
Class 3: Model checking and performance

Andrew Parnell, School of Mathematics and Statistics,
University College Dublin

1/26

Learning outcomes

I Be able to read and understand regression diagnostic plots
I Be able to compare statistical models using information criteria

and cross-validation
I Understand the different types of classification metrics
I Understand and interpret ROC curves and AUC values

2/26

Regression diagnostics
I We saw in the previous class that the vertical distances

between the predictions and the observations - the residuals are
assumed to be normally distributed. How can we check this?

I One obvious way is to produce a histogram of the residuals and
see if they look ‘normal’:

model_1 = lm(formula = lpsa ~ lweight, data = prostate)
hist(model_1$residuals, freq=FALSE, main = ’Histogram of lpsa ~ lweight residuals’)
curve(dnorm(x, sd = 1.046), col=’red’, add = TRUE)

Histogram of lpsa ~ lweight residuals

model_1$residuals

D
en

si
ty

−2 −1 0 1 2 3

0.0
0.1
0.2
0.3
0.4

3/26

More on residual plots
I Histograms tend to under-weight the importance of extreme

observations
I Better is a QQ-plot:

qqnorm(model_1$residuals)
qqline(model_1$residuals)

−2 −1 0 1 2

−2
−1

0
1
2
3

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

4/26

Plotting the predictions
A really good model will have the predictions looking a lot like the
true values:

plot(prostate$lpsa, model_1$fitted.values,
ylab = ’Predicted values’, xlab = ’True values’)

abline(a=0, b=1, col=’red’)

0 1 2 3 4 5

1.0
1.5
2.0
2.5
3.0
3.5

True values

P
re

di
ct

ed
 v

al
ue

s

5/26

Issues with over-fitting

I As you add more terms to the regression model, the fit will
generally get better, higher R-squared, lower residual standard
error, closer predicted values to true values

I Regularisation and shrinkage can assist with this problem
I A useful way to judge this problem is to leave out some of the

data, create the predictive model, and then create predictions
of the left out data

6/26

Cross validation

A very useful recipe for evaluating model fit. For k-fold CV:

1. Break the data up into k chunks or folds
2. Leave fold k out and fit the model to the remaining folds
3. Predict values for the missing fold
4. Repeat k times, once for each fold
5. Plot/summarise the left out predictions with the true data

If the model is really performing then the out of sample predictions
should look like the true data

7/26

Cross validation in R

n_folds = 5
n = nrow(prostate)
folds = sample(1:5, n, replace = TRUE)
cv_preds = rep(NA, length = n)
for(i in 1:n_folds) {

curr_model = lm(lpsa ~ lweight,
data = subset(prostate, folds!=i))

cv_preds[folds==i] = predict(curr_model,
newdata = subset(prostate, folds==i))

}

8/26

Cross-validation output
plot(prostate$lpsa, cv_preds,

ylab = ’5-fold CV Predicted values’,
xlab = ’True values’)

abline(a=0, b=1, col=’red’)

0 1 2 3 4 5

1.0
1.5
2.0
2.5
3.0
3.5
4.0

True values5−
fo

ld
 C

V
 P

re
di

ct
ed

 v
al

ue
s

Not a great model!
9/26

More on cross-validation

I Cross-validation can be used to choose between models. For
example, if you’re not sure whether to include a particular
explanatory variable you could run 5-fold CV for each one and
see which performs better. The advantage is that the
performance will not necessarily improve as you put in more
explanatory variables

I There are different versions of CV. We could run 10-fold CV,
which would take longer but be more like the full model as it
uses more data points

I Some people run leave-out-out CV (LOO-CV) which leaves only
one data point out at a time. This can be very slow though

I CV will work with both regression and classification approaches

10/26

Model comparison

I Another way to choose between models (e.g. with different
explanatory variables) is to use an information criterion

I This is a measure of the model fit penalised by its complexity
I A model with lots of explanatory variables is very complex and

so will be given a high penalty
I However, if the new explanatory variables explain the variation

in the response well then it will be worth adding in to the model
I Perhaps the most commonly used is the Akaike Information

Criterion (AIC) which R gives you as part of lm’s output
I The usual practice is to fit a range of models and pick the one

with the smallest AIC value. This will usually give you a better
model than if you pick on p-values

11/26

Model comparison

The cheat way of doing this is via stepAIC:

library(MASS)
stepAIC(model_4) # Recall model 4 had everything in it

...
Step: AIC=10.66
lpsa ~ lweight

Df Sum of Sq RSS AIC
<none> 103.90 10.665
- lweight 1 24.018 127.92 28.838

12/26

Some notes about information criteria

I There are lots of different versions: AIC, AICc, BIC, DIC,
WAIC, . . .

