Class 3: Model checking and performance

Andrew Parnell, School of Mathematics and Statistics,
University College Dublin

1/26

Learning outcomes

v

Be able to read and understand regression diagnostic plots

v

Be able to compare statistical models using information criteria
and cross-validation

v

Understand the different types of classification metrics
Understand and interpret ROC curves and AUC values

v

2/26

Regression diagnostics

» We saw in the previous class that the vertical distances
between the predictions and the observations - the residuals are
assumed to be normally distributed. How can we check this?

» One obvious way is to produce a histogram of the residuals and
see if they look ‘normal’:

model_1 = lm(formula = lpsa ~ lweight, data = prostate)
hist(model_1$residuals, freq=FALSE, main = ’Histogram of 1j
curve (dnorm(x, sd = 1.046), col=’red’, add = TRUE)

Histogram of Ipsa ~ Iweight residuals

0.4

20.3 v

c 0.2

oo | = B

N

3/26

More on residual plots

» Histograms tend to under-weight the importance of extreme
observations
» Better is a QQ-plot:

gqnorm(model_1$residuals)
qgqline (model_1$residuals)

Sample Quantiles

Normal Q-Q Plot

-2 -1 0 1 2
Theoretical Quantiles

4/26

Plotting the predictions

A really good model will have the predictions looking a lot like the
true values:

plot(prostate$lpsa, model_1$fitted.values,
ylab = ’Predicted values’, xlab = ’True values’)
abline(a=0, b=1, col=’red’)

A N
ocuouioul

Predicted values

True values

5/26

Issues with over-fitting

> As you add more terms to the regression model, the fit will
generally get better, higher R-squared, lower residual standard
error, closer predicted values to true values

» Regularisation and shrinkage can assist with this problem

> A useful way to judge this problem is to leave out some of the
data, create the predictive model, and then create predictions
of the left out data

6/26

Cross validation

A very useful recipe for evaluating model fit. For k-fold CV:

Break the data up into k chunks or folds

Leave fold k out and fit the model to the remaining folds
Predict values for the missing fold

Repeat k times, once for each fold

Plot/summarise the left out predictions with the true data

O e

If the model is really performing then the out of sample predictions
should look like the true data

7/26

Cross validation in R

n_folds = 5
n = nrow(prostate)
folds = sample(1l:5, n, replace = TRUE)
cv_preds = rep(NA, length = n)
for(i in 1:n_folds) {

curr_model = Im(lpsa ~ lweight,

data = subset(prostate, folds!=i))
cv_preds[folds==i] = predict(curr_model,
newdata = subset(prostate, :

8/26

Cross-validation output

plot(prostate$lpsa, cv_preds,
ylab = ’5-fold CV Predicted values’,
xlab = ’True values’)

abline(a=0, b=1, col=’red’)

5-fold CV Predicted value
RPEFENNOWS
QUIO U100 U100

True values

Not a great model!
9/26

More on cross-validation

» Cross-validation can be used to choose between models. For
example, if you're not sure whether to include a particular
explanatory variable you could run 5-fold CV for each one and
see which performs better. The advantage is that the
performance will not necessarily improve as you put in more
explanatory variables

» There are different versions of CV. We could run 10-fold CV,
which would take longer but be more like the full model as it
uses more data points

» Some people run leave-out-out CV (LOO-CV) which leaves only
one data point out at a time. This can be very slow though

» CV will work with both regression and classification approaches

10/26

Model

comparison

Another way to choose between models (e.g. with different
explanatory variables) is to use an information criterion

» This is a measure of the model fit penalised by its complexity
» A model with lots of explanatory variables is very complex and

so will be given a high penalty

However, if the new explanatory variables explain the variation
in the response well then it will be worth adding in to the model
Perhaps the most commonly used is the Akaike Information
Criterion (AIC) which R gives you as part of 1m's output

The usual practice is to fit a range of models and pick the one
with the smallest AIC value. This will usually give you a better
model than if you pick on p-values

11/26

Model comparison

The cheat way of doing this is via stepAIC:

library (MASS)
stepAIC(model_4) # Recall model 4 had everything in it

Step: AIC=10.66
lpsa ~ lweight

Df Sum of Sq RSS AIC

<none> 103.90 10.665
- lweight 1 24.018 127.92 28.838

12/26

Some notes about information criteria

» There are lots of different versions: AIC, AlCc, BIC, DIC,
WAIC, ...

