par
S <- solve(optim_res$hessian)
Multivariate normal probability density function
dmvnorm <- function(x, mu, sig)
exp(-0.5*(length(x)*log(2*pi) + log(det(sig)) + (x-mu)%*%solve(sig, x-mu)))
Evaluate likelihood at points (cA,cB) this is just for illustration and would not be needed otherwise
p <- apply(cbind(cA, cB), 1, dmvnorm, w, S)
normsamp <- mvrnorm(nsamp, w, S)
Samples of LD50 conditional beta > 0: Normal approximation does not take into account that the posterior is not symmetric and that there is very low density for negative beta values. Based on the draws from the normal approximation is is estimated that there is about 5% probability that beta is negative!
bpi <- normsamp[,2] > 0
normsamp_ld50 <- -normsamp[bpi,1]/normsamp[bpi,2]
Create a plot of the posterior density
pos_norm <- ggplot(data = data.frame(cA ,cB, p), aes(x = cA, y = cB)) +
geom_raster(aes(fill = p, alpha = p), interpolate = T) +
geom_contour(aes(z = p), colour = 'black', size = 0.2) +
coord_cartesian(xlim = xl, ylim = yl) +
labs(x = 'alpha', y = 'beta') +
scale_fill_gradient(low = 'yellow', high = 'red', guide = F) +
scale_alpha(range = c(0, 1), guide = F)
Plot of the samples
sam_norm <- ggplot(data = data.frame(samp_A=normsamp[,1], samp_B=normsamp[,2])) +
geom_point(aes(samp_A, samp_B), color = 'blue', size = 0.3) +
coord_cartesian(xlim = xl, ylim = yl) +
labs(x = 'alpha', y = 'beta')
Plot of the histogram of LD50
his_norm <- ggplot() +
geom_histogram(aes(normsamp_ld50), binwidth = 0.04,
fill = 'steelblue', color = 'black') +
coord_cartesian(xlim = c(-0.8, 0.8)) +
labs(x = 'LD50 = -alpha/beta, beta > 0')
Combine the plots
grid.arrange(pos, sam, his, pos_norm, sam_norm, his_norm, ncol = 3)
## Warning: It is deprecated to specify `guide = FALSE` to remove a guide. Please use `guide = "none"` instead.
## It is deprecated to specify `guide = FALSE` to remove a guide. Please use `guide = "none"` instead.
## It is deprecated to specify `guide = FALSE` to remove a guide. Please use `guide = "none"` instead.
## It is deprecated to specify `guide = FALSE` to remove a guide. Please use `guide = "none"` instead.