I It’s very hard to decide whether a drop in AIC is ‘statistically
significant’ so sometimes we are left with two or three models
to choose between

I Some information criteria (AIC) aim to estimate the LOO-CV
performance, but only require one fit of the model

I Information criteria, like cross-validation, will work for both
regression and classification models

13/26

Classification diagnostics

14/26

Classification diagnostics

I Recall that for a classification model, such as the logistic
regression model we applied to the South African Heart Rate
data, we are predicting a probability value

I We might decide to assume that all observations with a
probability value greater than 0.5 get classified as CHD, whilst
all those with probability values less than 0.5 get classified as
non-CHD

I If all the probabilities are particularly low or high it might be
that we have don’t have anyone classified to one of the groups

I We might thus decide on a different cut-off other than 0.5
which might improve the predictions

15/26

The misclassification table
For a probability cut-off of 0.5 we have:

table(SA$chd, round(model_1$fitted.values),
dnn=c(’True’,’Predicted’))

Predicted
True 0 1
0 243 59
1 89 71

I The top left figure here is the number of true negatives,
i.e. those who do not have CHD and are predicted to not have
CHD

I The bottom right figure is the number of true positives
I The top right figure is the number of false negatives. They are

predicted to be positive but they are not
I The bottom left figure is the number of false positive. They

are predicted to be negative but are not 16/26

More on misclassification tables
I From the misclassification table we can calculate a huge

number of different performance metrics (more later)
I Ideally we want the values on the diagonal to be large and the

off-diagonals to be small
I We can change the cut-off with

cut_off = 0.3
table(SA$chd, as.integer(model_1$fitted.values>cut_off),

dnn=c(’True’,’Predicted’))

Predicted
True 0 1
0 162 140
1 36 124

Now many more observations have been put into the right column
17/26

Sensitivity and specificity
I The two most common statistics to calculate from the

misclassification table are:
I The sensitivity, or the true positive rate, calculated as the

number of true positives divided by the number of positives
I The specificity, or the true negative rate, calculated as the

number of true negatives divided by the number of negatives
I We want both of these to be high:

cut_off = 0.3
tab = table(SA$chd,

as.integer(model_1$fitted.values>cut_off),
dnn=c(’True’,’Predicted’))

cat(’Sensitivity = ’,tab[2,2]/(tab[2,1] + tab[2,2]),
’Specificity = ’,tab[1,1]/(tab[1,1] + tab[1,2]))

Sensitivity = 0.775 Specificity = 0.5364238

18/26

Choosing a probability cut-off: Youden’s index
I If you have to choose a single probability cut-off, a popular

choice is Youden’s index, calculated as:

sensitivity + specificity − 1

I We can find the probability value which maximises Youden’s
index:

prob_grid = seq(0.1, 0.6, length = 50)
youden = rep(NA, length = 50)
for(i in 1:50) {

tab = table(SA$chd,
as.integer(model_1$fitted.values>prob_grid[i]))

sens = tab[2,2]/(tab[2,1] + tab[2,2])
spec = tab[1,1]/(tab[1,1] + tab[1,2])
youden[i] = sens + spec - 1

}

19/26

Youden’s index value

plot(prob_grid, youden, type = ’l’)

0.1 0.2 0.3 0.4 0.5 0.6

0.10
0.15
0.20
0.25
0.30
0.35

prob_grid

yo
ud

en

20/26

The ROC curve
I It is common to plot the sensitivity and specificity values for a

full range of cut-offs. This is known as the Receiver Operator
Characteristic (ROC) curve:

library(pROC)
roc(SA$chd, model_1$fitted.values, plot=TRUE)

Specificity

S
en

si
tiv

ity

0.0
0.2
0.4
0.6
0.8
1.0

1.0 0.4

##
Call:
roc.default(response = SA$chd, predictor = model_1$fitted.values, plot = TRUE)
##
Data: model_1$fitted.values in 302 controls (SA$chd 0) < 160 cases (SA$chd 1).
Area under the curve: 0.7225

21/26

AUC
I The ROC curve shows, for each probability cut-off the value of

the sensitivity and specificity
I A good classification model should have the curve well away

from the diagonal. This means that for every probability cut off
we are good at identifying the positive and negative cases

I As a general summary, the area under the ROC curve (the
AUC) is often calculated too:

auc(SA$chd, model_1$fitted.values)

Area under the curve: 0.7225

I The AUC measures the extend to which the classification
model beats a random classifier

I A high value is desirable. A common (unjustified) cut-off is 0.7
22/26

Calibration
I The ROC curve just looks at the sensitivity and specificity for

different cut-offs. It doesn’t actually matter what the
probability cut-offs are - you get the same plot if you divide
them by 1000!

roc(SA$chd, model_1$fitted.values/1000, plot=TRUE)

Specificity

S
en

si
tiv

ity

0.0
0.2
0.4
0.6
0.8
1.0

1.0 0.4

##
Call:
roc.default(response = SA$chd, predictor = model_1$fitted.values/1000, plot = TRUE)
##
Data: model_1$fitted.values/1000 in 302 controls (SA$chd 0) < 160 cases (SA$chd 1).
Area under the curve: 0.7225

I In such cases the model is said to be severely mis-calibrated

23/26

Calibration 2

I A model is mis-calibrated if the probabilities do not match the
true probabilities in the data set. For example, if we say
someone has an 80% chance of getting CHD, then under
repeated sampling of similar individuals 80% should have CHD

I We can create a calibration plot with the R package ROCR:

library(ROCR)
pred = prediction(model_1$fitted.values, SA$chd)
acc = performance(pred, measure = ’acc’)

24/26

Calibration plot

plot(acc)
abline(a=0, b=1, col=’red’)

Cutoff

A
cc

ur
ac

y

0.1 0.2 0.3 0.4 0.5 0.6

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

25/26

Summary

I We can perform residual analysis on a regression model
I We can perform cross validation or compare models using AIC

for both classification and regression models
I We have learnt about classification metrics: ROC curves, AUC

values, and calibration

26/26