» It's very hard to decide whether a drop in AIC is ‘statistically
significant’ so sometimes we are left with two or three models
to choose between

» Some information criteria (AIC) aim to estimate the LOO-CV
performance, but only require one fit of the model

» Information criteria, like cross-validation, will work for both
regression and classification models

13/26

Classification diagnostics

14/26

Classification diagnostics

» Recall that for a classification model, such as the logistic
regression model we applied to the South African Heart Rate
data, we are predicting a probability value

» We might decide to assume that all observations with a
probability value greater than 0.5 get classified as CHD, whilst
all those with probability values less than 0.5 get classified as
non-CHD

» If all the probabilities are particularly low or high it might be
that we have don’t have anyone classified to one of the groups

> We might thus decide on a different cut-off other than 0.5
which might improve the predictions

15/26

The misclassification table
For a probability cut-off of 0.5 we have:

table(SA$chd, round(model 1$fitted.values),
dnn=c(’True’,’Predicted’))

Predicted
True 0 1
#i#t 0 243 59
#i 1 89 71

» The top left figure here is the number of true negatives,
i.e. those who do not have CHD and are predicted to not have
CHD

» The bottom right figure is the number of true positives

» The top right figure is the number of false negatives. They are
predicted to be positive but they are not

> The bottom left figure is the number of false positive. They

are predicted to be negative but are not 16726

More on misclassification tables

» From the misclassification table we can calculate a huge
number of different performance metrics (more later)

> Ideally we want the values on the diagonal to be large and the
off-diagonals to be small

» We can change the cut-off with

cut_off = 0.3
table(SA$chd, as.integer(model_1$fitted.values>cut_off),
dnn=c(’True’,’Predicted’))

#i Predicted
True 0 1
#i 0 162 140
1 36 124

Now many more observations have been put into the right column
17/26

Sensitivity and specificity

» The two most common statistics to calculate from the
misclassification table are:
» The sensitivity, or the true positive rate, calculated as the
number of true positives divided by the number of positives
» The specificity, or the true negative rate, calculated as the
number of true negatives divided by the number of negatives

» We want both of these to be high:

cut_off = 0.3
tab = table(SA$chd,
as.integer(model_1$fitted.values>cut_off),
dnn=c(’True’,’Predicted’))
cat(’Sensitivity = ’,tab[2,2]/(tab[2,1] + tab[2,2]),
’Specificity = ’,tab[1,1]/(tab[1,1] + tab[1,2]))

Sensitivity = 0.775 Specificity = 0.5364238

18/26

Choosing a probability cut-off: Youden's index

» If you have to choose a single probability cut-off, a popular
choice is Youden's index, calculated as:

sensitivity + specificity — 1

» We can find the probability value which maximises Youden's
index:

prob_grid = seq(0.1, 0.6, length = 50)

youden = rep(NA, length = 50)

for(i in 1:50) {

tab = table(SA$chd,
as.integer(model_1$fitted.values>prob_gridl[i.

tab[2,2]/(tab[2,1] + tab[2,2])

spec = tab[1,1]/(tab[1,1] + tab[1,2])

youden[i] = sens + spec - 1

sens

19/26

Youden's index value

plot(prob_grid, youden, type = ’1°)

.30

25
.20
9D.15

0.1

0.2

0.3 0.4
prob_grid

0.5

0.6

20/26

The ROC curve

> It is common to plot the sensitivity and specificity values for a
full range of cut-offs. This is known as the Receiver Operator
Characteristic (ROC) curve:

library (pROC)
roc(SA$chd, model_1$fitted.values, plot=TRUE)

ONR OO

Sensitivity
[eoleo]le]ele]

1.0 04
Specificity

21/26

AUC

» The ROC curve shows, for each probability cut-off the value of
the sensitivity and specificity

» A good classification model should have the curve well away
from the diagonal. This means that for every probability cut off
we are good at identifying the positive and negative cases

» As a general summary, the area under the ROC curve (the
AUC) is often calculated too:

auc(SA$chd, model_1$fitted.values)

Area under the curve: 0.7225

» The AUC measures the extend to which the classification
model beats a random classifier
» A high value is desirable. A common (unjustified) cut-off is 0.7

22/26

Calibration

» The ROC curve just looks at the sensitivity and specificity for
different cut-offs. It doesn't actually matter what the
probability cut-offs are - you get the same plot if you divide
them by 1000!

roc(SA$chd, model_1$fitted.values/1000, plot=TRUE)

Sensitivity
COo0o0oF
ONP,~OHOOO

1.0 04
Specificity

23/26

Calibration 2

» A model is mis-calibrated if the probabilities do not match the
true probabilities in the data set. For example, if we say
someone has an 80% chance of getting CHD, then under
repeated sampling of similar individuals 80% should have CHD

» We can create a calibration plot with the R package ROCR:

library(ROCR)

pred = prediction(model_1$fitted.values, SA$chd)
acc = performance(pred, measure = ’acc’)

24/26

Calibration plot

plot(acc)
abline(a=0, b=1, col=’red’)

o SEUBEE0
WA AUTITIOD
iSiGlelilalyls]

0.1 0.2 0.3 0.4 0.5 0.6
Cutoff

25/26

Summary

» We can perform residual analysis on a regression model

» We can perform cross validation or compare models using AlIC
for both classification and regression models

» We have learnt about classification metrics: ROC curves, AUC
values, and calibration

26/26