LS0tCnRpdGxlOiAiQmF5ZXNpYW4gZGF0YSBhbmFseXNpcyBkZW1vIDQuMSIKYXV0aG9yOiAiQWtpIFZlaHRhcmksIE1hcmt1cyBQYWFzaW5pZW1pIgpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCkpYCIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICB0aGVtZTogcmVhZGFibGUKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKLS0tCiMjIE5vcm1hbCBhcHByb3hpbWF0aW9uIGZvciBCaW9hc3NheSBtb2RlbC4KCmdncGxvdDIsIGdyaWQsIGFuZCBncmlkRXh0cmEgYXJlIHVzZWQgZm9yIHBsb3R0aW5nLCB0aWR5ciBmb3IKbWFuaXB1bGF0aW5nIGRhdGEgZnJhbWVzCgpgYGB7ciBzZXR1cCwgbWVzc2FnZT1GQUxTRSwgZXJyb3I9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShncmlkRXh0cmEpCmxpYnJhcnkodGlkeXIpCmxpYnJhcnkoTUFTUykKYGBgCgpCaW9hc3NheSBkYXRhLCAoQkRBMyBwYWdlIDg2KQoKYGBge3IgfQpkZjEgPC0gZGF0YS5mcmFtZSgKICB4ID0gYygtMC44NiwgLTAuMzAsIC0wLjA1LCAwLjczKSwKICBuID0gYyg1LCA1LCA1LCA1KSwKICB5ID0gYygwLCAxLCAzLCA1KQopCmBgYAoKIyMjIEdyaWQgc2FtcGxpbmcgZm9yIEJpb2Fzc2F5IG1vZGVsLgpDb21wdXRlIHRoZSBwb3N0ZXJpb3IgZGVuc2l0eSBpbiBhIGdyaWQKCi0gdXN1YWxseSBzaG91bGQgYmUgY29tcHV0ZWQgaW4gbG9nYXJpdGhtcyEKLSB3aXRoIGFsdGVybmF0aXZlIHByaW9yLCBjaGVjayB0aGF0IHJhbmdlIGFuZCBzcGFjaW5nIG9mIEEgYW5kIEIKICBhcmUgc2Vuc2libGUKCmBgYHtyIH0KQSA9IHNlcSgtMS41LCA3LCBsZW5ndGgub3V0ID0gMTAwKQpCID0gc2VxKC01LCAzNSwgbGVuZ3RoLm91dCA9IDEwMCkKIyBtYWtlIHZlY3RvcnMgdGhhdCBjb250YWluIGFsbCBwYWlyd2lzZSBjb21iaW5hdGlvbnMgb2YgQSBhbmQgQgpjQSA8LSByZXAoQSwgZWFjaCA9IGxlbmd0aChCKSkKY0IgPC0gcmVwKEIsIGxlbmd0aChBKSkKIyBhIGhlbHBlciBmdW5jdGlvbiB0byBjYWxjdWxhdGUgdGhlIGxvZyBsaWtlbGlob29kCmxvZ2wgPC0gZnVuY3Rpb24oZGYsIGEsIGIpCiAgZGZbJ3knXSooYSArIGIqZGZbJ3gnXSkgLSBkZlsnbiddKmxvZzFwKGV4cChhICsgYipkZlsneCddKSkKIyBjYWxjdWxhdGUgbGlrZWxpaG9vZHM6IGFwcGx5IGxvZ2wgZnVuY3Rpb24gZm9yIGVhY2ggb2JzZXJ2YXRpb24KIyBpZS4gZWFjaCByb3cgb2YgZGF0YSBmcmFtZSBvZiB4LCBuIGFuZCB5CnAgPC0gYXBwbHkoZGYxLCAxLCBsb2dsLCBjQSwgY0IpICU+JSByb3dTdW1zKCkgJT4lIGV4cCgpCmBgYAoKU2FtcGxlIGZyb20gdGhlIGdyaWQgKHdpdGggcmVwbGFjZW1lbnQpCgpgYGB7ciB9Cm5zYW1wIDwtIDEwMDAKc2FtcF9pbmRpY2VzIDwtIHNhbXBsZShsZW5ndGgocCksIHNpemUgPSBuc2FtcCwKICAgICAgICAgICAgICAgICAgICAgICByZXBsYWNlID0gVCwgcHJvYiA9IHAvc3VtKHApKQpzYW1wX0EgPC0gY0Fbc2FtcF9pbmRpY2VzWzE6bnNhbXBdXQpzYW1wX0IgPC0gY0Jbc2FtcF9pbmRpY2VzWzE6bnNhbXBdXQojIGFkZCByYW5kb20gaml0dGVyLCBzZWUgQkRBMyBwLiA3NgpzYW1wX0EgPC0gc2FtcF9BICsgcnVuaWYobnNhbXAsIEFbMV0gLSBBWzJdLCBBWzJdIC0gQVsxXSkKc2FtcF9CIDwtIHNhbXBfQiArIHJ1bmlmKG5zYW1wLCBCWzFdIC0gQlsyXSwgQlsyXSAtIEJbMV0pCmBgYAoKQ29tcHV0ZSBMRDUwIGNvbmRpdGlvbmFsIGJldGEgPiAwCgpgYGB7ciB9CmJwaSA8LSBzYW1wX0IgPiAwCnNhbXBfbGQ1MCA8LSAtc2FtcF9BW2JwaV0vc2FtcF9CW2JwaV0KYGBgCgpDcmVhdGUgYSBwbG90IG9mIHRoZSBwb3N0ZXJpb3IgZGVuc2l0eQoKYGBge3IgfQojIGxpbWl0cyBmb3IgdGhlIHBsb3RzCnhsIDwtIGMoLTEuNSwgNykKeWwgPC0gYygtNSwgMzUpCnBvcyA8LSBnZ3Bsb3QoZGF0YSA9IGRhdGEuZnJhbWUoY0EgLGNCLCBwKSwgYWVzKHggPSBjQSwgeSA9IGNCKSkgKwogIGdlb21fcmFzdGVyKGFlcyhmaWxsID0gcCwgYWxwaGEgPSBwKSwgaW50ZXJwb2xhdGUgPSBUKSArCiAgZ2VvbV9jb250b3VyKGFlcyh6ID0gcCksIGNvbG91ciA9ICdibGFjaycsIHNpemUgPSAwLjIpICsKICBjb29yZF9jYXJ0ZXNpYW4oeGxpbSA9IHhsLCB5bGltID0geWwpICsKICBsYWJzKHggPSAnYWxwaGEnLCB5ID0gJ2JldGEnKSArCiAgc2NhbGVfZmlsbF9ncmFkaWVudChsb3cgPSAneWVsbG93JywgaGlnaCA9ICdyZWQnLCBndWlkZSA9IEYpICsKICBzY2FsZV9hbHBoYShyYW5nZSA9IGMoMCwgMSksIGd1aWRlID0gRikKYGBgCgpQbG90IG9mIHRoZSBzYW1wbGVzCgpgYGB7ciB9CnNhbSA8LSBnZ3Bsb3QoZGF0YSA9IGRhdGEuZnJhbWUoc2FtcF9BLCBzYW1wX0IpKSArCiAgZ2VvbV9wb2ludChhZXMoc2FtcF9BLCBzYW1wX0IpLCBjb2xvciA9ICdibHVlJywgc2l6ZSA9IDAuMykgKwogIGNvb3JkX2NhcnRlc2lhbih4bGltID0geGwsIHlsaW0gPSB5bCkgKwogIGxhYnMoeCA9ICdhbHBoYScsIHkgPSAnYmV0YScpCmBgYAoKUGxvdCBvZiB0aGUgaGlzdG9ncmFtIG9mIExENTAKCmBgYHtyIH0KaGlzIDwtIGdncGxvdCgpICsKICBnZW9tX2hpc3RvZ3JhbShhZXMoc2FtcF9sZDUwKSwgYmlud2lkdGggPSAwLjA0LAogICAgICAgICAgICAgICAgIGZpbGwgPSAnc3RlZWxibHVlJywgY29sb3IgPSAnYmxhY2snKSArCiAgY29vcmRfY2FydGVzaWFuKHhsaW0gPSBjKC0wLjgsIDAuOCkpICsKICBsYWJzKHggPSAnTEQ1MCA9IC1hbHBoYS9iZXRhJykKYGBgCgojIyMgTm9ybWFsIGFwcHJveGltYXRpb24gZm9yIEJpb2Fzc2F5IG1vZGVsLgpEZWZpbmUgdGhlIGZ1bmN0aW9uIHRvIGJlIG9wdGltaXplZAoKYGBge3IgfQpiaW9hc3NheWZ1biA8LSBmdW5jdGlvbih3LCBkZikgewogIHogPC0gd1sxXSArIHdbMl0qZGYkeAogIC1zdW0oZGYkeSooeikgLSBkZiRuKmxvZzFwKGV4cCh6KSkpCn0KYGBgCgpPcHRpbWl6ZQoKYGBge3IgfQp3MCA8LSBjKDAsMCkKb3B0aW1fcmVzIDwtIG9wdGltKHcwLCBiaW9hc3NheWZ1biwgZ3IgPSBOVUxMLCBkZjEsIGhlc3NpYW4gPSBUKQp3IDwtIG9wdGltX3JlcyRwYXIKUyA8LSBzb2x2ZShvcHRpbV9yZXMkaGVzc2lhbikKYGBgCgpNdWx0aXZhcmlhdGUgbm9ybWFsIHByb2JhYmlsaXR5IGRlbnNpdHkgZnVuY3Rpb24KCmBgYHtyIH0KZG12bm9ybSA8LSBmdW5jdGlvbih4LCBtdSwgc2lnKQogIGV4cCgtMC41KihsZW5ndGgoeCkqbG9nKDIqcGkpICsgbG9nKGRldChzaWcpKSArICh4LW11KSUqJXNvbHZlKHNpZywgeC1tdSkpKQpgYGAKCkV2YWx1YXRlIGxpa2VsaWhvb2QgYXQgcG9pbnRzIChjQSxjQikgCnRoaXMgaXMganVzdCBmb3IgaWxsdXN0cmF0aW9uIGFuZCB3b3VsZCBub3QgYmUgbmVlZGVkIG90aGVyd2lzZQoKYGBge3IgfQpwIDwtIGFwcGx5KGNiaW5kKGNBLCBjQiksIDEsIGRtdm5vcm0sIHcsIFMpCgojIHNhbXBsZSBmcm9tIHRoZSBtdWx0aXZhcmlhdGUgbm9ybWFsIApub3Jtc2FtcCA8LSBtdnJub3JtKG5zYW1wLCB3LCBTKQpgYGAKClNhbXBsZXMgb2YgTEQ1MCBjb25kaXRpb25hbCBiZXRhID4gMDoKTm9ybWFsIGFwcHJveGltYXRpb24gZG9lcyBub3QgdGFrZSBpbnRvIGFjY291bnQgdGhhdCB0aGUgcG9zdGVyaW9yCmlzIG5vdCBzeW1tZXRyaWMgYW5kIHRoYXQgdGhlcmUgaXMgdmVyeSBsb3cgZGVuc2l0eSBmb3IgbmVnYXRpdmUKYmV0YSB2YWx1ZXMuIEJhc2VkIG9uIHRoZSBkcmF3cyBmcm9tIHRoZSBub3JtYWwgYXBwcm94aW1hdGlvbgppcyBpcyBlc3RpbWF0ZWQgdGhhdCB0aGVyZSBpcyBhYm91dCA1JSBwcm9iYWJpbGl0eSB0aGF0IGJldGEgaXMgbmVnYXRpdmUhCgpgYGB7ciB9CmJwaSA8LSBub3Jtc2FtcFssMl0gPiAwCm5vcm1zYW1wX2xkNTAgPC0gLW5vcm1zYW1wW2JwaSwxXS9ub3Jtc2FtcFticGksMl0KYGBgCgpDcmVhdGUgYSBwbG90IG9mIHRoZSBwb3N0ZXJpb3IgZGVuc2l0eQoKYGBge3IgfQpwb3Nfbm9ybSA8LSBnZ3Bsb3QoZGF0YSA9IGRhdGEuZnJhbWUoY0EgLGNCLCBwKSwgYWVzKHggPSBjQSwgeSA9IGNCKSkgKwogIGdlb21fcmFzdGVyKGFlcyhmaWxsID0gcCwgYWxwaGEgPSBwKSwgaW50ZXJwb2xhdGUgPSBUKSArCiAgZ2VvbV9jb250b3VyKGFlcyh6ID0gcCksIGNvbG91ciA9ICdibGFjaycsIHNpemUgPSAwLjIpICsKICBjb29yZF9jYXJ0ZXNpYW4oeGxpbSA9IHhsLCB5bGltID0geWwpICsKICBsYWJzKHggPSAnYWxwaGEnLCB5ID0gJ2JldGEnKSArCiAgc2NhbGVfZmlsbF9ncmFkaWVudChsb3cgPSAneWVsbG93JywgaGlnaCA9ICdyZWQnLCBndWlkZSA9IEYpICsKICBzY2FsZV9hbHBoYShyYW5nZSA9IGMoMCwgMSksIGd1aWRlID0gRikKYGBgCgpQbG90IG9mIHRoZSBzYW1wbGVzCgpgYGB7ciB9CnNhbV9ub3JtIDwtIGdncGxvdChkYXRhID0gZGF0YS5mcmFtZShzYW1wX0E9bm9ybXNhbXBbLDFdLCBzYW1wX0I9bm9ybXNhbXBbLDJdKSkgKwogIGdlb21fcG9pbnQoYWVzKHNhbXBfQSwgc2FtcF9CKSwgY29sb3IgPSAnYmx1ZScsIHNpemUgPSAwLjMpICsKICBjb29yZF9jYXJ0ZXNpYW4oeGxpbSA9IHhsLCB5bGltID0geWwpICsKICBsYWJzKHggPSAnYWxwaGEnLCB5ID0gJ2JldGEnKQpgYGAKClBsb3Qgb2YgdGhlIGhpc3RvZ3JhbSBvZiBMRDUwCgpgYGB7ciB9Cmhpc19ub3JtIDwtIGdncGxvdCgpICsKICBnZW9tX2hpc3RvZ3JhbShhZXMobm9ybXNhbXBfbGQ1MCksIGJpbndpZHRoID0gMC4wNCwKICAgICAgICAgICAgICAgICBmaWxsID0gJ3N0ZWVsYmx1ZScsIGNvbG9yID0gJ2JsYWNrJykgKwogIGNvb3JkX2NhcnRlc2lhbih4bGltID0gYygtMC44LCAwLjgpKSArCiAgbGFicyh4ID0gJ0xENTAgPSAtYWxwaGEvYmV0YSwgYmV0YSA+IDAnKQpgYGAKCkNvbWJpbmUgdGhlIHBsb3RzCgpgYGB7ciB9CmdyaWQuYXJyYW5nZShwb3MsIHNhbSwgaGlzLCBwb3Nfbm9ybSwgc2FtX25vcm0sIGhpc19ub3JtLCBuY29sID0gMykKYGBgCgo=