Probability of a girl birth given placenta previa (BDA3 p. 37).
437 girls and 543 boys have been observed. Calculate and plot the posterior distribution of the proportion of girls θ, using uniform prior on θ.
ggplot2 is used for plotting to install new packages, type e.g. install.packages(‘ggplot2’)
library(ggplot2)
theme_set(theme_minimal())
Posterior is Beta(438,544)
df1 <- data.frame(theta = seq(0.375, 0.525, 0.001))
a <- 438
b <- 544
df1$p <- dbeta(df1$theta, a, b)
compute also 95% central interval
df2 <- data.frame(theta = seq(qbeta(0.025, a, b), qbeta(0.975, a, b), length.out = 100))
df2$p <- dbeta(df2$theta, a, b)
Plot posterior (Beta(438,544)) and 48.8% line for population average
ggplot(mapping = aes(theta, p)) +
geom_line(data = df1) +
geom_area(data = df2, aes(fill='1')) +
geom_vline(xintercept = 0.488, linetype='dotted') +
labs(title='Uniform prior -> Posterior is Beta(438,544)', y = '') +
scale_y_continuous(expand = c(0, 0.1), breaks = NULL) +
scale_fill_manual(values = 'lightblue', labels = '95% posterior interval') +
theme(legend.position = 'bottom', legend.title = element_blank())

LS0tCnRpdGxlOiAiQmF5ZXNpYW4gZGF0YSBhbmFseXNpcyBkZW1vIDIuMSIKYXV0aG9yOiAiQWtpIFZlaHRhcmksIE1hcmt1cyBQYWFzaW5pZW1pIgpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCkpYCIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICB0aGVtZTogcmVhZGFibGUKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKLS0tCiMjIFByb2JhYmlsaXR5IG9mIGEgZ2lybCBiaXJ0aCBnaXZlbiBwbGFjZW50YSBwcmV2aWEgKEJEQTMgcC4gMzcpLgoKNDM3IGdpcmxzIGFuZCA1NDMgYm95cyBoYXZlIGJlZW4gb2JzZXJ2ZWQuIENhbGN1bGF0ZSBhbmQgcGxvdCB0aGUKcG9zdGVyaW9yIGRpc3RyaWJ1dGlvbiBvZiB0aGUgcHJvcG9ydGlvbiBvZiBnaXJscyAkXHRoZXRhJCwgdXNpbmcKdW5pZm9ybSBwcmlvciBvbiAkXHRoZXRhJC4KCmdncGxvdDIgaXMgdXNlZCBmb3IgcGxvdHRpbmcKdG8gaW5zdGFsbCBuZXcgcGFja2FnZXMsIHR5cGUgZS5nLiBpbnN0YWxsLnBhY2thZ2VzKCdnZ3Bsb3QyJykKCmBgYHtyIHNldHVwLCBtZXNzYWdlPUZBTFNFLCBlcnJvcj1GQUxTRSwgd2FybmluZz1GQUxTRX0KbGlicmFyeShnZ3Bsb3QyKQp0aGVtZV9zZXQodGhlbWVfbWluaW1hbCgpKQpgYGAKClBvc3RlcmlvciBpcyBCZXRhKDQzOCw1NDQpCgpgYGB7ciB9CiMgc2VxIGNyZWF0ZXMgZXZlbmx5IHNwYWNlZCB2YWx1ZXMKZGYxIDwtIGRhdGEuZnJhbWUodGhldGEgPSBzZXEoMC4zNzUsIDAuNTI1LCAwLjAwMSkpIAphIDwtIDQzOApiIDwtIDU0NAojIGRiZXRhIGNvbXB1dGVzIHRoZSBwb3N0ZXJpb3IgZGVuc2l0eQpkZjEkcCA8LSBkYmV0YShkZjEkdGhldGEsIGEsIGIpCmBgYAoKY29tcHV0ZSBhbHNvIDk1JSBjZW50cmFsIGludGVydmFsCgpgYGB7ciB9CiMgc2VxIGNyZWF0ZXMgZXZlbmx5IHNwYWNlZCB2YWx1ZXMgZnJvbSAyLjUlIHF1YW50aWxlCiMgdG8gOTcuNSUgcXVhbnRpbGUgKGkuZS4sIDk1JSBjZW50cmFsIGludGVydmFsKQojIHFiZXRhIGNvbXB1dGVzIHRoZSB2YWx1ZSBmb3IgYSBnaXZlbiBxdWFudGlsZSBnaXZlbiBwYXJhbWV0ZXJzIGEgYW5kIGIKZGYyIDwtIGRhdGEuZnJhbWUodGhldGEgPSBzZXEocWJldGEoMC4wMjUsIGEsIGIpLCBxYmV0YSgwLjk3NSwgYSwgYiksIGxlbmd0aC5vdXQgPSAxMDApKQojIGNvbXB1dGUgdGhlIHBvc3RlcmlvciBkZW5zaXR5CmRmMiRwIDwtIGRiZXRhKGRmMiR0aGV0YSwgYSwgYikKYGBgCgpQbG90IHBvc3RlcmlvciAoQmV0YSg0MzgsNTQ0KSkKYW5kIDQ4LjglIGxpbmUgZm9yIHBvcHVsYXRpb24gYXZlcmFnZQoKYGBge3IgfQpnZ3Bsb3QobWFwcGluZyA9IGFlcyh0aGV0YSwgcCkpICsKICBnZW9tX2xpbmUoZGF0YSA9IGRmMSkgKwogICMgQWRkIGEgbGF5ZXIgb2YgY29sb3JpemVkIDk1JSBwb3N0ZXJpb3IgaW50ZXJ2YWwKICBnZW9tX2FyZWEoZGF0YSA9IGRmMiwgYWVzKGZpbGw9JzEnKSkgKwogICMgQWRkIHRoZSBwcm9wb3J0aW9uIG9mIGdpcmwgYmFiaWVzIGluIGdlbmVyYWwgcG9wdWxhdGlvbgogIGdlb21fdmxpbmUoeGludGVyY2VwdCA9IDAuNDg4LCBsaW5ldHlwZT0nZG90dGVkJykgKwogICMgRGVjb3JhdGUgdGhlIHBsb3QgYSBsaXR0bGUKICBsYWJzKHRpdGxlPSdVbmlmb3JtIHByaW9yIC0+IFBvc3RlcmlvciBpcyBCZXRhKDQzOCw1NDQpJywgeSA9ICcnKSArCiAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGMoMCwgMC4xKSwgYnJlYWtzID0gTlVMTCkgKwogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9ICdsaWdodGJsdWUnLCBsYWJlbHMgPSAnOTUlIHBvc3RlcmlvciBpbnRlcnZhbCcpICsKICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAnYm90dG9tJywgbGVnZW5kLnRpdGxlID0gZWxlbWVudF9ibGFuaygpKQpgYGAKCg==