# Jags code to fit the model to the simulated data
model_code = '
model
{
# Likelihood
y ~ dmnorm(Mu, Sigma.inv)
Sigma.inv <- inverse(Sigma)
# Set up mean and covariance matrix
for(i in 1:T) {
Mu[i] <- alpha
Sigma[i,i] <- pow(sigma, 2) + pow(tau, 2)
for(j in (i+1):T) {
Sigma[i,j] <- pow(tau, 2) * exp( - rho * pow(t[i] - t[j], 2) )
Sigma[j,i] <- Sigma[i,j]
}
}
alpha ~ dnorm(0, 0.01) # default dnorm(0, 0.01)
sigma ~ dunif(0, 10) # default dunif(0,10)
tau ~ dunif(0, 10) # default dunif(0, 10)
rho ~ dunif(0.1, 5) # default dunif(0.1, 5)
}
'
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 1
## Unobserved stochastic nodes: 4
## Total graph size: 1411
##
## Initializing model